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ABSTRACT 

We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining 
the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characterizing confor- 
mal classes in the space-time that determine a space moduli [1] on coherent sheaves for the securing solutions in field 
theory [2]. In a major context, elements of derived categories like D-branes and heterotic strings are considered, and 
using the geometric Langlands program, a moduli space is obtained of equivalence between certain geometrical pictures 
(non-conformal world sheets [3]) and physical stacks (derived sheaves), that establishes equivalence between certain 
theories of super symmetries of field of a Penrose transform that generalizes the implications given by the Langlands 
program. With it we obtain extensions of a cohomology of integrals for a major class of field equations to corres- 
ponding Hecke category. 
 
Keywords: Penrose Transform; Coherent G-Quasi-Equivariant D-Modules; Hecke Sheaf; Moduli Stacks; Moduli 

Spaces 

1. Introduction 

We have formulated in the language of the D-modules 
and their sheaves, like the given in a resolution [APM] 

     1 0,i ih h h     O O O0  the coP P P rres- 
pondence between the space of coherent D-modules and 
the space of equations of massless fields 0,h □  

 be established if we can grantee the unique- 
ness of the Penrose transform. This at least, have stayed 
guarantied of a partial form to conformal class obtained 
by the classical Penrose transform [4] 

which can

     1 , ker , ,h kH U k UO □

-DM
, 

P          (1) 

that in the modules categories, and to the functors 
0 FK and , is translated in 0GK

 
0

, ,
F

coh Yd V


O
K

  ,D ,DL

-D

 
0

coh

G

d D Mo



K

L

  ,cohMod DL

Mo         (2) 

where  is the full subcategory of  

coh X  whose open sets are of the  type to 
some bundle of lines L. 
Mod

Precisely these equivalences shape a classification 
given of the homogeneous vector bundles of lines [2,5] 
to differential operator classification [1].  

Some important facts that demonstrate by means of the 
use of the Radon transform and their version of  
Module transform (Radon-Schmid transform), is the ne- 
cessity of include a result that establishes the regularity 
in the analytical sense of the Riemannian manifold, 
which shapes the space-time, and that allows the appli- 
cation of the involutive distribution theorem on integral 
submanifolds as solutions of the corresponding equations 
of massless fields on submanifolds isomorphic in the 
Kählerian model inside of the Flat model given on 

 .G C2,4

Of fact, an analogy in the obtaining of models of 
space-time (under the same reasoning) must be realized 
between special Lagrangian submanifolds and m-folds of 
Calabi-Yau. But to it, we need define the complex micro- 
local structure that define all the phenomena of strings 
and branes in microscopic level, which happen in the 
6-dimensional component of the universe (6-dimen- 
sional compact Riemannian manifold) with ratio of the 
order 10−33 cm (Max Plank longitude of a string) [1,6]. 
The Penrose transform is an integral geometric method 
that interprets elements of various analytic cohomology 
groups on open subsets of complex projective 3-space as 
solutions of linear differential equations on the Grass- 
mannian of 2-planes in the 4-space. The motivation for 
such transform comes from the interpretation of this 
Grassmannian as the complexification of the conformal 
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  curve compactification of the Minkowski space and their dif- 
ferential equations being the massless field equations of 
various helicities  

XM

2;g 

-D
-D
D

3P

 [14]. This parametrizes flat families of 
smooth, proper, geometrically connected curves of genus 
g. Although it is not representable, it is nonetheless rather 
well-behaved for  technically, it is a “Deligne- 
Mumford stack”, but from our point of view, it suffices 
to take for granted that the notions of smoothness and 
dimension can be defined independently, and in this 
sense there are many results, proved via deformation 
theory [8,10]. 

 1 2 ,k k Z

-D
-D

,1 s ,P

h k   . 
Nevertheless: what is the global notion of the equi- 

valence created through the Radon-Schmid transform for 
the general case of classes not necessary conformal? 
Which are the classes that are extensions of the space of 
equivalences of the type (1)? Why are necessary these 
classes to include more phenomena of the space-time? 
What version of the Penrose transform will be required?  

