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ABSTRACT 

The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton 
gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton gauge is mathemati- 
cally equivalent to the operator equations of quantum theory of gravity with canonical rules of quantization of the 
gravitational and ghost fields. In its operator formulation, the theory can be used to calculate the graviton S-matrix as 
well as to describe the quantum evolution of macroscopic system of gravitons in the non-stationary Universe or in the 
vicinity of relativistic objects. In the S-matrix case, the standard results are obtained. For problems of the second type, 
the original Heisenberg equations of quantum gravity are converted to a self-consistent system of equations for the me- 
tric of the macroscopic space time and Heisenberg operators of quantum fields. It is shown that conditions of the com- 
patibility and internal consistency of this system of equations are performed without restrictions on the amplitude and 
wavelength of gravitons and ghosts. The status of ghost fields in the various formulations of quantum theory of gravity 
is discussed. 
 
Keywords: Quantum Gravity 

1. Introduction 

In the works [1,2] it is shown that the observed acceler- 
ated expansion of the Universe (the Dark Energy effect) 
[3,4] may be a consequence of macroscopic effect of the 
quantum theory of gravity which is the condensation of 
gravitons on the horizon scale of the non-stationary Uni- 
verse. The theory of this macroscopic quantum effect is 
based only on the most general properties of quantum 
gravitational field in the non-stationary Universe, which 
are Bose-Einstein statistics, zero rest mass of gravitons, 
their conformal non-invariance and one-loop finiteness 
of quantum gravity off the graviton mass shell. (One- 
loop finiteness on the graviton mass shell was proved by 
T’Hooft and Veltman in 1974 [5].) In [1], three exact 
solutions of equations one-loop quantum gravity are pre- 
sented. They are presented in terms of moments of spec- 
tral function of gravitons which is renormalized by 
ghosts. These solutions describe three different phase 
states of the condensate. One of these solutions describ- 
ing the self-polarized condensate in the de Sitter space is 
represented in terms of field operators and state vectors. 
The effect of condensation is clearly demonstrated by the 

fact that the state vectors have the form of quantum co-  
herent superposition of vectors corresponding to different 
occupation numbers of gravitons and ghosts having the 
same wavelength of the order of the radius of 4-curvature. 
Detailed analysis of all solutions is given in [2]. 

This work aims to show that the equations of one-loop 
quantum gravity obtained in [1] are the only mathemati- 
cally consistent of all in the available literature. As is 
known, the quantum gravity is non-renormalizable theory 
[6]. At the same time, once again we emphasize that the 
pure one-loop quantum gravity (without matter fields) is 
finite. The macroscopic quantum effects of interest are 
already occurring in the one-loop approximation. Our 
program is to obtain the equations of the one-loop theory 
of the formally (in mathematical sense) exact equations 
of quantum gravity. We believe that only such a way to 
obtain the one-loop equations allows conducting the cor- 
rect one-loop calculations that predict the condensation 
of gravitons on the horizon scale of the Universe. 

For curvatures that are less than Planck curvature, 
quantum cosmology is represented as a theory of gravi- 
tons in the macroscopic space time with the self-consis- 
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tent geometry. The quantum state of gravitons is deter- 
mined by their interaction with a macroscopic field, and  
the macroscopic (background) geometry, in turn, de- 
pends on the state of gravitons. The background metric 
and graviton operator appearing in the self-consistent 
theory are extracted from the unified gravitational field, 
which initially satisfies exact equations of quantum grav- 
ity. The classical component of the unified field is a 
function of coordinates and time by definition. The 
quantum component of the same unified field is descri- 
bed by a tensor operator function, which also depends on 
coordinates and time. Under such a formulation of the 
problem, the original exact equations should be the ope- 
rator’s equations of quantum theory of gravity in the 
Heisenberg representation. The present work is devoted 
to obtaining such equations and their identity transforma- 
tion to the self-consistent system of classical and quan- 
tum equations with no restrictions on the wavelength and 
amplitude of the graviton field. 

The Heisenberg representation of quantum theory can 
be introduced only by its Hamilton formulation. For the 
theory with constraints, we deal with a generalized Ham- 
ilton formalism. The generalized Hamilton formalism of 
the theory of gravity was constructed by Dirac [7,8] and 
Arnowitt, Deser and Misner [9]. There are also other 
formulations of theory that differ from [7-9] by parame- 
terization of gravitational variables. We use the formal- 
ism proposed by Faddeev [10] (see Section 5 in the re- 
view [11] or a book [12], §24). In the non-degenerate 
field theories and in the theories that allow to remove the 
degeneracy completely, the transition from the classical 
Hamilton theory to the quantum theory in the Heisenberg 
representation is reduced to a simple replacement of the 
classical Poisson brackets with the quantum commutators. 
Conducting of the same operations in the theory of grav- 
ity would be possible if the four local gauge conditions 
together with four equations of constraints in the theory, 
would completely determine physical degrees of freedom 
that are to be quantized. In the theory of gravity local 
gauges completely removing the degeneracy are un- 
known. Therefore, the question arises, whether there is a 
Heisenberg representation of quantum gravity in local 
gauges, if these gauges are unable to separate the true 
gravitational field from the fields of inertia? This paper 
gives a positive answer to this question. The important 
fact is that the transition from classical to quantum theory 
is not limited to the replacement of C-numeric functions 
with the operator functions satisfying the canonical com- 
mutation relations. Such a replacement must be accom- 
panied by the appearance of the operator functions of 
Faddeev-Popov ghosts (see Section 3). 

At the present time, an operator version of equations 
proposed in [7-9] is usually considered as the equations 
of quantum gravity in the Heisenberg representation. One 

should, however, bear in mind that local gauge condi- 
tions used in [7-9] do not remove the degeneracy com- 
pletely, i.e. quantum fields of inertia are present in the 
equations of theory. Therefore, perturbative S-matrixes 
calculated in these theories do not satisfy the unitarity con- 
dition. As is known, the existence of this problem drew 
the attention of Feynman [13] in the analysis of the the- 
ory in the local covariant gauge which is convenient for 
perturbative calculations. Faddeev and Popov [14] sug- 
gested a regular method of unitary S-matrix calculation, 
based on introduction of the auxiliary ghost fields in the 
path integral. Any correct formulation of quantum theory 
of gravity should allow to calculate the graviton S-matrix 
as one of its objectives, and the result of this calculation 
should coincide with the Faddeev-Popov S-matrix. 

