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ABSTRACT

The local and global behavior of the positive solutions of the difference equation

a- e*Yn _,’_ﬁ . e*yn—l

n=0,

yn+l =

7/—f_6{'yn+ﬂ'yn—l7

was investigated, where the parameters «, £ and y and the initial conditions are arbitrary positive numbers. Fur-

thermore, the characterization of the stability was studied with a basin that depends on the conditions of the coefficients.
The analysis about the semi-cycle of positive solutions has end the study of this work.
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1. Introduction

H. El-Metwally et al. [1] studied the global stability of
the difference equation

oo =+ fX, €77,n=01-, (1.2)

where the parameters « and g are positive numbers
and the initial conditions are arbitrary non-negative real
numbers. This equation may be viewed as a model in
Mathematical Biology, where « is the immigration rate
and g the population growth rate.

In [2] was investigated the globally asymptotically
stability of the difference equation

a+pen
nl = '

7/ + yn—1

n=01, 1.2)

where the parameters «, S and y are positive num-
bers and the initial conditions are arbitrary non-negative
numbers. In [3] the boundedness and the global asymp-
totic behavior of the difference equation

- e*(n}’n *(”’k)yn—k)

n=01--, (13)
B+ny, +(n-k)y,

yn+1 =

was shown, where « and g are positive real numbers,
ke{1,2,---} and the initial conditions y -,y Y,
are arbitrary numbers. Similar studies can be shown in
[4-7].

The aim in this paper is to study the local and global
behavior of the positive solutions of the difference equa-
tion
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a~e‘y“ +ﬂ-e‘y“*1
yta-y, +ﬂ'yn—1

where the parameters «, £ and y and the initial con-
ditions are arbitrary positive numbers. In Section 2, the
local asymptotic stability of the equilibrium point of
Equation (1.4) was investigated by using the Linearized
Stability Theorem. A suitable Lyapunov function for the
analysis of the global asymptotic stability behavior was
used, like the idea in [8,9]. Furthermore, the characteri-
zation of the stability was examined that depends on the
conditions of the coefficients (see [10]). In Section 3, the
semi-cycle of positive solutions was analyzed. All this
results will be shown theoretical and by simulations at
the end of the paper.

Vi = n=01---, (14)

2. Local and Global Asymptotic Stability
Analysis

In this section, we discuss the local and global asymp-
totic stability of the unique positive equilibrium point of
Equation (1.4) by using the theorems in [4,8-10].

The equilibrium points of Equation (1.4) are the solu-
tions of the equation

_ (a+p)e”?
y:(;ﬂ_. (2_1)

y+(a+p)y

Set

(a+p)e”
f(y)=———-y (2.2)

(v) y+(a+p)y

for y=0 and y— oo we obtain respectively,
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£(0)=22 5 0,lim f (y) =0 2.3)
¥ y—o
and
(y)= —(a+p)e” [y+( a+ﬂ)(y+1)]_ 24)

[7/+ a+ﬁ y}

It follows that Equation (2.1) has exactly one solution
y . From this result Equation (1.4) has a unique equilib-
rium y.

The linearized equation and the characteristic equation
associated with Equation (1.4) about the equilibrium ¥y

oz(e‘Y + 7) ﬂ(e‘7 + 7) o
Xn+1+7+(a+[a’)yxn+y+(a+ﬂ)7 T (25)
n=0,1,

and
. ale’+y)  Ble7+Y)
A +7+(a+ﬁ)7/1+7/+(a+ T =0, (2.6)

respectively.

Theorem 2.1. The following statements are true.

1) Every solution of Equation (1.4) is bounded if
0<y,.

2) The equilibrium point of Equation (1.4) is bounded
if 0<Y.

Proof.

1) Suppose that 0<y, . Let {y }" |
Equation (1.4). We have

be a solution of

ae-Yn + ﬂe_Yn—l

0<VYpu=
' 7+ayn +ﬁyn—l
ae™ + e (a+pB)e"  (a+p)
% y yo

which gives that every positive solution of the Equation
(1.4) is bounded. Thus 1) is true.
2) Assume that 0<y. Then

0<y= ae”V + pe? - ae”V + pe’?
y+ay+py 7
- (a+ﬂ)e° :(a+ﬂ),
Y Ve

which implies that 2) is also true.
Theorem 2.2 Let o> f. If

— 7+ yz +4(a+p)y

(a+p)<ye 2P (2.7)

then the positive equilibrium point of Equation (1.4) is
locally asymptotically stable.