Part of the goal of our research is centered in the ex- 
tension of the space of equivalences of the type (1), under 
a more general context given through the language of the 
D-modules, that is to say, we want extend our research al 
context of non-conformal manifolds and with it to find 
some condition at least of sufficiency for the resolution 
via the generalized Penrose transform of  Modules, 
which are P Modules and to induce their application 
to para-conformal classes through of the use of versions 
more generalized of Radon transforms that are connected 
with Penrose transforms to create conformal invariance 
in geometrical images that are physical stacks at least in 
the first development and tries to obtain an integral 
operators cohomology that be a sheaf cohomology group 
that includes the BRST-cohomology studied in field 
theory and where be applicable the second scheme of 
gauge theories (topological gauge theory [7]). The topo- 
logical gauge theory search use the deformation theory in 
derived sheaves that not requires use excessive functor 
calculations. In this sense, the most direct and shortest 
applications of deformation theory are to the study of 
moduli spaces (remember that we want to obtain equi- 
valences between categories of objects that are D-mo- 
dules in different scales inside of field theory from a 
point of view of bundle of lines, worldsheets from  
and all space time M  (for example D-branes and 
strings)). If we have a pre-deformation functor 

Until this point, can establish a correspondence of the 
genus as geometric images with elements of field theory? 
Can a space-time carpet be created from the strings 
tacked and D-branes, like P modules to the creation 
of modules that cover all  ? Which must be 
these P -modules? Are there some space of geometric 
invariant equivalences that that is adapted to the whole 
standard model of the space-time, doing that derived 
categories are applicable to the SUSY theory and QFT 
theory of same form, that is to say, to a transitive class of 
moduli spaces in the space ? 

These and many other aspects can be answered if we 
generalize functors between categories of coherent D- 
Modules in equivariant D-modules to sub-clases of the 
homogeneous space G H , of G-equivariant D-modules, 
where the functors of the transform of D-modules are the 
obtained through the Penrose-Radon transform with 
close range on D-modules that are certain generalized 
g-modules [13,28], in the context of the infinite Lie 
theory, and must be Harish-Chandra functores of derived 
categories [20], in these modules. This latter functorial 
application must record in eigen-sheaves de categorías de 
Hecke. 

2. Revisited Cycles and Equivalences (in the  
Mirror Symmetry) 

Now in the context of the generalized D-modules (inside 
of the derived categories) to the use of the Schmid-Radon 
transform, and finally obtain Radon-Penrose Transform, 
the functor [2] 

 , ob- 
tained from a point x, of a moduli space , then as was 
mentioned in [8,9], the notions of tangent space and 
formal smoothness for , and for , coincide. Not- 
ing that if a manifold is smooth, their dimension is the 
dimension of their tangent space, one could prove in this 
way that the Grassmannian ,r d  is smooth of di- 
mension  although of course a proof of repre- 
sentability gave inside of the deformation theory a more 
direct and stronger statement in showing that it is 
covered by copies of k  However, later we will 
study other fine moduli spaces, such as Hilbert spaces, 
where in many cases deformation theory is the only way 
of obtaining such statements. Along these lines, one of 
the archetypical examples is the moduli space 

M



 ,

M

A

CG

  .r

  ,rr d

r d

      (3) additional geometrical functorS

,gM  of 
curves of genus g, which is proposed inside of moduli 
spaces that appear in the Fukaya category Fuk  

 

establish a equivalence between the category M(DX- 
modules/flat connection), and M(DY-modules/Singulari- 
es to along of the involutive manifold V/flat connection) 
[4,11]. Then our moduli space that we constructed is the 
categorization of equivalences: 

  


 

Y -modules / Singularities to along of  

the involutive manifold V / flat co-nnection

H , ,

d S Y M D

 

U

M

 O

(4) 

considering the moduli space as base [4], 
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j

 

 X -modules V / flat co-nnection H

d S X

M D

M

   , ,h kU □

 

(5) 