Despite this fact, the operator Einstein equations in the 
Heisenberg representation with the local gauges (without 
ghosts) that do not remove the degeneracy completely 
and do not satisfy the test for unitarity S-matrix, were 
used in discussing of cosmological applications of quan-
tum gravity, i.e. in the quantum theory of gravitons in the 
non-stationary Universe (see, e.g., [15,16]). 

In connection with the situation that exists in the sci-
entific literature, we emphasize the following circum- 
stance. Except the test on a unitarity of S-matrix, there is 
no other criterion of correctness of the equations of quan- 
tum gravity, and, as a consequence, the correctness of the 
results obtained from these equations. Therefore, the Ha- 
milton equations in the Heisenberg representation with 
the canonical quantization rules must be strictly deduced 
from the exact equations of quantum gravity satisfying 
the above test. In this paper, we show that these equa- 
tions do exist under condition that the Faddeev-Popov 
ghosts are among the elements of the Hamilton formal- 
ism of quantum gravity.  

We obtain the Hamilton equations in the Heisenberg re- 
presentation by identity transformation of the path integral 
over the canonical variables. Such an integral was propo- 
sed by Faddeev [10] on the basis of the general theory of 
Hamilton systems with explicitly unsolvable constraints 
[17]. The ghost sector is originally contained in this inte- 
gral, and for this reason it will inevitably be present in the 
mathematically equivalent operator Hamilton equations.  

The procedure for obtaining of these equations is as 
follows. In the first step, the gauge of Faddeev’s path in- 
tegral [10] is specified such that the ghost sector corre- 
sponding to it permits the introduction of canonical vari- 
ables of the ghost fields and the representation of ghost 
Lagrangian in the Hamilton form. In the second step, the 
standard definition of the operator of evolution is used, 
and a transition is made from the gauged path integral to 
the canonical Hamilton formalism in the Heisenberg 
representation. The canonical operator quantization ac- 
quires the status of a method which is a mathematical 
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equivalent to the functional integration over the extended 
phase space of gravitons and ghosts. 

The Heisenberg representation in the quantum theory 
of gravity (outside of perturbation theory) exists in the 
synchronous gauge in the normal coordinates. This gauge 
is an analogue of Hamilton gauge in the Yang-Mills the- 
ory. Basically, the operator Hamilton formalism with the 
canonical quantization of gravitational and ghost fields is 
to solve problems in quantum cosmology but can be also 
used for the calculation of S-matrix where it leads to 
standard results. 

2. Classical Einstein Equations in Hamilton 
Gauge 

2.1. Einstein Equations in Normal Coordinates 

Upon obtaining of the exact equations of the theory of 
gravity in the Hamilton form, the gravitational field can 
be regarded as the deviation of the metric from the metric 
of Minkowski space  1, 1, 1, 1   

ˆ k
diagikg . Normal 

coordinates of gravitational field of i  are given by 
exponential parameterization of the density of the con- 
travariant metric [18]  

 
ˆ ˆ ,

1ˆ ˆexp
2

ik il k
l

k
k k
l l

l

g g g g g

g 

  

    ˆ ˆ .k m k
l l m   

     (1) 

The density of the gravitational Lagrangian as a func- 
tion of normal coordinates reads  
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where dots denote a full derivative which does not con- 
tribute to the equations of motion. A variation of the ac- 
tion of the gravity theory over the normal coordinates 
leads to the Einstein equation  
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The same equations can be rewritten in the form  

1ˆˆ ˆ ˆ
2

k kl
i ilg g R    ˆˆ ˆ 0.k ml

i mlg g R         (4) 

In accordance with the general properties of Einstein 
equations, ˆˆ 0l

lg g R
 

3  0ˆ 0 
 are equations of motion  

, and i  are equations of constraints. 
Note also the following form in which the Bianci identity 

can be presented:  

 , 1, 2,

ˆˆ 1 1
ˆ ˆ 0.

2 2

k l
k ki k
l lk ix x

            
         (5) 

2.2. Hamilton Gauge, Conservation Laws and 
Hamiltonian Formalism 

The Hamilton gauge is given by additional conditions  
00 0ˆ ˆ ˆ ˆ1, 0.g g g g    

ˆ 0i

           (6) 

In normal coordinates, the conditions (6) are reduced 
to 0  . The specific of the Hamilton gauge is that 
the Bianchi identity (5) takes the differential form of con- 
servation laws over the solutions of the equations of mo- 
tions ˆˆ ˆ 0l

lg g R
 . It reads:   

ˆ
0.

k
i
k
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                   (7) 

x

After the gauge is applied, the Lagrangian and the 
equations of motions take the form:  
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          
 

4dS x   ˆ
The equations (9) are obtained by variation of the 

gauged action grav  over the variables 
 . 

After the gauge is applied, Lagrangian (8) does not con- 
tain variables whose variations would produce equations 
of constraints i

0ˆ 0  . However, these constraints are re- 
stored in solutions of the equations of motion (9) by im- 
position of conditions on the numerical values of inte- 
grals of motion. As follows from (7), first integrals of the 
equations of motion (9) are of the form  

0 3ˆ d ,i ix C                (10) 

where Ci are formally numerical constants whose values 
are fixed by initial and boundary conditions. The general 
covariant nature of the equations of constraints imposes 
the obvious limitations over values of Ci: only those ini- 
tial and boundary conditions are allowable for the metric 
in the Hamilton gauge in which constants Ci, appearing 
in (10), are equal to zero. 

