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ABSTRACT 

This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the 
tuning of PSS parameters in order to improve the overall dynamic stability of multi machine power systems. The loca- 
tion of PSS is determined by identifying the critical modes and their corresponding first and second order eigenvalue 
sensitivities. In this formulation, sensitivity analysis of a particular mode can be performed with only its eigenvalues 
and their left and right eigenvectors. The simplicity and efficiency of this approach sharply contrast to the complexity of 
the traditional approach, where all eigenvalues and eigenvectors are required at the same time. The effectiveness of this 
method in selecting the optimum location for placement of PSSs is compared with the participation factor method. The 
proposed sensitivity theory used to identify the best PSS location in a five machine, eight bus El-Metwally and Malik 
System to increase the damping of both local and inter area modes for various operating conditions. 
 
Keywords: Power System Stabilizer (PSS); Small Signal Stability; First Order Eigenvalue Sensitivity (FOES); Second 

Order Eigenvalue Sensitivity (SOES); Participation Factor (PF) 

1. Introduction 

Power systems are highly complex systems that contain 
non-linear and time varying elements. Many power 
systems face the problem of troublesome dynamic oscil- 
lations in the range of 0.2 to 2.5 Hz associated with some 
poorly damped swing modes. Power system stabilizers 
(PSSs) are commonly used to damp these oscillations 
and increase damping of swing modes [1]. In the appli- 
cation of PSS to increase the damping of a certain trou- 
blesome mode in a multi machine power system the very 
first step is to determine the best PSS location(s). For a 
local mode the job of selecting PSS location(s) is not dif- 
ficult because only few machines are involved in this 
local oscillation and there are only a few choices. But for 
the inter area mode large number of machines may be 
involved in the oscillation. This makes the PSS location 
selecting problem very complicated [2]. The most com- 
monly used approach for stability siting was the Eigen 
vector method proposed by DeMello et al. [3]. This 
method too may fail in certain circumstances and may 
lead to undesirable stabilizer location as found out in 
various studies. Hiyama [4] presented an approach using 
the concept of coherent groups. This method suffers from 

the major disadvantage that generators within one cohe- 
rent group for a large disturbance do not necessarily re- 
main in the same group under small-disturbance condi- 
tions. 

Zhang and Coonick [5] proposed a new method based 
on the method of inequalities for the coordinated synthe- 
sis of PSSs parameters in multi-machine power system in 
order to enhance overall system small signal stability. 
Antonio et al. [6] presented a method that simultane- 
ously tune multiple power system damping controllers 
using Genetic Algorithms. Cai and Elrich [7] suggested 
the simultaneous coordinated tuning of the series FACTS 
Power Oscillation Damping controller in multi-machine 
power system. Doi and Abe [8] developed a new coordi- 
nated synthesis method by combining eigenvalue sensi- 
tivity analysis and linear programming applied to this 
method is used to synthesize the coordination of power 
system stabilizers in a new multi machine system. 

In this paper, the first order and second order eigen- 
value sensitivity theory presented in [9-12] used for se-
lection of optimum locations of PSS and the same is 
compared with the participation factor method. This 
method is used to identify the best PSS locations in a 
five-machine, eight bus system (El-Metwally and Malik 
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System) to increase the damping of an inter area mode 
for three different operating conditions. The dynamic 
response of rotor angle deviation of the system confirms 
that the prediction of the best PSS location by the pro- 
posed method is correct and accurate. Section 2 discusses 
about first order and second order eigenvalue sensitivity 
analysis. Section 3 presents the dynamic stability model 
of multimachine power systems. Section 4 discusses the 
proposed method of optimum locations of PSSs. Section 
5 provides the simulation results and Section 6 gives the 
conclusion. 