The moduli space (5) and under certain hypothesis of 
the twisted (0, 2)-sigma model whose path integral lo- 
lizes on holomorphic maps to twistor space [23], is the 
corresponding flat moduli space  

 goodFlat XM D  [6], which satisfies under spe- 
al conditions of compactication that (considering the 
formula to helicities when there is holes of genus 

, ,G C

,

M L

g in a 
Kähler manifold ,  

     
good

1

1

Flat ,0

 1
1 , with

2

,
X

k

k
k

gM D

h 
d g n n






   

M G C ML 3 43

0 :

, ,d



 P P

  , ,

  (6) 

then the cohomology on moduli spaces is the cohomo- 
logy of the space-time with an equivalence like the given 
in (1), to a more general cohomological group that the 
given by 1H U O kP  and whose dimension of 

 , ,H U O can be calculated by the intersection methods, 
to a complex sheaf O [23], which is of the type   ,iO kP

  , 2 2H O h 

 , ,G C

1j

 
(for example: elements of the cohomology group  

,1 correspond via the Penrose trans- 
form to the spacetime fields of helicity h, so that in par- 
ticular a negative helicity gluon corresponds to a twistor 
wavefunction of weight 0. The additional geometrical 
hypothesis in the functor (3), comes established by the 
geometrical duality of Langlands [5], which says that the 
derived category of coherent sheaves on a moduli space 

where C, is the complex given by 

1 PT

flatM L

1 11 d

2 32

: 

         

j j

j j

d dj j j



E

 GB C
 , ,G CM L

 ,

d dj

C
 





 

 

 E E

E

 
 

      (7) 

which is equivalent to the derived category of D-modules 
on the moduli space of holomorphic vector G-bundles 
given by  [6]. These equivalences permit to map 
points of flat  to eigen-sheaf of Hecke given 
by  [23]. The complex C  is an infinite dimen- 
sional 

GB C
 -complex. Then we need to establish a local 

cohomology to coherent D-modules E


, to every reduce 
analytic subspace of . In other words, to find the lo- 
cal cohomology that is intrinsic part of the cohomology 
of (7). We will do the following extension of X M

,M X X X   




,D

.C

. 
Considering the filtration 0 1 2  

of closed subspaces of a Riemannian complex manifold 
M, which defines the topology of . Exactly like an 
open covering of , this filtration associates to every 
sheaf X  their Cěch complex, where the filtration 
persists associating to every sheaf a Cousin complex 

  The required cohomology is on  This coho- 
mology is on sheaves of M modules that are F  
modules. The F -modules there must be the given in 
the category of (4), with the due meromorphic extensions 
of one Cousin-Dolbeault-complex to the inclusion of 
involutive manifolds with singularities [16]. 

.C

-D -D
D

We consider the following fundamental results to the 
securing of the Hecke sheaves using local cohomology in 
the Cousin-Dolbeault-complex.   

Theorem 2.1. 1) The local algebraic cohomology is a 
complex with D-holonomic cohomology; 2) We have the 
canonical morphism in  XD C

   

 

 Hom ; ,X X YYR R C O OD

 D C

       (8) 

Proof. [24].  
By the kashiwara theorem, we have that the equiva- 

lence between the categories X , and   ,D C



,V T X 

,QFT
,V



[13], we ca 3 ,P
through the m  

Y  
preserves coherency and holonomicity [3]. Then preserve 
conformability in  [12,13].  

In this case we want to decompose singular regions 
 of the space-time , in regions of confor- 

mal nature that could be valued through contour integrals, 
whose cohomology of contours could be related to the 
cohomology of the total Riemannian complex manifold 
maintaining the conformability of these micro-compo- 
nents. Then for micro-local analysis, we can observe flat- 
ness conditions of the space to scales of the  and 
the singularities that shape  there are zeros of poly- 
nomials of algebraic manifold of the Riemannian com- 
plex variety. 

