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ABSTRACT 

An inequality describing the difference between Gamma and Gaussian distributions is derived. The asymptotic bound is 
much better than by existing uniform bound from Berry-Esseen inequality. 
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1. Introduction 

1.1. Problem 

We first introduce some notations. Denote Gamma dis- 
tribution function as 
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for  and , where  is the Gamma 
function, i.e., 
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Assume  for  ,k x  0x  . The density of chi- 
square distributed random variable n  with n  degrees 
of freedom is 
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It is well-known that the random variable n  can be in- 

terpreted by 2

1

n

n
k

k 


   with  independent and iden- n

tically distributed (i.i.d.) random variables  0,1 ,k    
 where 1,2, ,k   n 0,1  denotes the standard 

Gaussian distribution. The mean and variance of n  is 
respectively 
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Then, by simple change of variable we find 
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On the other side, by the Berry-Esseen inequality to  

  2 1 2 , 1, ,k k    n , it is easy to find a bound  

0C   such that 
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where  x  is the standard Gaussian distribution func- 
tion, i.e., 
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Then, by Equations (2) and (3) it follows 
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which describes the distance between Gamma and Gau- 
ssian distributions. The purpose of this paper is to derive 
asymptotic sharper bound  in Equation (5), which much 
improves the constant  by directly using Berry-Esseen 
inequality. The main framework of analysis is based on 
Gil-Pelaez formula (essentially equivalent to Levy inver- 
sion formula), which represents distribution function of a 
random variable by its characteristic function. 

C
C

The main result of this paper is as following. 
Theorem 1.1 A relation of the Gamma distribution (1) 

and Gaussian distribution (4) is given by 
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Clearly,  as . Thus, the asymp- 
totical bound is 

 1 0C n  n 

  1
0.1881

3 π
C n     

as . To check the tightness of the limit value of 
, we plot in Figure 1 the multiplication 
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for , where the straight line is the limit  1, 2, , 200n  

value 
1

3 π
. From this experiment it seems that 

1

3 π
  

is the best constant. The tendency of the theoretical 
formula  is plotted for  C n   141,10 10n   in Figure 
2, which also shows the tendency to the limit value  

1

3 π
. The slow trend is due to that some upper bounds  

formulated over interval  0 1,n n  have been weakly es- 
timated, e.g., the third and fourth terms of .  1C n

1.2. Comparison to the Bound Derived by 
Berry-Esseen Inequality 

Let  be a sequence of independent identi- 
cally distributed random variables with EX1 = 0 
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Figure 1. Experiment. 
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Figure 2. Trend of .  C n

 

and finite third absolute moment 
3
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By classic Berry-Esseen inequality, there exists a finite 
positive number  such that 0C

      0 3, sup .n n
x

C
d F F x x
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The best upper bound 0  is found in [1] in 
2009. The bound is improved in [2] at some angle in a 
slight different form as 

0.4785C 
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with 

    1 3min 0.33477 0.429 ,0.3041 1 .C    3   

The inequality (8) will be sharper than Equation (7) for 

3 1.93  . 
Now let us derive the constant  in (5) by applying  C

Berry-Esseen inequality to   2 1 2 , 1,2,k k    . It  

is difficult to calculate the exact value of third absolute 
moment of the random variable  2

1 1  2 . Thus, it is 
approximated as 
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by using Matlab to integrate over interval  0,100  di- 
vided equivalently 100,000 subinterval for its half value. 

By Equation (7) with  we have 0 0.4785C 

0 3 1.4705C     

and by Equation (8) we have 
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1 1.1724 .C    

Hence, the best constant  in Equation (5) by ap- 
plying Berry-Esseen inequality is . Obviously, 
the limit bound 

C
1.1724
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lim 0.1881

3 πn
C n


    

found in this paper for chi-square distribution is much 
better. 

The technical reason is that the Berry-Esseen ine- 
quality deals with general i.i.d. random sequences with- 
out exact information of the distribution. 

2. Proof of Main Result 

Before to prove the main result, we first list a few lem- 
mas and introduce some facts of characteristic function 
theory. 

2.1. Some Lemmas 

Lemma 2.1 For a complex number  satisfying z 1z  , 
 e 1 1z z z   .  

Proof First show that 
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By Taylor’s expansion and noting 1z  , we have 
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Together with 

e 1 e 1z zz z     ,  

the assertion follows. 
Lemma 2.2 For a real number x  satisfying < 1x , 
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Clearly, 
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Proof. By Taylor expansion for complex function, for 
< 1x  we have 
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where  3R x  is shown above. By further noting the two 
alternating real series above, it follows the upper bound. 

We cite below a well-known inequality [3] as a lem- 
ma. 

Lemma 2.3 The tail probability of the standard nor- 
mal distribution satisfies 

2 21 1

2 2
2

1 1 1 1
e e d

1 2π 2π 2π

21

2e
x t x

x

x
t

xx

 
   

 


 

for . 0x 

2.2. Characteristic Function 

Let us recall, see e.g., [4], the definition and some basic 
facts of characteristic function (CF), which provides 
another way to describe the distribution function of a 
random variable. The characteristic function of a random 
variable X  is defined by 

  ie ,tX
X t E   

where  is the imaginary unit, and  is the argu- 
ment of the function. Clearly, the CF for random variable 

i

X

t R

Y a b   with real numbers a  and b  is 
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Another basic quality is 

    Z X Yt t   t  

for Z X Y   with X  and Y  independent to each 
other. 

It is well-known that the CF of standard Gaussian 
 0,1  is 
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and the CF of chi-square distributed variable n  is 
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The CF is actually an inverse Fourier transformation 
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of density function. Therefore, distribution function can 
be expressed by CF directly, e.g., Levy inversion formula. 
We use another slightly simpler formula. For a univariate 
random variable X , if x  is a continuity point of its 
distribution XF , then 
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which is called Gil-Pelaez formula, see, e.g., page 168 of 
[4]. 

2.3. Proof of Main Result 

We are now in a position to prove the main result. 

Proof of Theorem 1.1 First analyze CF of 
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given by Equation (10). Denote 
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where 
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for 0t n . Hence, by Equations (12) and (13) and 
Lemma 2.1, 
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for 0t n . 
Now let us consider the difference between  S t  

and  t , i.e., the CF (9) of Gaussian distribution, over 
the interval  00, n . By Equation (14) 
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Similarly, 
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Below let us analyze the residual integrals over the 
interval  0 ,n  . By Lemma 2.3, 
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Similarly, 
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It is somewhat difficult to analyze the residual integral 
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over  for . We divide it into two subin- 
tervals as following: 
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Similarly, 
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By Equation (15), Equation (17), Equation (21) and 
Equation (16), Equation (18), Equation (22) 
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In view of Formula (11) , the formula to be proved fol- 
lows directly. 
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