2. Eigenvalue Sensitivity 

The linearized model is as shown in Equation (1) 

 x A x

                    (1) 

The eigenvalues of a matrix A  are given by non-tri- 
vial solutions to the equation : 

  0A I                    (2) 

where A is an n x n matrix and  is a nx1 vector.  
For any eigenvalue i , the n column vector i , 

which satisfies Equation (2), is called the right eigen- 
vector of A associated with the eigenvalue i .  

Therefore we have, 

i iA i                    (3) 

Similarly, the n-row vector i  which satisfies 

i iA i                   (4) 

which is called the left eigenvector associated with the 
eigenvector i . 

Consider the equation, 

    i i iA                     (5) 

Sensitivityof eigenvalues with respect to elements of 
 A , 
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Premultiplying the Equation (6) by  i  & noting 
that    1i i    &      i iA I   0 


 results, 
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Differentiate Equation (7) with respect to  pa- 

rameter 

PSS

pssK  gives Equation (8): 

pss

A
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i i i
i i iA
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Differentiating Equation (8) with respect to another 
PSS parameter 1 , then simplify yield the second order 
eigenvalue sensitivity [14,15] as below: 
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 (9) 

The Equation (9) requires knowledge of all eigenval- 
ues and eigenvectors, which is very large problem to 
solve when the system matrix is very large. To find the 
second order eigenvalue sensitivities without having to 
know all the eigenvalues and eigenvectors, the second 
order eigenvalue sensitivities can be written in terms of 
two first order eigenvector sensitivities [4] as Equation 
(10): 

2 2

1 pss 1 pss pss

pss 1 1 1 pss

i
i i i

i i

i i i i
i

A A

T K T K K
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I I
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1

     
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 (10) 



If the eigenvector sensitivities pssi K   and  

1i T   are known, then the above equation can easily 
be computed. 

3. Dynamic Stability Model of Multi  
Machine Power System 

In stability analysis of a multi-machine system, modeling 
of all the machines in a more detailed manner is exceed- 
ingly complex in view of the large number of synchro- 
nous machines to be simulated. Therefore simplifying 
assumptions are usually made in modeling the system. In 
this studies two axis model is used for all machines in the 
test system. 

The linearized state equations for the two axis model 
under the assumption '' '

d qx x x   are given by Ander- 
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son [13] as follows: 
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  (11) 

where the state variables for the machine are 
'
dE -direct axis component of voltage behind transient 

reactance 
'
qE -quadrature axis component of voltage behind tran-

sient reactance 
 -angular velocity of rotor 
 -rotor angle in radians 
The state variables of the machine including the ex- 

citer and PSS are given by 
' '

2
T

q d FD sX E E E V V               (12) 

A five machine, eight bus El-Metwally and Malik test 
system (Figure 1) is chosen to investigate the optimum 
location of the PSS and the tuning of the PSS parameters. 
The system data is taken from [1]. 

4. Proposed Method for the Optimum  
Location of PSSs 

The step-wise procedure for identifying the best location 
of PSS as detailed below. 

Step 1: Linearize the system at a chosen operating con- 
dition and from the linearized system matrix, identify the 
rotor swing modes including the nature of modes whe- 
ther local or inter area modes using eigen sensitivity ana- 
lysis. 

Step 2: Determine the critical rotor swing modes 
which have damping ratio less than a specified value, say 
 

 

Figure 1. Test system. 

0.45. 
Step 3: Steps 1 and 2 are repeated for each chosen op- 

erating condition. 
Step 4: The critical swing modes of all the operating 

conditions identified are arranged in the ascending order 
of the damping ratio. To each critical swing mode asso- 
ciate an operating condition; this has the least damping 
ratio. 

Step 5: The best location for damping the first critical 
swing mode in the list is obtained using the eigen value 
sensitivity and participation factors. 

Step 6: Step 5 is repeated for all other critical swing 
modes. 

The following three operating conditions are chosen 
for analysis of the test system: 

1) Full load operating condition. 
2) Operating condition 1) with load increased by 25%. 
3) Full load operating condition with one of the two tie 

lines between buses 6 and 7 removed. 
From Table 1, it is seen that there are four critical 

swing modes. Mode shapes are obtained by plotting the 
speed component of the right Eigen vectors of the swing 
modes as in Figure 2. 