Proof. From the Linearized Stability Theorem, we can
write

e R -
y | ) <2. (2.8)
;/+ (a+B)y ‘ 7/+ a+ﬁ)
The inequality (2.8) can be shown under two cases;
e’ + e’ +y
1) ( y)_|<l+ ﬁ( y)
7+(a+ﬂ)y‘ y+(a+pB)
e’ +y
2) 1+ 'B( y)_<2.
y+(a+p)y
From 2), we get
_y_
y>P =y (2.9)
(04
By 1), we will have
O<(a+p)e” +2(a+pB)V+7, (2.10)

which always holds and since « > £, we can also obtain

7> (“_ﬂz)# (2.11)

Considering both (2.9) and (2.11), if

(a=p)e” ~r _pe7 -
20 a
then we have
(a+pB)e”? <y. (2.12)
Rewriting (2.12), we get

(a+B)V +yy-y<0. (2.13)

In view of (2.12) and (2.13), we obtain

—y+«[y2+4(a+ﬂ)y

(a+p)<ye 27

Theorem 2.3. Let the conditions in Theorem 2.2 hold
and assume that y;, and Y, are the equilibrium points
of Equation (1.4), which parameters have the conditions

(a+B)p

. If the parameter » decreases, then

Vo <71 <

the local stability of the positive equilibrium point

~(ar—(a+p)B) -

(a+p)B) +ba(a+p) 210

<
Il
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decreases also. a(e—v n 7)
Proof. By the Linearized Stability Theorem, we have -— = (2.16)
y+(a+p)y
-y
e Ty | e * y) <2, (2.15) From (2.16), computations will give us
7/+ (a+p)y ‘ }/+ a+ﬁ’) a(a+ﬁ)72—((a+ﬂ)ﬁ—a}/)7—(a+ﬁ)y=0, (2.17)
Let where we get the positive equilibrium point
B (a+ﬂ)ﬂ—ay+\/((a+ﬂ)ﬁ—a7)2 +405(05+ﬂ)2
y= .
2a(a+p)
Let us write
_ (a+,6)/5’—a7/1+\/((a+/5’),8—a7/1)2 +4az(oz+/5’)2
i = (2.18)
2a(a+ﬂ)
and
— (a+pB)B-ay, +\/((a+ﬁ)ﬂ—ayz)2 +4a(a+ﬂ)2
Yo = > ) (2.19)
a(a+p)
(a+B)B Theorem 2.4. Suppose that {y,}” is a monoton de-

where y, <y, <

Considering both (2.18) and (2.19), we get

V. < Vs (2.20)
On the other side, from (2.15), we will investigate
e +y
AeT) o
y+(a+p)y
From (2.21) assume that
e+, e +y,
4 yl_) < i yz_) <1. (222
7/+(05+ﬂ)y1 7+(a+ﬂ)y2

Considering the conditions in Theorem 2.2, if fur-
thermore (2.22) holds, than the stability of Yy, is weaker

than y,. By computing (2.22), we obtain
7(9772 _e*71)+(a+ﬂ)(yle*72 _Vzefyl) (2 23)
+7(¥.=¥1)>0.
This inequality can be also written in the form
2
7(722 _712)+ 7—1,3(72 _71)+7(72 _71) (2_24)
+(a+B) VY, (V. - 1) > 0.
From (2.20) we get
2
7(Vo+ %)+ iﬂ+7+(a+ﬂ)7172 >0, (2.25)

which always holds. This completes the proof.
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creasing solution of Equation (1.4) and assume that the
conditions in Theorem 2.2 hold. If

Yo >2Y (2.26)
then the positive equilibrium point of Equation (1.4) is
globally asymptotically stable.

Proof. We consider a Lyapunov function V(n) de-

fined by
V(n)={y,-y} .n=012- 2.27)

The change along the solutions of Equation (1.4) is

AV (n)=V(n+1)-V(n
VeV
:{yn+1_yn}{yn+l+yn_2y}'
From (2.28) we can write
a.e*}’n +ﬂ,e*yn4
yn+ _yn = _yn
' 7/+a'yn+ﬂ'yn—l
and
.o Y .a Yn=
yn+l+yn_27:a ¢ +ﬂe : +yn_2y'

7+a'yn+ﬂ'yn—l

It can be compute that by using the hypothesis we
have AV (n)<0, which is the condition for the global
asymptotic stability of the positive equilibrium point of
Equation (1.4).