In case of the Cousin complexes, the idea is to de- 
compose a complex with non-conformal properties in 
conformal parts where it exists flatness due to the holo- 
nomicity and conformability of , to these scales. A 
promissory result in this sense is the due to Kashiwara 
applying jointly the Poincarè theorem (Theorem 2.1) in 
local cohomology, where for the resolution proposed in 

n investigate in the cohomology of  
oduli space 

1One example of these moduli spaces is 

3 43 , .d M P P, 0g

Then from the depth and substantial of the complex (7) 
the conformability is maintained by the Cousin com- 
plexes that shape quotients of complexes to every com- 
ponent of the complex (7). The natural morphism 

 

   3 ,10, 0 2GM P C

  
 

, 4 .  The equivalences in this case are 

obtained by the classic Penrose transform 

   

1 3

2 2 4 2

2

0,in   ker , ,C U U S U

: ,H

  



     M 

P P O

where  is a homogeneous holomorphic line bundle 

on . In this case the complex  is a Dolbeault complex 

that is an elliptic complex on  [30]. 

 2 , O 
3P ,C

U
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 YR   ,X Y XR  O O

  ,D D

  ,X Y XR  O

D

          (9) 

induces a morphism in that is to say, 

       XY Y
   O O

L

D D
D D  (10) 

 
Theorem 2.2. The morphism (*) is an isomorphism in 

and the local cohomology sheaves of Y, are  -holo- 
nomic and admissible modules. 

Proof. [21,24]. □ 
To relate the cohomological groups of the sheaves of 

X  with the sheaves of Y we use an inter- 
twining operator that compound with the Penrose trans- 
form, allows determine the solution space of the differ- 
ential equations of the operators given for the equiva- 
lence of the moduli space (4). In the following section we 
will use like intertwining operator the twistor transform, 
which establishes an isomorphism of Harish-Chandra 
modules. 

  ,D C   ,D C

-moduleD

-modulesO
 .G

Then our sheaves complex takes the form as a holo- 
morphic bundles complex and is aquanstance as to this 
can be associated branes. In this case we associate branes 
to every possible sheaf: we can map branes to sheaves 
but the reciprocal thing is not true.  

3. Methods: Equivalences of Cycles in  
Quasi-G-Equivariant D-Modules  
Category and Their Ramifications in  
Derived Sheaves  

To obtain a generalization of the Kashiwara theorem in 
the context of the G-equivariant D-modules is necessary 
the geometric Zuckerman functor. This is the localization 
of the equivariant Zuckerman functor to the derived equi- 
variant categories on generalized flag varie- 
ties (this to apply in our study an appropriate D-module 
transform of the Penrose transform type). To this case, 
we define our categories of interest and construct the 
geometric Zuckerman functor from the basic D-module 
functors. 

The category of (left) G-equivariant X is 
denoted by M X

,

 The following theorem is well 
known: 

Theorem 3.1. If  acts on ,G X  freely, there is an 
equivalence of categories    .GM X M X G

,BC

  ,C

.

 
For homogeneous spaces, we can make a stronger 

statement. Let be a complex linear group, let  
 be the category of algebraic representations 

of   
Rep B

BC

Proof. [20]. □ 
Theorem 3.2. If ,X G B C  there is an equivalence 

of categories    .GM X Rep B C

,GC

 
Proof. [20]. □ 
We consider the Penrose transform between flag 

manifolds on an algebraic complex group using the 

Kashiwara theorem between quasi- -equivariant G DG H - 
modules and some kind representation spaces, which are 
  -modulesHg,

, ,G
,

 (complex vector space endowed always 
with an action of a Lie algebra g  associated to  
and an action H  which is compatible in some sense 
when ,H  is a closed algebraic subgroup of ).  G

,MLet G  
be a quasi- -equivariant G DG H -module 

belonging to the subcategory of G HD -modules given by 
  ,G HMod Dgood  (category of the -equivariant G HG D - 

modules). 
The idea is to obtain equivalence between the different 

classes of G H -modules establishing the isomorphism 
between the categories 

D
      ,RSM ModM DG G HV and 

  ,M Mod D  S ,Rgood G HG  where  must be the 
functor of Zuckerman restricted to the subcategory of left 