Thus, the formalism of the theory, based on a gauged 
Lagrangian (8), differs from the formalism of non-de- 
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generate field theories only by limitations i 0C   that 
are related to the initial and boundary conditions but not 
to the equations. This fact allows to construct the Hamil- 
ton formalism easily. Generalized momentums are of a 
standard definition over functional derivatives:  

 
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where . The gauged action is reduced to 
the form  
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is the density of canonical Hamiltonian by which the full 
Hamiltonian is calculated grav gravH x  . The varia- 
tion of action (12) over the generalized coordinates and 
momentums (as over independent variables) leads to the 
Hamilton system:  
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As it should be, the Hamilton formalism is mathe-
matically equivalent to the Lagrange formalism, and this 
can be seen from the fact that the system of Equations 
(14) is easily reduced to the Lagrange Equations (9). The 
Hamilton constraint (10) with i = 0, C0 = 0 becomes the 
formula for calculating of the energy of the gravitational 
field through surface integral:  
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2.3. Inertia Fields in Hamilton Gauge 

The general formulae for infinitesimal transformations 
reads  
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For the Hamilton gauge (6), the expression (16) leads 
to the equations for the parameters of residual transfor- 
mations:  
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The solution of Equations (17) is presented in the form  
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 f x  is a function of spatial coordinates defined by ar- 
bitrarily;  
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 0 ,t xwave  is the solution of the d’Alambert wave equa- 
tion  
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Function (18) defines the fields of inertia:  
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According to (19), fields of inertia  
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are trivial in the sense that scale  and ,i t xrot  do 
not interact with gravity. These fields describe the given 
motions of the reference frame. The motion correspond- 
ing to a field  ,i t xscale  is a given stretch of coordinate 
grid, and the motion corresponding to a field  ,i t xrot  
is a given rotation. The lack of connection with the me- 
tric implies that these fields of inertia do not affect the 
solution of Einstein’s equations; for this reason they can 
be excluded from consideration. 

The function 0 ,t xwave  (satisfying the wave Equa- 
tion (21)) defines a nontrivial field of inertia  

 
wave

ˆ ˆg g 

ˆ 0g

. The nature of this field is following.  

The condition 0   synchronizes the clocks, and 
component 00ĝ  sets the rate of a clock. According to 
(6), the Hamilton gauge is synchronous, and the rate of a 
clock is rigidly connected with the dynamics of 3 volumes: 
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ight

00 ˆĝ  ˆ, where of motion, then the theory is presented in the Hamilton 
form. 

  is the determinant of spatial me- 
tric. Effects of continuous clock adjustment to a new 
physical situation are reflected in the measured values of 
3-dimensional component of the metric in the form of 
wave field of inertia. It is propagating with the same 
speed with which a clock located at the point of mea- 
surement is synchronized with the clocks located at the 
neighboring points.  

Differences between the Yang-Mills theory and the 
theory of gravity appear during the phase of quantization. 
According to [19], the fact that in the Yang-Mills theory 
the Hamilton gauge completely removes the degeneracy, 
lets go straight to the quantum Yang-Mills theory in the 
Heisenberg representation by replacing the classical Po- 
isson brackets with quantum commutators. A transition 
to a path integral over the canonical variables is of the 
status of computing the Heisenberg operator of evolution. 
The completely analogous transition to the quantum the- 
ory of gravity is not possible because fields of inertia 
remain in the Hamilton gauge (see Section 2.3). To com- 
pensate for contributions of interactions of inertia and 
gravitational fields to the observables, the ghost fields are 
needed, which occur only in the formalism of path inte- 
gration. Taking into account this circumstance, the pri- 
mary postulate (allowing the Heisenberg representation 
of quantum gravity) is introduced at the path integral 
level for the canonical variables in the Hamilton gauge:  

Note that in the theory of gravity in the Hamilton 
gauge the non-trivial field of inertia is of one only inde- 
pendent internal degree of freedom. 

3. Path Integral in Canonical Variables and 
Operator Equations in Heisenberg  
Representation 

The procedure of hamiltonization of classical theory of 
gravity in the Hamilton gauge is carried out in Section 
2.2. Its content and sequence of procedures exactly match 
to the hamiltonization procedure of Yang-Mills theory 
[18]. Just as in [18], ch.III, §2, the Hamilton gauge first is 
introduced in the Lagrangian and the Lagrange equations  
 

   4
0 grav

ˆ ˆ ˆ ˆˆ ˆ ˆout in exp π π , d det dπ di
k

x

i x M     
     

 

                          (23) 

 

where  

0

0

ˆ
ˆ ˆ

i
kM

g g



 
 

  
      

          (24) 

is the operator of the system of Equations (17) for the 
parameters of residual transformations. The expression 
(23) is obtained from Faddeev’s path integral (see for- 
mula (5.6) in [11] or formula (24.22) in [12]). It is ob- 
tained after setting the Hamilton gauge, integration over 

0ˆ ˆ ig g  and introduction of normal coordinates and cor- 
responding momentums. Note that a very simple struc- 
ture of the gauged action in (23) is due to the fact that in 
the classical theory in the Hamilton gauge the gauged 
variables are of the status of Lagrange multipliers to the 
classical equations of constraints. 

The computation of the determinant of operator (24) 
leads to  

    0 0 0 0
ˆ ˆ ˆdet det det det .i

kM g g
 

           

ˆdet i

 

(25) 
The structure (25) completely corresponds to the clas- 

sification of the fields of inertia in the Hamilton gauge. 
The localization kM  leads to the Lagrangian con- 
taining only one non-trivial ghost field, which does inter- 
act with the gravity. The direct localization leads to the 
path integral over the configuration space of ghost fields:  

 4
ghost

ˆdet exp d d d ,i
k

x

M i x          (26) 

where  

 ,
ghost 0 0 ,

1

8
g 
        


      (27) 

is the density of the ghost Lagrangian. A path integral 
over the phase space is a mathematical equivalent to (26). 
It reads:  

 

  4
0 0 ghost

ˆ ˆdet exp , , , , d d d d di
k

x

M i x
                                   (28) 

 

where  

  ,1ˆ
ghost ,, , , , 8

8
g  

        

is the density of the ghost Hamiltonian. Substitution of 
(28) to (23) gives a path integral over the extended phase 
space of gravitational and ghost variables:    (29)    


 

  
     

4
0 0 0

grav ghost

ˆ ˆ ˆˆ ˆπ π , , , , , d dπ d d d d d ,

ˆ ˆπ̂ , , , , , .

x x

i x     
     

 

  
    

     

 



           

  

       

   

ˆout in exp

ˆπ̂ , , , , ,   

 

 

 

  
  (30) 
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Expression (30) is the standard definition of the matrix 

element of the operator of evolution that defines the dy- 
namics of state vectors in the Schrödinger representation 
or, equivalently, the dynamics of operators in the 
Heisenberg representation. Therefore (30) allows imme- 
diately writing down the terms of the canonical quantiza-  

tion and equations of quantum gravity in the Heisenberg 
representation. 