3. The Semi-Cycle and Oscillation

In this section, we consider the semi-cycle and oscillation
of the positive solutions of Equation (1.4).

1JMNTA
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Figure 1. (a) Local stable behavior of Equation (1.4) for a =30, # =20, y = 0.3, y(-1) = 0.8 and y(0) = 0.95; (b) Unstable behav-
ior of Equation (1.4) for a =20, =30, y = 0.3, y(—1) = 0.8 and y(0) = 0.9; (c) Stability analysis for « =30, # =20,y € [0.01, 2],
y(-=1) = 0.8 and y(0) = 0.95; (d) Diagram of the solutions of Equation (1.4) for #=30,a € [17,21],y € 0.03, y(—1) = 0.8 and y(0)
=0.95; (e) Diagram of the solution of Equation (1.4) for a =17.2, f € [20.5, 23],y € 0.003, y(—1) = 0.8 and y(0) = 0.95.
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By [8], a positive semi-cycle of a solution {x(n)}”

n=-1
of x(n+1)=f x(n),x(n—l)) consists of a “string” of
terms  {x(k),x(k+1),---,x(m)} , all greater than or
equal to the equilibrium X", with k>-1 and m<oo
and such that either k=-1 or k>-1 and x(k-1)<X
and either m=o0 or m<ow and x(m+1)<X.

A negative semi-cycle of a solution {x(n)}” | of

x(n+1)= f(x(n),x(n—l)) consists of a “string” of
terms {x(k),x(k+1),---,x(m)}, all less than the equi-
librium X", with k>-1 and m<ow and such that
either k=-1 or k>-1 and x(k—1)>X and either
m=ow or m<o and x(m+1)>X.

Theorem B ([9]) Assume that
f eC[(0,%)x(0,%),(0,)] and that f(x,y) is de-
creasing in both arguments. Let y be a positive equi-
librium of y(n+1)=f(y(n),y(n-1)). Then every
oscillatory solution of the difference equation
y(n+1)=f (y(n), y(n—l)) has semi-cycle of length at
most two.
a-e*+p-e”
y+a-X+p5-y
tion such that f e C[(O,oo)x(o,oo),(o,oo)] Then every
oscillatory solution of Equation (1.4) has semi-cycle of
length at most two.

Proof. By the Theorem B, we can write Equation (1.4)
such as

Theorem 3.2. Let f(x,y)= be a func-

a-e*+p-e”
yra-x+p4-y
The first derivative of (3.1) with respect to x and y are

f(xy)= (3.1)

of —ae’x(}/+a~x+ﬂ-y)—a(0{'e’x+ﬂ-e’y)

- 3 (3.2)
OX (7/+a-x+/5’~y)
and

o _ —ﬂe’x(y+a~x+ﬂ~y)—ﬂ(a~e’x+ﬂ-e’y) (33)
oy (y+a-x+p-y) o

respectively. These derivatives are less than zero if
—ae (y+a-x+p- y)_a(a.efx +/;.efv)< 0 (34)
and
-pe*(y+a-x+pB- y)_ﬂ(a.efx +ﬂ.efy) <0 (35)

respectively. Since the parameters are positive and the
variables x and y are in a positive interval, (3.4) and (3.5)
will be always hold. This completes the proof.

Example 1 In this Example, Figure 1(a) show the lo-
cal stability of Equation (1.4) for the parameters « =30,
B=20, y=03, y(-1)=0.8 and y(0)=0.95 by us-
ing the conditions in Theorem 2.2. The parameters

Copyright © 2013 SciRes.

a=20, f=30 y=03 and the initial conditions
y(-1)=0.8 and y(0)=0.95 are selected to show in
Figure 1(b) the unstable behavior of the solutions of
Equation (1.4). In Figure 1(c), we can show that by de-
creasing of the parameter y the local stability get be
weaker. At last, Figures 1(d) and (e) show the diagram
of the solutions of Equation (1.4) for «e[17,21],
B=25, y=0.003, y(-1)=0.8 and y(0)=0.95 and
for «=172, y=0.003, Be[205,23], y(-1)=0.8
and y(0)=0.95, respectively. This give us the relation
between the parameters « and £, which have an im-
portant role by the stability analysis of Equation (1.4), as
shown in Theorem 2.2 and Theorem 2.4.
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