-equivariant G DG H -modules to obtain the derived cate- 
gory that is a product of a trianguled subcategory (like 
the given in [1,6]) for a factor category that determine us 
the functor of Harish-Chandra between categories. These 
equivalences in analogy to established in (4) take the 
form for specific G HD -modules 

 
 

   G

derived category of -modules -equivariants   

, ,

G
G H

G G H

G H

G G

M

D G

M H M







M

D

M g

 

(11) 

considering the moduli space as base, 

    
equiv

BRST-modules -equivariants ker , ,

G
G H

G HM D G U Q

M



 (12) 

where BR 1 ,i i
ST 2i iQ θ θ    2 0,Q  such that BRST   

where 1,i  and 2 ,i  are Higgs fields on either side of 
the open string [23]. This condition established in the 
kernel of equivalences inside the moduli space equiv ,GM

BRST-

BGG-

G H  
is analogous to the given by the isomorphism of the Pen- 
rose transform discussed in foot of page 2, in the Section 
2, in this work. The idea is extend the harmonic con- 
dition to the functions to differential operators of derived 
sheaves that are in cohomology, such that the 
equivalences in (5) are defined by the certain functors 
due to the duality between the resolution and me- 
romorphic version of the Cousin complex2 associated to 

L  (bundle of lines associated to the flag manifold 
X ,G H  then ,H  is a Borel subgroup). 

Let     ,G HRS VMod D  be the thick subcategory of 

2Cousin Dolbeault theory refers to the complex Dolbeault infi-
nite dimension. 
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  ,G Hd D
,  

good  whose objects have regular singu- 
larities onV and by 
Mo

 
  ,b

G HRS VD D  the full triangu- 
lated subcategory of   ,bD D

 

good G H  whose objects have 
cohomology groups belonging to  G HRS VMod D  [6]: 

      G/Hgood DbD

  G/HVRS

G/HVRSModMod

D

D

bD



G/Hgood D 

  ,

 

Let Hg,  be a Harish-Chandrs pair, let X , be a 
generalized flag variety for  and let ,g ,D  be a ho- 
mogeneous twisted sheaf of differential operators on .X  
A weak Harish-Chandra sheaf for the pair  
 ,  ,H

nv
, 

D
-iH

D

 is a quasi-coherent D  with a 
 structure such that the action of 

is  A weak Harish-Chandra sheaf 
is a Harish-Chandra sheaf if additionally the differential 
of the 

-m e ,Modul
ariant -modulXO

-equivariantH

-action on ,

e
.

H M
.

 agrees with the action of  in- 
duced by 

ˆ,t

D

odule
-equivariant stru

 
A morphism of weak Harish-Chandra sheaves is a 

 homomorphism which respects the underly- 
ing As with weakly equivariant 
Harish-Chandra modules, we will use 

-m
cture.

 , ,

D
H

Mod HD   
to denote the category of weak Harish-Chandra sheaves 
and  , ,Mod HD for the category of Harish-Chandra 
sheaves. There is an equivalence of categories for ,  
anti-dominant and regular 

    λ, , , ,Mod H  Mod D X HD

, D

 (13) 

We construct the derived equivariant Harish-Chandra 
sheaf category in the same way as the derived equivariant 
Harish-Chandra module category. The derived equiva- 
riant Harish-Chandra module category is precisely that 
we want obtain to consider it inside the base moduli 
space to determine an extension of this one, in the con- 
text of a cousin cohomology.  

Theorem 3.3. The morphism (sfc) is an isomorphism 
in and the local cohomology sheaves of Y  are  - 
holonomic and admissible modules. 

Proof. [24]. □ 
Here the local system on the complex manifold is 

given by the  inside one Dolbeault-Cousin 
cohomology that shape a complex as the given in the 
Morphism (9). 