The graviton sector is:  

   
 

ˆπ̂ , , ,t x t x

i x x

 
 

 
   


  

  
           (31) 

 

 

 

, , ,
0 ,

, , , ,
, , , , , , ,

0

1 1ˆ ˆ ˆˆ ˆπ ,π
4 2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ2 ,
2 2 8

ˆ, 4 π π .

i H g g g g

g g

            
          

         
           

   
   



   







                  
             

    





ˆ i H  

         (32) 

 

  3
grav ghost dThe ghost sector is:  x   H

       
 

, , , , , ,

,

t x t x t x t x

i x x

 


 

      
 

 
    (33) 

 

 

,
0

0

,
0

1
, ,

8

, 8 ,

1
, ,

8

.

i H g

i H

i H g

0 , 8i H

 
 

 
 



 



 


     







   

   

     

 



 



      (34) 

In (32), (34)  

          (35) 

is the full canonical Hamiltonian of gravitational and ghost 
fields. The canonical quantization (31) and (33) and so- 
lution of operator Equations (32) and (34) are procedures 
that are of mathematically equivalence to the computa- 
tion of path integral (30). 

It is easy to check that differential conservation laws 
are satisfied for the solutions of Equations (32) and (34)  

   ghostˆˆ ˆ ˆ 0,k kl
i lik

g g T

x

   




ˆk
i

       (36) 

where   is the density of Einstein tensor,  
 

   ghost 1
ˆ ˆ ˆ ˆ ˆ

4
kl k lm

l i i l i l mg g g gˆˆ kl
lig g T                     

               (37) 

 
is the density of the energy-momentum tensor of the 
ghosts. Integral conservation laws are presented as con- 
ditions imposed on the Heisenberg state vector, i.e. on 
the vector of initial quantum state:  

  ghost0 0 3ˆˆ ˆ ˆ d 0.l
i lig g T x      

 

     (38) 

The Hamilton constraint acquires a meaning of the 
equation for eigenvalues and eigenvectors of the total 
Hamiltonian of graviton and ghost fields:  

grav ghostH H E              (39) 

A comparison of quantum Einstein’s equations (32) in 
the Hamilton gauge in the Heisenberg representation with 
the classical Equations (14) shows that the transition 
from classical to quantum theory is not limited to the re- 
placement of C-numeric functions with the operator 
functions satisfying the canonical commutation relations. 
In the operator equations of quantum gravity, the opera- 
tor functions of Faddeev-Popov ghosts automatically ap- 
pear. They satisfy the canonical anti-commutation rela- 

tions. The role of ghosts in the Heisenberg equations of 
motion (32) is exactly the same as in the path integral 
(30): the ghosts compensate for the effects of interaction 
of a true gravitational field with a field of inertia. How- 
ever, in the complete system of Equations (31)-(34) the 
ghosts formally are of the status of additional dynamic 
variables, i.e. their status is equal to the status of dyna- 
mical variable of gravitational field. 

At the operator level, the structure of equations of the 
theory in the Heisenberg representation with canonical 
quantization of gravitons and ghosts ensures the exis- 
tence and carrying out routine operations on the transi- 
tion from (31)-(34) to the representation of interaction, 
and the construction of S-matrix in the framework of the 
theory of perturbations. In this theory, gravitons are de- 
scribed by the deviation of the metric from the metric of 
Minkowski space. Asymptotic states for gravitons are 
constructed over the vectors of the Fock space for the 
quanta of 3D-transverse tensor modes, and asymptotic 
states for the ghosts are set as vacuum states. Ghosts are 
present only in the Green function that compensates for  
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the contribution of the wave field of inertia in the Green 
function of gravitons. The above S-matrix is identically 
coincides with S-matrix constructed from the path inte- 
gral over canonical variables (30) or from the path inte- 
gral over the Lagrange variables (40). Match of S-ma- 
trixes constructed in various ways is a direct illustration 
of the existence of the Heisenberg representation for the 
quantum theory of gravity in the Hamilton gauge. Appli- 
cation of this theory to the description of a macroscopic  

number of gravitons in the Riemannian space with a 
self-consistent geometry is discussed in Section 5. 

4. Path Integral and Heisenberg  
Representation in Lagrange Variables 

The quantum theory of gravity in the Heisenberg repre- 
sentation formulated in (31)-(34) is mathematically equi- 
valent to the calculation of gauged path integral over the 
Lagrange variables of gravitational and ghost fields:  

 

   5 24
, ,

1ˆˆ ˆ ˆ ˆ ˆ ˆout in exp d d d d ,
2 2

ik ik i ik
ik i k k

x i i k

i
g g R x h g g n g g    



                  
   

 1,0,0,0ih n 

      (40) 

 
where k  are unit time-like vectors de- 
fining a Hamilton gauge. Of course, (40) is a specific 
case of the Faddeev-Popov-DeWitt gauged path integral 
[14,20,21]. Structurally, (40) is obtained from the gauge 
in- variant expression  

 5 241 ˆˆ ˆ ˆ ˆexp d d
2

ik ik
ik

x i k

i

out in

g g R x g g


       
  

 (41) 

through the expansion of unit in the Hamilton gauge and 
factorization of volume of the gauge group . In the 
context of existence of the Hamilton formalism, we note 
that (40) can be regarded as the result of identity trans-  

formations of the expression (30). We do not describe 
these transformations due to their rather obvious. 