From the mode shapes, the first mode is the inter ma- 
chine oscillation local to area 1, with G2 & G3 swinging  
 

Table 1. Eigenvalues—Operating condition (a). 

Eigenvalues Damping ratio 

−0.0033 ± j0.0537 

−0.0009 ± j0.0307 

−0.0001 ± j0.0208 

−0.0002 ± j0.0084 

0.0616 

0.0291 

0.0068 

0.0223 

 

 

Figure 2. Mode shapes of swing modes. 
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against G5. The second mode is the inter machine oscilla- 
tion local to area 1, with G2 swinging against G3 & G5. 
The third mode is the inter machine oscillation local to 
area 2, with G1 swinging against G4. The fourth mode is 
an inter-area mode, with generators G2, G3, G5 of area 1 
swinging against generators G1 and G4 of area 2. The 
critical modes with their damping ratio, nature of the 
modes, first order eigen sensitivity value for the three 
operating conditions are shown in Tables 2-4 respec- 
tively. 

The critical swing modes identified in all the three op- 
erating conditions are arranged in the ascending order of 
the damping ratio. The operating conditions and related 
details of the four critical rotor swing modes are given in 
Table 5. 

From Table 5, for the first critical mode, machine 2 is 
having the highest first order sensitivity (Table 2) and 
PSS is located at machine 2. Similarly for the second 
critical mode, machine 2 is having the highest first order 
sensitivity (Table 2) and PSS is located at machine 2. 
For the third critical mode, machine 4 is having the 
highest first order sensitivity (Table 2) and PSS is lo- 
cated at machine 4. For the fourth critical mode, machine 
2 is having the highest first order sensitivity (Table 3) 
and PSS is located at machine 2. 
 
Table 2. Modes and first order eigenvalue sensitivities— 
operating condition (a). 

Mode 
No. 

Mode 
Damping 

ratio 

First order 
eigenvalue 
sensitivity 

Nature of the 
mode 

0.0000 

0.0091 

0.0008 

0.0000 

1 
−0.0033 ± 

j0.0537 
0.0616 

0.0013 

Local 

0.0000 

0.0111 

0.0012 

0.0000 

2 
−0.0009 ± 

j0.0307 
0.0291 

0.0002 

Local 

0.0006 

0.0020 

0.0000 

0.0037 

3 
−0.0001 ± 

j0.0208 
0.0068 

0.0000 

Local 

0.0002 

0.0092 

0.0001 

0.0012 

4 
−0.0002 ± 

j0.0084 
0.0223 

0.0001 

Inter 
area 

Table 3. Modes and first order eigenvalue sensitivities— 
operating condition (b). 

No Mode DR FOES Nature 

0.0002 

0.0004 

0.0060 

0.0000 

1 
−0.0079 ± 

j0.1054 
0.0748 

0.0000 

LOCAL 

0.0014 

0.0038 

0.0023 

0.0000 

2 
−0.0020 ± 

j0.0464 
0.0433 

0.0000 

Local 

0.0068 

0.0015 

0.0000 

0.0007 

3 
−0.0001 ± 

j0.0218 
0.0068 

0.0000 

Local 

0.0017 

0.0043 

0.0003 

0.0004 

4 
−0.0003 ± 

j0.0125 
0.0205 

0.0000 

Inter 
area 

 
Table 4. Modes and first order eigenvalue sensitivities— 
operating condition (c). 

Mode No. Mode 
Damping 

ratio. 