-modulDP es

,DR

,

Theorem (Deligne) 3.4. The functor  gives a 
categorical equivalence between the category of regular 
connections on an algebraic manifold X  and that of 
local systems on the complex manifold .X  

Proof. [15]. □ 

4. Results 

Theorem 4.1 (F. Bulnes). The derived category of quasi- 
G-equivariant -G HD modules can be identify for twisted 

Hecke category if GH  is a derived version of the 
category of Harish-Chandra to a certain 

,
.  zh

 

Proof. If  G H
 G M D      hH z  then  

 \ ,MG B G B  H .G  G C of the group  B-equiva- 
riant D-module on the flag manifold X , G B  provide 
integral kernels and thus integral transforms, to know 

  0
BRST, ker , ,H X U Q  L

  

3          (14) 

For other side, realizing the following considerations 
to the extension of the Langlands geometrical program, 
the category  \M B G B

G
,B  G

of D-modules is the double 
quotient stack of a complex reductive group , by a 
Borel subgroup  along with familiar related ver- 
sions involving twisted D-modules. Our aim is to 
construct a topological field theory from  \M B G B , 
and in particular to relate the abelianization and center of 

 \M B G B

,
,

, to each other and in turn to character 
sheaves. These character sheaves are the Hecke eigen- 
sheaves required. 

The Hecke category , 0G GH H  is a fiber of a 
natural family of Hecke categories , G H

,vh 
,

 labeled by 
infinitesimal character  in the dual of the Cartan 
Lie algebra. The twisted Hecke category , G H

-

 consists 
of the natural integral transforms acting on categories of 
 twisted modules on the flag variety -D .G B  (For 
  regular, such categories are equivalent to categories 
of g-modules with infinitesimal character  , modulo 

 (Harish-Chandra categories)). Concretely, we can 
realize , G

,W
,H -D

 , -
 as the monoidal category of mo- 

dules on N\G/N with strict   monodromy with 
respect to the left and right actions of H .B N

,
 (For 

  regular, such modules are equivalent to Harish -D

3Our demonstration will consist of the fact that each of these 
subspaces of the complexes Cousin must be Hecke eigen-
sheaves [14]. The sum of Hecke eigen-sheaves is the Hecke 
category in our result, which is twisted, since there are images 
of isomorphisms of Harish-Chandra modules (that is to say, in a 
category of Harish-Chandra whose D-modules are DF-modules) 
created via the Penrose transform on twisted modules. Here the 
property of being twisted is demonstrated by the argument of 
the Penrose transform that involve to the twistor transform in 
field theory.  

Then the twistor transform followed from the Penrose trans-
form  TP ,  will calculate the kernels of the cohomological 

groups that are isomorphisms in the sense of the equivalence of 
the Kashiwara theorem. Nevertheless, we need a version of 
eigensheaves that include connections with regular singularities 
that could be extended through a pull-back of certain bundle of 
lines on BunG [6,23], to the irregular connections that there 
need no to be Verma modules, as it is mentioned in the Recillas 
conjecture [1]. In fact, the implications to that the above men-
tioned conjecture is valid, is the fact of considering regular 
connections to be the established for the Deligne theorem men-
tioned in the previous section, which is not clear when is want 
to extend them in the diverse ramifications of Langlands geo-
metrical program [27,31]. 

Copyright © 2013 SciRes.                                                                                 APM 



F. BULNES 251

Chandra bi-modules for  with infinitesimal character ,g
 , -  W W

,
modulo ). 

Taking the fibers , G H
,vh 

of the above family of Hecke 
categories, we can allow the parameter  to vary 
infinitesimally, and obtain the monodromic Hecke cate- 
gories , ,G H  of natural integral transforms acting on 
categories of generalized λ-monodromic D-modules on 
the flag variety .G B  (For ,  regular, such catego- 
ries are equivalent to categories of modules with ge- 
neralized infinitesimal character 

-g
,  modulo W ). Re- 

member that there are basic integral transforms asso- 
ciated to pairs of flags in a fixed relative position indexed 
by an element of the Weyl group of . (These are 
closely related to the Radon and Penrose transforms of 
algebraic analysis and with analogous in field theory by 
the twistor transform (this was established in the Gin- 
dikin conjecture [6])). 