The expression (40) clearly reflects the unique prop- 
erty of the Hamilton gauge: the effective Lagrangian of 
gauged theory is formally defined by the covariant ex- 
pression  



eff , ,

1 1ˆˆ ˆ .
2 2

ik
ik i kg g R       

 




4dS x  ˆ i

      (42) 

Because of this property, the variation of action  

eff eff  over normal coordinates k  and La- 
grange variables ,   , leads to a system of generally 
covariant equations for the gravitational and Grassmann 
scalar fields:  

 

 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 4

kl k ml kl k lm
il i ml l i i l i l mg g R g g R g g g g                                 (43)  

 

ˆ ˆ ˆ ˆ0, 0ik ik
i k i kg g g g         .       (44) 

The left-hand-side of Einstein’s Equations (43) satis- 
fies the Bianchi identities, and the energy-momentum 
tensor of Grassmann fields appearing in the right-hand- 
side is conservative over the equations of motion (44). 
The existence of these differential identities allows sepa-
rating Einstein’s equations to the equations of motion of 
gravitational field and equations of constraints. It is also 
clear that after an explicit account of the Hamilton gauge, 
the gauged equations of motion are reduced to the form 
(32) and (34). Thus, the Hamilton gauge ensures the ex- 
istence of Heisenberg representation for the equations of 
quantum theory of gravity both in Hamilton and in the 
Lagrange form. 

5. Self-Consistent Theory of Gravitons in 
Macroscopic Riemannian Space 

The exact equations in the Heisenberg representation in 
the Hamilton gauge (32), (34) together with postulates of 
canonical quantization of (31), (33) claim the status of 
the theory formulated only on the basis of the first prin- 

ciples of quantum gravity. We turn to the approximate 
theory of macroscopic system of gravitons in the macro- 
scopic space time with the self-consistent geometry. In 
this theory, the interaction of gravitons with the classical 
gravitational field is taken into account exactly, and the 
perturbation theory over the amplitude of quantum fluc- 
tuations is only used when describing the graviton-gra- 
viton interaction. 

The averaging of normal coordinates over the Heisen- 
berg state vector in the general case provides non-zero 
C-numeric function: ˆ 0k k i i    

ˆˆ k k k   
ˆ ˆk k k

. A quantum 
fluctuation is defined as the difference between the op- 
erator and its average value: i i i . Substituting 

i i i     in the formula (1) for the operator of the 
density of covariant metric gives  

 

 

 

ˆˆ ˆ exp ,

exp ,

1
ˆ ˆ ˆ ˆexp .

2

kik il il k
ll

kil im

m

kk k k m k
l l l l ml

g g g g g g e

g g g g

e



    

        

   

    

   (45) 

A matrix exponential built over C-numeric functions 
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ki , will be called the density of contravariant metric of 
the macroscopic space time. In this space, we normally 
enter the covariant metric ik

00 0

0 0
0

1, 0,

ˆ ˆ0, 0.

g g g g 

 

   

 
          (46) 

g , the connection ik
l , the 

curvature ik  and define covariant derivatives. The 
quantum fluctuations i

R
ˆ k

Transformations of equations can be made in the Ham- 
ilton formalism (32), (34) as well as in the Lagrange for- 
malism (43), (44). To elucidate the general properties of 
the theory, the Lagrange formalism is more convenient. 
Substituting (45) in (43) gives:  

  are endowed by the properties 
of a tensor in the macroscopic space time. The Hamilton 
gauge i  is partitioned into gauge of the macro- 
scopic metrics and gauge of the quantum field:  

0̂  0

 

 
   

; ; ; ;
; ; ; ;

grav ghost

1 1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ ,
2 2 2

ˆ ˆ ˆ ,

k k k l k l l k k l m k l k m l k
i i l l i i l i m l l i i l m i

k k k
i i i
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T T T

               

 



 

i
                 (47) 

where  
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2
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li i ml

l

T e e

e e e e e R e R

            

      

           
   

         



(1) ; ; ; ; ;1 12 2i m m i i m i n m m n

   1 2

1 1
ˆ ˆ ˆ ˆ ˆ ˆe , e

2 2
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l le g e g             

        (48) 

 

 
is the energy-momentum tensor of gravitons;  

   ; ; ; ; ; ;ghost

1ˆ
4

k kl k ml
l i i l i m liT e e               (49) 

is the energy-momentum tensor of ghosts. The Lagrange 
equations for the ghosts read  

   ; ;; ;
0, 0ik ik

k ki i
e e  

ˆ ˆk k k

         (50) 

Semicolons in (47)-(50) denote covariant derivatives 
in the macroscopic spacetime. 

The transformation of shift i i i     is of physi- 
cal meaning if the true degree of freedom of the quan- 
tized gravitational field are contained in the operator 
function iˆ k , and the macroscopic gravitational field is 
self-consistent and serves as a way to describe collective  

interactions in the system consisting of a large (macro- 
scopic) number of particles. The ability to carry out spe- 
cific calculations in the approximation of a self-consis- 
tent field appears when symmetry properties of the ma- 
croscopic space time allow the introducing of a system of 
basis state vectors, and on this base to construct a state 
vector of gravitons and ghosts of a general form. The 
Einstein equations for the macroscopic geometry are ob- 
tained from (47) by averaging over the state vector:  

1 ˆ .
2

k k k
i i iR R T             (51) 

The equations for gravitons in the Heisenberg repre- 
sentation are obtained by subtraction (51) from the exact 
Equations (47):  
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ˆ ˆ .k k k

ˆ ˆ .             (52) 

 
In terms of the path integral formalism, the existence 

of Equations (50)-(52), is provided by factorization of the 
measure of integration and consistent integration, first 
over the quantum fields of gravitons and ghosts, and then 

over the classical field. It can be seen from following. 
After an additive transformation i i i     is used, 
the measure of integration in normal coordinates and 
Hamilton gauge is represented as:  
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  

    
 
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  

     
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Formally, the exact integration of quantum fields , 

ˆ k
i  corresponds to the solution of quantum Equa- 

tions (50) and (52), and the approximate integration of 
the classical field k

i ,   corresponds to the solution of the 
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classical Einstein Equation (51). 
The system of classical and quantum equations satis- 

fies three differential identities. The left-hand-side of (51) 
by definition satisfies the contracted Bianchi identities in 
the macroscopic space time. In the right-hand-side, the 
condition for conservation of the expectation value of 
energy-momentum tensor of ghosts  ghost ;i k

 
satisfies to the equations of motion for the ghosts (50). 
The expectation value of energy-momentum tensor of 
gravitons is of the similar properties. The calculation of a 
covariant divergence yields:  

ˆ 0kT  

  ;grav ;

1ˆ ˆˆk l
k i li k

T   
1 ˆ .