First order 
eigenvalue 
sensitivity 

Nature of the 
mode 

0.0001 

0.0005 

0.0048 

0.0000 

1 
−0.0080 ± 

j0.0963 
0.0827 

0.0002 

Local 

0.0007 

0.0050 

0.0019 

0.0000 

2 
−0.0019 ± 

j0.0435 
0.0437 

0.0001 

Local 
 
 
 

0.0071 

0.0008 

0.0000 

0.0009 

3 
−0.0001 ± 

j0.0214 
0.0068 

0.0000 

Local 

0.0015 

0.0032 

0.0002 

0.0002 

4 
−0.0003 ± 

j0.0092 
0.0290 

0.0000 

Inter 
area 
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The same procedure outlined in first order is repeated 
for second order eigenvalue sensitivities to determine the 
optimum location of PSS. According to second order 
eigenvalue sensitivity, the results reveal that there are 
two oscillatory rotor swing modes for each of the three 
operating conditions which are shown in Tables 6-8 for 
the operating conditions 1), 2) and 3) respectively. 
 

Table 5. Ranking—Critical swing modes (FOES). 

Rank 
order 

Critical 
mode 

Critical 
mode 

Nature 
of mode

Damping 
ratio 

Operating
condition

Machine 
No. 

1 Mode 1 
−0.0033 ± 

0.0537i 
Local 0.0616 (a) 2 

2 Mode 2 
−0.0009 ± 

0.0307i 
Local 0.0291 (a) 2 

3 Mode 3 
−0.0001 ± 

0.0208i 
Local 0.0068 (a) 4 

4 Mode 4 
−0.0003 ± 

0.0125i 
Inter 
area 

0.0205 (b) 2 

 
Table 6. Modes and second order eigenvalue sensitivities— 
operating condition (a). 

No. Mode Damping ratio 
Second order  

eigenvalue sensitivity

0.0908 

0.1295 

0.0933 

0.0653 

1 −0.0031 ± j0.0554 0.0559 

0.0509 

0.0608 

0.3065 

0.2628 

0.1903 

2 −0.0005 ± j0.0385 0.0128 

0.1723 

 
Table 7. Modes and second order eigenvalue sensitivities— 
operating condition (b). 

No. Mode 
Damping 

ratio 
Second order  

eigenvalue sensitivity

0.0380 

1.7118 

1.6435 

2.4294 

1 −0.0031 ± j0.0593 0.0527 

2.3554 

0.0405 

1.6959 

1.6294 

2.3976 

2 −0.0014 ± j0.0411 0.0330 

2.3437 

The critical swing modes identified in all the three op- 
erating conditions are arranged in the ascending order of 
the damping ratio. The operating conditions and other 
related details of the two critical rotor swing modes are 
given in Table 9. 

From Table 9, for the first critical mode, machine 4 is 
having the highest second order sensitivity (Table 7) and 
PSS is located at machine 4. Similarly for the second 
critical mode, machine 2 is having the highest second 
order sensitivity (Table 6) and PSS is located at machine 
2. Hence PSSs are to be located at machines 2 and 4 for 
two critical rotor swing modes. 

The tuning of PSS parameters using Conventional 
technique has been given below. The gain and time con- 
stants of CPSS for the five machines for three operating 
condition 1), 2), 3) are shown in Table 10. 

The effectiveness of the proposed method of location 
and tuning are investigated by carrying out simulation of 
the linear model of the system for three operating condi- 
tions with disturbances. 
 
Table 8. Modes and second order eigenvalue sensitivities— 
operating condition (c). 

No. Mode Damping ratio 
Second order  

eigenvalue sensitivity

3.0024 

0.8891 

1.1228 

4.7844 

1 −0.0039 ± j0.0559 0.0695 

2.6112 

3.0151 

0.8582 

1.1318 

4.7838 

2 −0.0023 ± j0.0370 0.0621 

2.5696 

 
Table 9. Ranking—Critical swing modes (SOES). 

Rank
Critical 
mode 

Critical mode 
Damping 

ratio 
Operating
condition

Machine
No. 

1 Mode 1 −0.0031 ± 0.0593i 0.0527 (b) 4 

2 Mode 2 −0.0005 ± 0.0385i 0.0128 (a) 2 

 
Table 10. Tuned parameters of PSS. 