G

Bu
We consider a complex holomorphic bundle  

 on a hypersurface  , and that is a derived 
category of quasi-coherent D-modules 

n ,G C 
  BunG D


,  ch

 
(that is to say, we have applied the direct Penrose trans- 
form to the bundle G [6]) which is isomorphic to 
the category  to some  of fact,  

,0
.G G But for Langlands geometrical duality, 

whose equivalence that shape a moduli stack in the 
character category context, takes the form 

Bun

 

 ,GH  ,D
 ,H  HD

  ,
G


  

-

G                (15) 

But this means that in duality quasi-coherent versions 
of the affine Hecke category are images of the Penrose 
transfom applied to D-modules on finite flag manifolds 
(that is to say, in this context our D-modules are DF  
modules). Thus and lead to D-modules 
on finite flag varieties4.  

,GH
,0
,

GH

.
,Newly, consider the Hecke category 

G 
H  Also 

consider 
,0G

 with , a surface in . Said 
category assign a Riemannian surface S, the category 
of D-modules given by D on moduli stack 
of G-bundles, while that 

G , , 
 assigns the 

  ,  
-

  BunG 
H -

H

 cate- 
gories of quasi-coherent sheaves on the stack ,G

Loc   of 
local systems of denoted also by  Then by 

the theorem given in [6], and by relative discussion to the 
eigen-object that stays to the apply de MO-duality [23], 
to A-brane on moduli space 

-G , G.L

 , ,H G C

-D

 we have that 

the module on Bun ,CG corresponding to a point 
on  , ,flatM G CL

  Bun ,G D
 is Hecke eigen-sheaf. Then in this 

point, we can affirm that  is the category 
of the twisted Hecke category ,G H

-
,consists of the 

natural integral transforms acting on categories of   
twisted modules on the flag variety 

M

-D .G B  Indeed, 
is necessary go from the co-cycles for the Radon-Penrose 
transform on  D  ,e.g. G Hgood G HMod  to the ob- 
tained cycles by Penrose transform on     ,Mod DG HRS V  
and viceversa. The equivalence of both spaces of co- 
cycles demonstrates that the functors are the given by 

      goodHom , ,G H G HRS VMod ModD D  of the moduli  

space     ,G H G G H GG M M HM  gD

-G

, which con-  

sider as base the moduli space given in (5). 
Then these functors are invariants and their image 

under  G HD is recorded in a moduli space of holo- 
morphic bundles 

Fun ,
  Bund ,C

-G

GD  [27]5 which is an 
extension of the transformed cycles by the classic 
Penrose transform [17] The equivalence under the  
invariance of holomorphic bundles must be demonstrated 
using a generalized Penrose transform for D-modules 
that is the composition of an inverse image functor and a 
direct image functor on the side D-module, which is 
foreseen by the geometrical duality of Langlands [5]. □  

Theorem 4.2. (F. Bulnes).  

   quasi - -equivariant - -equivariant , , ,G GG H C CY CM M

C

 

 a Cousin-Dolbeautl complex being 

    

   
1

,

,

K K

I

n P
X X

n P
X

H R M k

H R 









 

E

E

O

O

D

D

 

 

Proof. We realize an extension by local cohomology 
of the complexes,  

   Hom ;C R R C   O O

,CY

X X YYD , using inverse and 
direct images of the Penrose transform on the corre- 
sponding Hochschild cohomologies obtained on the 
domains  an G H [6], using their developments of 
Dolbeault-Cousin complexes[16] The bijection of the 
Penrose transform on orbifolds in both cases gives the 
result. □ 

Corollary (F. Bulnes) 4.1. We consider the corres- 
ponding equivalence given by the Theorem 7.1. [6], and 
using the large resolution [1].  4This last, can be interpreted through the field theory like the 

flatness that characterize the background radiation in the space-
time producing the energy support of all variations of strings 
and heterotic strings that happen inside the deep space-time. To 
obtain interpretations in the frame of the topological gauge 
theories is necessary use the dual image of orbit space like orbi-
folds from the Calabi-Yau manifold that establishes relations 
between bundles of forms of fields on orbit 

 
via a en-

closed transform with Penrose transform. In this sense the

2
-resolution is given by the Penrose transform. 