2 2
k k m

l mL L    
 

  (54) 

As seen from (54), the condition of conservation 

 grav ;i k
 is performed over the quantum 

equations of motion (52). 

ˆ 0kT  

In the self-consistent theory of gravitons, the non- per- 
turbative effect of the formation of the geometry of ma- 
croscopic spacetime is described in semi-classical/semi- 
quantum level: in the Einstein Equation (51) the source 
of the classical field is the expectation value of en- 
ergy-momentum tensor of quantum fields. In the quan- 
tum sector, the order of a perturbation theory is given by 
maximum degree “n” in which the operators of quantum 
fields of gravitons and ghosts are in the quantum equa-
tions of motion (52) and (50). In the same order of the 
perturbation theory, terms of the order of “n + 1” are 
accounted in the energy-momentum tensor. As seen from 
(54), the condition of conservativeness of the graviton 
energy-momentum tensor takes place in each order of 
perturbation theory separately. This fact is the basis for 
the application of the perturbation theory. 

6. Status of Ghost Fields in the Various  
Formulations of Quantum Gravity 

A specific feature of quantum gravity in the Heisenberg 
representation is the inevitable presence of ghost fields in 
the canonical formalism of the theory. Formally (in ma- 
thematical sense), the ghost sector is a consequence of 
the lack of gauges fully removing the degeneracy with 
respect to the residual transformations of the group of 
diffeomorphisms. Physically, this means that in the the- 
ory of gravity the fields of inertia are described together 
with the true gravitational field. In the classical theory of 
gravity, this does not lead to any problems with interpre- 
tation because the fields of inertia and gravitational fields 
are locally separable. Therefore, the deterministic evolu- 
tion of each of these fields always allows finding invari- 
ant characteristics of local effects. The specificity of the 
quantum gravity lies in the fact that because of the lack 
of gauges completely removing the degeneracy, the ex- 
isting formalism leads to the quantization of fields of 
both types (i.e., the uncertainty principle is turned out to 

be applied not only to the gravitational field but also to 
the field of inertia). 

Of course, in the quantum gravity the question about 
the status of ghost fields arises as well as the question 
about the rules of computing the contribution of ghosts to 
the observables. Answers to these questions are con- 
tained in the formalism of the theory. The general answer 
is that in the quantum gravity the ghosts and fields of 
inertia together form a physical effect. Details of this 
procedure depend, however, from the specific of a phy- 
sical problem. 

Let’s start with the situation, which is well known and 
understood. The Faddeev-Popov path integral [10,14] is 
initially defined as a method of calculating of the transi- 
tion amplitude between asymptotic states in the frame- 
work of perturbation theory. Here should be noted that at 
the very formulation of the problem, the fields of inertia 
are unobservable in the asymptotic states, which is for- 
mally provided by appropriate boundary conditions. The 
impossibility of observing of the inertia fields is auto- 
matically accompanied by the lack of asymptotic states 
with the nonzero ghost occupation numbers. Formally, 
the lack of ghosts is ensured by the stability of the ghost 
vacuum and by the possibility of conducting of the vari-
ous “expansions of unit” during the transformations of 
the gauged path integral. However, the ghosts as well as 
the fields of inertia are present in the virtual states in the 
region of interaction, and their quantitative role in the 
formation of the observable amplitude of the graviton 
scattering is given by the relevant Feynman diagrams. In 
various gauges, different inertial and ghost fields are ap- 
peared but the total contribution of these fields in the 
graviton sector of S-matrix is gauge invariant. 

In quantum gravity in the Heisenberg representation 
there is a possibility of the task, which physically is fully 
equivalent to the problem of the S-matrix calculation. 
Equations (31)-(34) can be used to describe the gravita- 
tional field whose potentials are only weakly perturb the 
metric of Minkowski space. In this situation, one can also 
enter the asymptotic state, and then, specifying the flux 
of gravitons in the initial asymptotic state to calculate the 
flux of gravitons in the final asymptotic state. The ghosts 
together with the inertia fields influence the formation of 
finite flux of gravitons, and this effect is taken into ac- 
count in the process of solution of the operator equations 
of motion. 

There are two specifics in the solution of the problem 
described above. First, the Heisenberg representation in 
the quantum gravity as well as in the Yang-Mills theory 
exists only in special gauges, so that the quantum fields 
of inertia and ghost sector are not arbitrary. Second, in 
the Equations (31)-(34), there actually are no mathe- 
matical indications of any special status of ghost fields in 
contrast to the original path integral where they are. 
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Formally, in these equations, the quantum wave field of 
ghosts acts as a second dynamic subsystem. Therefore, 
the exclusion of the ghosts of the asymptotic states is an 
additional condition. The mathematical consistency of 
the selection rule of the ghost-free asymptotic states is 
provided by the stability of the ghost vacuum in the the- 
ory of perturbations on the background of the Minkowski 
space. 

We now turn to the most non-trivial situation, which is 
the role of the ghosts in the quantum theory of the gravi- 
ton macroscopic system. Let us consider the Equations 
(50)-(52), in the one-loop approximation. In the macro- 
scopic Einstein equations, the energy-momentum tensors 
of the gravitons and ghosts are quadratic in quantum 
fields:  

   
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 

 
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; ;
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 (55) 

The quantum fields of gravitons and ghosts are des- 
cribed by the following linear equations:  

 ; ;
; ;

1
ˆ ˆ ˆ

2
1

ˆ ˆ
2

k l k l
i l l i

k l k
l i i

  

  

; ;
; ;ˆ

0,

l k k l m
i l i m l

m l
l mR R

 



  


       (56) 

; ;
; ;0, 0k k
k k                 (57) 

As is seen from (55)-(57), the one-loop quantum grav- 
ity is not confined to the theory of free fields with the spin 
J = 2 in the curved space time. The objects of the theory 
are necessarily two fields which are tensor field of spin J 
= 2 and the scalar Grassmann field with spin J = 0. 
Moreover, as is seen from the solutions of the equations 
(55)-(57), the gravitons and ghosts must have an equal 
status of dynamical subsystems of macroscopic quantum 
gravity system [1,2]. This somewhat unusual structure of 
the theory (in comparison with the theory of physical 
fields with spin 0,1 2,1J  ) needs for additional com- 
ments. 