Operating  
condition (a) 

Operating  
condition (b) 

Operating  
condition (c) Machine 

No. 
Kpss  1T

 
Kpss  1T

 
Kpss 1T

 
1 76.0 0.0127 62.3 0.0135 77.9 0.0130

2 45.0 0.1200 39 0.0123 49.6 0.0123

3 53.3 0.0329 54.6 0.0990 35.3 0.0971

4 54.7 0.0125 45 0.0128 55.3 0.0126

5 29.0 0.0732 23.9 0.0936 21.2 0.0926
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5. Simulation Results 

The application of the FOES and SOES is demonstrated 
by applying it to the five-machine, eight bus system. The 
time domain simulations of rotor angle deviation of the 
system are carried out without PSS and with PSSs lo- 
cated on machines 2 & 4 after tuning the PSS parameters. 
The corresponding system response of initial perturba- 
tion of 5˚ in rotor angle at machine 2, 3, 4 and 5 with re- 
spect to machine 1 for operating condition 1) and 2) are 
shown in Figures 3(a)-(d) to 4(a)-(d) respectively. 

Similar type of responses was occurring for the oper- 
ating condition 3) also. The effectiveness of the first and 
second order eigenvalue sensitivities methods is com- 
pared with the participation factor method in selecting 
the optimum location for placement of PSSs [16]. Fig- 
ures 5(a)-(c) are the comparison of the system responses 
for operating conditions 1), 2) and 3) under 5˚ rotor angle 
perturbation. 

6. Conclusions 

In this paper, an eigen-sensitivity of the system matrix is 

developed using a dominant eigenvalue and the corre- 
sponding eigenvectors. The proposed sensitivity can pro- 
vide valuable information in enhancing power system 
stability identifying the siting of compensation device 
PSS. The results of the method indicate that machines 2 
and 4 are the optimum locations for installing PSSs. 

The eigenvalue sensitivity analysis is used to find out 
optimum location of PSS for different operating condi- 
tions and gives the best damping of all the critical modes 
of the system. The work in this paper is concerned with 
the location Power system stabilizers in multimachine 
power systems and tuning its parameters. This work has 
got great practical relevance for the modern power sys- 
tems, where the ever increasing demand for the electrical 
power and the integration of large utilities have been 
regularly causing the system to operate at the threshold 
of its stability limits, which calls for adequate precau- 
tionary measures to be taken to ensure rotor angle stabil- 
ity of the synchronous machines. An efficient com- 
puter-programming package for analyzing the dynamic 
stability of power systems has been developed in MAT- 
LAB. Using the first and second order sensitivity the  

 

   
(a)                                (b) 

   
(c)                                    (d) 

Figure 3. (a) System response of 12 -op.condition (a) with an initial perturbation of 5˚; (b) System response of 13 -op.con- 

dition (a) with an initial perturbation of 5˚; (c) System Response of 14 -op.condition (a) with an initial perturbation of 5˚; 

(d) System response of 15 -op.condition (a) with an initial perturbation of 5˚. 
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(a)                                                 (b) 

   
(c)                                                  (d) 

Figure 4. (a) System response of 12 -op.condition (b) with an initial perturbation of 5˚; (b) System response of 13 -op.con- 

dition (b) with an initial perturbation of 5˚; (c) System Response of 14 -op.condition (b) with an initial perturbation of 5˚; 

(d) System response of 15 -op.condition (b) with an initial perturbation of 5˚. 

 

     
(a)                                   (b)                                       (c) 

Figure 5. (a) System Response of 12 -op.condition (a) with an initial perturbation of 5˚; (b) System Response of 15 - 

op.condition (b) with an initial perturbation of 5˚; (c) System Response of 13 -op.condition (c) with an initial perturbation 

of 5˚. 
 
machines creating the critical swing modes are identified, 
which can be proposed as the optimum locations for 
placing the power system stabilizers. 
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