3 1 4 2 4 3 4 4 4 0, d d d d        P P P P P  
(16) 

we can to give the following scheme of Cousin com- 
plexes   ,C k  that brings an equivalence between the 
spaces 4 6 ,L 2 6 ,P and  where 2 6 ,P

PM
 is the supert- 

wistor space , in [26]. In this case, the equivalence ,M
5Using Penrose transform, we obtain the geometrical images of 
the vector bundles given by the category  )).((BunG CDE
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is given by the Penrose transform on the quasi-coherent 
-D modules established by the diagram ( to the Verma 

modules diagram in the conjecture Recillas to the group 
 [6]) 



 1, 1SO n 

662

3

64

0

)0,(

4d44d4d24d1

P

L







  PPP

P

 

2

3

3

P




P

P
`

  (17) 

where 3 43
, d P P

 

 ~

A







 k

4 4 0,d d P

M .  
Proof. We consider the Cousin complex diagram 

C  BA

C








  

and applying to the exact succession  

1 4 2 4 3 4d d   P P P  
we find that (in the upper part) 

,0

][A

4d4

3
,1)(











P

P`

k

4d34d24d1

3

64

,0)(

3




 PPP

P

P`

L  

 

is commutative. For other side, using the Penrose-Ward 
transform in the down part of the diagram we have   

 2 4 2O P C  4 12 ,O P
1 1 4 ,dP P
3 ,0 .

[29]       (18) 

But  in the level of moduli space  
M P  To obtain the equivalence between the space  

2 4P ,  and 4 6 ,L  is necessary to consider the interpreta-  
tion of the quadric inside the space 2 3 2 3 , 

PM

P P  and 
construct the double fibration in the twistor scheme 
corresponding to the supertwistor space . This 
double fibration takes us to 

 1 2 0,O


P

-

1, 1SO n 

4 6 2 3 2 30    L P P     (19) 

which is not vector bundles fibration. Then is necessary 
the degeneration of cycles given inside of CY mani- 
fold signed in the equivalences of moduli spaces in the 
Theorem 7.1. Using action given by path integrals given 
in [6], we can to obtain an approximation that can 
legitimize the extension of the Penrose transform in the 
linear context (integrals become traces of matrices) of the 
representations in  and the use of strings 
and heterotic strings to obtain the commutability of all 
diagram. Details of the calculations will happen in a next 

paper. □ 

 ,

5. Conclusions 

Spaces of equivalence modulus a relation of congruence 
were constructed on field solutions to establish a theory 
of the universe that includes the theory QFT (Quantum 
Field theory), the SUSY (Super-symmetry theory) and 
HST (heterotic string theory) using the sheaves corres- 
pondence of differential operators of the field equations 
and sheaves of coherent D-Modules. The above men- 
tioned correspondence was constructed using a Zucker- 
man functor that is a factor of the universal functor of 
derived sheaves of Harish-Chandra to the Langlands 
geometrical program in mirror symmetry. The obtained 
development included complexes of D-modules of 
infinite dimension, generalizing this way, the BRST- 
cohomology in this context. With it the class of the 
integrable systems was extended in mathematical physics 
and the possibility of obtaining a general theory of 
integral transform for the space-time, and with it the 
measurement of many of their observables. Also has 
tends a bridge to complete a classification of the diffe- 
rential operators for the different field equations using on 
the base of Verma modules that are classification spaces 
of  1, 1 ,SO n  where elements of the Lie algebra 
 1, 1 ,n sl  are differential operators, of the equations 

in mathematical physics.  
The cosmological problem that exists is to reduce the 

number of field equations that are resoluble under the 
same gauge field (Verma modules) and to extend the 
gauge solutions to other fields using the topological 
groups symmetries that define their interactions. 
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