The first thing that should be stressed is the fact that 

the inclusion of ghosts in the list of “physical” fields is 
the result of regular mathematical transformations. These 
transformations are as follows: the Faddeev path integral 
over the canonical variables (23)  equations of quan-
tum gravity in the Heisenberg representation (31)-(34)  
the allocation from the normal coordinates of the gravita- 
tional field of their mean values and the identity trans- 
formation of the exact equations in the Heisenberg re- 
presentation to the self-consistent system of classical and 
quantum Equations (50)-(52). There is no question about 
the existence of such transformations because they obvi- 
ously are in a formal mathematical sense. The question is 
whether or not these transformations lead to a new 
physical content of quantum theory of gravity in the last 
stage of computations (they are initially absent in the 
gauged path integral)? 

The answer to this question is “Yes”. The physical 
content of the theory is really changed but the reason for 
this change is absolutely transparent. The source path 
integral is defined as the mathematical object on the 
background of Minkowski space with the asymptotic 
boundary conditions and under the assumption of stabi- 
lity of graviton (and ghost) vacuum. From a mathemati- 
cal point of view, the transition from this integral to the 
theory of the macroscopic quantum gravity system (50)- 
(52), represents an extrapolation of the theory to a new 
physical area with the properties that differ from the area 
in which the theory was formulated initially. 

First of all, it should be noted that the formation of the 
metric of the classical curved spacetime with the self- 
consistent geometry is a significantly non-perturbative 
effect of collective interactions in the macroscopic sys- 
tem. Cosmological applications of quantum gravity make 
the abandonment of the Minkowski space (appearing in 
the theory of S-matrix) inevitable in favor of the real ex- 
isting curved spacetime. Direct consequences of a realis- 
tic formulation of the problem of describing of a macro- 
scopic system of massless and conformal noninvariant 
quantum fields are disappearance of asymptotic states 
and instability of the graviton-ghost vacuum. Any ob- 
server located inside such a system (i.e., in fact, inside 
the real Universe) is in the area of interaction. It is rather 
obvious that for such an observer the non-perturbative 
effects of vacuum instability are priority subjects of re- 
search. 

Next, you need to bear in mind that in General Rela- 
tivity the observer is represented by the fields of inertia 
which are inevitably quantized (in quantum gravity) in 
the absence of gauges completely removing the degene- 
racy. Therefore, in terms of standard quantum gravity, 
among of locally observable physical quantities, there 
necessarily are the observables formed by quantum fields 
of inertia and ghosts jointly. The instability of the va- 
cuum in the spectral region where the wavelength of 
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quantum fields is comparable to the radius of 4-curvature 
does not allow to fix the quantum state of these fields by 
zero occupation numbers. Exactly for this reason, the 
ghost fields are beginning to perform the role of the se- 
cond quantum subsystem which is dynamically equal to 
the graviton subsystem. 

Thus, on the one hand, the ghosts perform their stan- 
dard function in the theory of macroscopic quantum 
gravity systems, i.e. the ghost contributions together with 
the contributions of the inertia fields form the observ- 
ables. But, on the other hand, this function occurs in the 
non-standard conditions of the absence of asymptotic 
states and the instability of the vacuum. 

This specific of the ghost sector is fully reflected in the 
equations of one-loop quantum gravity (55)-(57). In 
these equations, the interaction of gravitons with each 
other is taken into account through a self-consistent field. 
According to the most general concepts of the quantum 
theory of gravity (existing on today), the one-loop effects 
of the interaction can not be properly described without 
ghosts. In the Equations (55)-(57), the inertia fields are 
accumulated in the macroscopic self-consistent field. 
Therefore, the ghost contribution to the formation of ob- 
servables is described by the obvious and only a way 
possible through the influence of ghosts on the self-con- 
sistent field. This contribution is taken into account 
through the presence of an averaged energy-momentum 
tensor of the ghosts in the macroscopic Einstein Equa- 
tions (55). 

The exact solutions of the Equations (55)-(57) de- 
scribing macroscopic effects of quantum gravity in the 
homogeneous and isotropic non-stationary Universe are 
obtained in [1,2]. A possible role of graviton, ghost and 
instanton condensates in the formation of observable 
Dark Energy is also discussed in [1,2]. 

7. Conclusion 

In this paper we show that the quantum theory of gravity 
can be formulated as operator equations in the Hamilton 
gauge in the Heisenberg representation. The postulate of 
quantization in this theory is given by canonical commu-
tation and anti-commutation relations for the generalized 
coordinates and momentums of gravitational and ghost 
fields. The equations of theory (31)-(34) (or the equa- 
tions obtained from these Equations (50)-(52)) are used 
to describe a macroscopic system of gravitons forming a 
macroscopic spacetime with the self-consistent geome- 
try. 

There is the reason served as one of the main motives 
in writing this paper. During the last 30 years (since 1977 
to 2008) many papers were published on the quantum 
theory of gravitons taking into account their backreaction 
on the cosmological background (quantum backreaction 

theory). To the best of our knowledge, there are no ma- 
thematically consistent papers correctly taking into ac- 
count the structure of the existing quantum theory of 
gravity. In particular, the papers [15,16,22-24] published 
in Physical Review D are erroneous. The typical errors 
are following: 

1) Use of linear parameterization of the metric fluctua- 
tions leading to the non-self-consistent system of clas- 
sical and quantum equations. This is a problem facing the 
authors of all works on the theory of gravitons, but they 
tried not to direct attention to the discussion of this mat- 
ter. Existence of the problem is exhaustively documented 
in the work [25]. In the same paper it was clearly stated 
that the use of linear parameterization leads to the need 
for manual adjustment of the energy-momentum tensor 
of gravitons. Such a correction, although it restores the 
conservative nature of the energy-momentum tensor in 
the background space, is outside of mathematically con- 
sistent formalism of the theory. In the theory proposed in 
this paper, the gravitational field undergoes exponential 
parameterization corresponding to the use of normal co- 
ordinates in the functional space. With this parameteriza- 
tion, the energy-momentum tensor of gravitons satisfies 
the conservative condition automatically (see (54)). The 
need to use normal coordinates obviously follows from 
the condition of bringing the path integral to the standard 
definition of the evolution operator (see (23) and (30)). 
The same result can be obtained in a purely classical 
self-consistent theory of gravitational waves. In this case, 
the consistency of wave and background equations must 
be ensured by the variational principle. In the frame of 
this scheme, detailed calculations are given in [2] (Sec-
tion II.D, formula (II.36), (II.37)). 

2) Incorrect gauging (a gauge is imposed not on the 
full metric but on its fluctuations only). Such a method is 
a serious and obvious error if it is used in applications in 
which the macroscopic background has no a global 4- 
symmetry, permitting the separation of inertia fields. 
Formally, the mathematical nature of the error is as fol- 
lows. The group of diffeomorphisms acting in the origi- 
nal Riemannian space with the metric (1), cannot be fac- 
torized into the group of diffeomorphisms of the back- 
ground space and the gauge group of gravitational waves 
after the separation in this metric of background and 
wave modes according to (45). However, this error does 
not affect the erroneous results of [15,16,22-24] because 
in the quantum theory the main consequence of gauging 
is the emergence of the ghost sector, which in these 
works is still ignored. 

3) It is an unpardonable error of [15,16,22-24] to com- 
pletely disregard the most important property of pure 
quantum gravity (without matter fields) which is its 
one-loop finiteness. Meanwhile, the one-loop finiteness 
is a rigorous and well-known T’Hooft and Veltman result 
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[5]. We do not know the reasons why the one-loop fi- 
niteness is not discussed and simply ignored in [15,16, 
22-24]. We can only note that in the self-consistent the- 
ory of gravitons, incorrect formulations, using the opera- 
tion of regularization and renormalization of one-loop 
divergences, have no mathematical meaning. As shown 
in [2] (Section 12), after introduction of one-loop coun- 
ter-terms, the initial equation for gravitons is modified, 
which generates one-loop divergences of the new mathe- 
matical structure, and so ad infinitum. In other words, the 
one-loop renormalization of theory of gravitons in those 
versions of the theory which are used in [15,16,22-24] is 
simply not possible, and for this reason, these versions do 
not exist in the mathematical sense. Self-consistent the- 
ory of gravitons exists only in the form in which it has, 
according to the T’Hooft and Veltman theorem, the pro- 
perty of one-loop finiteness. 

4) Incorrect use (or ignore) the ghost sector. The lack 
of a one-loop finiteness in [15,16,22-24] versions of the 
theory, is mathematically uniquely associated with either 
ignoring ghost sector [15,16,22-24], or with a mathe- 
matically incorrect work with this sector [23]. Ignoring 
ghost sector cannot be justified because in the theory of 
gravity there are no gauges that completely remove the 
degeneracy of the metric with respect to non-trivial re- 
sidual gauge transformations. Apparently, this uncondi- 
tional and, in general, a trivial fact was just outside the 
field of attention of the authors of [15,16,22-24]. Some 
attempt to fix the defect of theory, that is, formally in- 
troduces the ghosts in a self-consistent theory of gravi- 
tons, made in [23]. This attempt, however, contains three 
types of mathematical errors. First, the gauge was ap- 
plied not to the full metric but just for its graviton part 
which is mathematically erroneous (see point “2” above). 
Second, the gauge used in [23] does not provide bringing 
path integral to the form of the operator of evolution, 
which makes the transition to the Heisenberg representa- 
tion impossible. Third, the authors of [23], apparently, to 
justify ignoring the ghosts in previous works, completely 
groundless claim that ghosts do not contribute to the ob- 
servables. For “justification” of this statement, it was 
drawn the condition BRST invariance of physical states. 
This third error itself consists of two mistakes. Even in 
theory of the graviton S-matrix, ghosts participate in the 
formation of scattering amplitudes, with the status of 
observables. The condition of BRST invariance refers to 
the rules of selection of vectors of asymptotic states that 
are vacuum ones over the occupation numbers of ghosts. 
In the self-consistent theory of gravitons in the non-sta- 
tionary universe, there are fundamentally no asymptotic 
states corresponding to the stable vacuum. Therefore the 
BRST symmetry provides only a covariance of states but 
not their invariance. As a consequence, the ghosts are 
directly involved in the formation of observables. In the 

self-consistent theory of gravitons, they are geometric 
characteristics of the background space. 

All these works completely lose any meaning after re- 
normalization of gravitational Lagrangian by quadratic 
counterterms off the mass shell. This procedure modifies 
the original definition of the graviton and makes the the- 
ory mathematically inconsistent. This is an unavoidable 
and unacceptable internal contradiction of one-loop 
quantum gravity (see Section 12 of [2].) Because of the 
finiteness of the theory off the mass shell, the incorrect 
counterterms simply does not arise with the right algo- 
rithm of computations. In this paper, we showed that the 
key to obtaining the correct equations of the one-loop 
theory (55)-(57) is their correct derivation from the exact 
equations of quantum gravity. Our point of view is that 
for the solution of various problems in the quantum grav- 
ity, the source equations must be the same. Therefore, 
because of the lack of gauges completely removing de- 
generacy, the ghosts must be present in any representa- 
tions of quantum gravity, and they participate in the for- 
mation of observables starting from the one-loop ap- 
proximation. In the S-matrix theory, the ghost diagrams 
participate in the formation of the amplitude of graviton 
scattering. In the self-consistent theory of gravitons (in 
the Heisenberg representation) the one-loop interactions 
are taken into account in the approximation of the self- 
consistent field. As a result, the ghosts will inevitably 
take participate in the formation of a self-consistent field 
via their own energy-momentum tensor on the right- 
hand-side of the macroscopic Einstein equations self- 
consistent with the quantum equations of motion. This 
mathematically inevitable fact was completely ignored in 
the previously published works.  
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