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ABSTRACT 

The design of this study is to investigate the evolution of a stochastic price process consequent to discrete processes of 
bids and offers in a market microstructure setting. Under a set of flexible assumptions about agent preferences, we gen-
erate a price process to compare with observation. Specifically, we allow for both rational and irrational economic be-
havior, abstracting the inquiry from classical studies relying on utility theory. The goal is to provide a set of economic 
primitives which point inexorably to the price processes we see, rather than to assume such process from the start. 
 
Keywords: Price Theory and Market Microstructure; Stochastic Difference Equations; Bid; Ask; Price Processes in 

Discrete Time 

1. Introduction 

We propose to model a price process based on micro- 
structural activity of a market. We assume a set of agents 
such that each agent at any moment has both bid and ask 
prices present in the market. A trade occurs if and only if 
the bid of one agent is equal to the ask of another, this 
common value becoming the price of a trade. We cal- 
culate the dynamics of the resulting price process, in- 
cluding the moments of trades, in a discrete time setting 
for behavioral choices of the agents. These choices are 
formalized in relevant probability distributions specific 
to the agents’ behaviors. In this way, we allow for a 
multitude of behavioral patterns, including, but not re- 
stricted to traditional motivations inspired by utility func- 
tions. Our model is flexible enough to allow for “marks” 
to a trade, ancillary data such as its time stamp, so that 
we may study independently such features as trade clu- 
stering and time deformation. 

Recent history is rich with microstructure studies of 
financial markets and with associations of specific fami- 
lies of probability distributions to financial stochastic 
processes. For good reviews of the microstructure litera- 
ture see these works respectively [1,2]. For associations 
of probability distributions such as the widely applied 
Gaussian, normal inverse Gaussian, and more inclusively 
the generalized hyperbolic, see these studies [3,4]. In 
many instances such inquiries assume at the outset va- 
rious forms of stochastic processes, as defined by sto- 
chastic differential equations, and then set forth to esti- 

mate parameters. Popular choices are Itô diffusions and 
Ornstein-Uhlenbeck processes, with and without the super- 
position of pure jump Lévy processes. 

Most studies of microstructure take an econometric 
approach, that is, they define some structure, assume 
distributions as appropriate, then estimate parameters 
using data. In his survey with important bibliography, 
Bollerslev reviews the state of financial econometrics [5]. 
In a subsection discussing time-varying volatility, he 
notes that, “several challenging questions related to the 
proper modeling of ultra high-frequency data, longer-run 
dependencies, and large dimensional systems remain.” 
Further in the text, he qualifies this remark by stating: 
“Not withstanding much recent progress, the formulation 
of a workable dynamic time series model which readily 
accommodates all of the high-frequency data features, 
yet survives under temporal aggregation, remains elu- 
sive.” 

Engle provides just such an econometric study [6] 
employing the Autoregressive Conditional Duration 
(ACD) model developed by him with Russell [7] in the 
study of IBM stock transactional arrival times. In the 
former paper, Engle, in referring to cases of the con- 
ditional duration function, relates, “In each case, the 
density is assumed to be exponential.” Such assumptions 
are typical, and necessary, for an econometric study fo- 
cusing on time series of prices as the fundamental data 
structure. 

Hasbrouck, in focusing on the refinement of bid and 
ask quotes, proposes and estimates an Autoregressive 
Conditional Heteroskedasticity (ARCH) model using 
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Alcoa stock transactions, evenly spaced at 15 minute 
intervals [8]. Routinely, he asks the reader to consider, “a 
stock with an annual log return standard deviation of 
0.30” The reference “return” is of course to the price 
sequence, a necessary expedient in the classical eco- 
nometric framework which considers a price process as 
fundamental, rather than consequential to a set of 
underlying bid and ask processes. 

Other studies, such as one by Bondarenko, delve into 
the bid and ask series, but rather as a difference, the 
spread [9]. The focus of this work and its principal 
results are in the realm of market liquidity, rather than in 
the estimation of the price process. Once again, the 
classical framework requires an assumption on the dis- 
tribution of the price process, as evidenced in this remark 
made within the context of evaluating a price change 
between periods. “The asset’s final value is denoted v , 
a normal random variable with mean  and variance 0v

2
v .” 
Yet further studies attempt to develop directly a price 

process from first principles. An interesting and pro- 
vocative example is a paper by Schaden, which for- 
mulates conclusions from financial analogues to fun- 
damentals of quantum physics [10]. As he observes in 
the introduction, “At this stage it is impossible to decide 
whether a quantum description of finance is fundamen- 
tally more appropriate than a stochastic one, but 
quantum theory may well provide a simpler and more 
effective means of capturing some of the observed 
correlations.” Indeed, though the basic process in- 
vestigated is yet a price process, not those of bids and 
asks. The analysis is grounded on five at first qua- 
litative assumptions about the market, and concludes 
with the assertion that the evolution of prices follows 
“the lognormal price distribution.” In this setting it is 
difficult to discern how a different—and more rea- 
listic—distribution could emerge without changing sub- 
stantially the assumptions, or the physics. For further 
background reading see [11-13]. 

In our paper we choose to move to a more basic level 
of explanation, to specify the market mechanisms among 
interacting agents, and then to let the model determine 
the price process and its features. In this way we derive 
such features as the distributions of prices, rather than 
assuming them ab initio. 

We now proceed forthwith to present our case. 

2. Specification of the Model 

We consider for simplicity the model of the market for 
one stock in discrete time 1. It is 
reasonable to assume that in each time  there are 
only finite number  of agents taking part in the trad- 

ing on the market. Let  be the number of all agents 
which have ever taken part in trading. At each moment 

0,1, ,t T  T
tT



tn

N

tT  the agent number i,  proposes a bid 
price  and an ask price i

t for a goods on the market. 
We assume that t t . It is convenient to set 

1 i N 
 i

tb a
ia  ib i

ta    
and 0i

tb   if at the moment  the -th agent does 
not take part in the trading. Supposing the rational be- 
havior of agents on the market we have 

tT i

t tA B , where 
 min :1i

t tA a i

t

N  and . 
We say that there is a trade between i -th and -th 
agents at moment 

 i N
j

max :1i t tB b

T  if t t t t  or  i jba A  B
j iBt t t ta A b   . It means that there is a trade between 

agents with minimal ask price tA  and maximal bid 
price t  provided that they are equal t tB A B

j

. In order 
to escape some pathological examples we always assume 
that at every time t there exist two different agents, say 
number i and j, i ≠ j, such that t  and bi

ta A t tB . In 
the case when more than one of the agents have the same 
minimal ask price and maximal bid price, say 

t
1i

t t
miA a  a    and 1 njj

t tB b 

 k m

t , we suppose 
that a trade occurs between agents with nu

1,i  1, , kj j  

b

n . 
mbers 

, ki  and , where
The bids and asks can be changed only by the agents. 

It may happen that t tA B  after such changing of 
prices. In order to avoid such possibilities we suppose 
that bid prices can be changed by agents only at even 
moments and ask prices only at odd moments. Never- 
theless the trades can occur at any moment: even or odd. 

How should the bid and ask prices change? The rules 
of changing bid and ask prices by the agents are different 
for each agent and they are based on different reasons; 
for instance: aims of agents, interpretations of informa- 
tion, personal reasons, and so on. If these prices are 
changed at time  when a trade occurs, say between the 
i-th and j-th agents with prices t t t t , then 
the respective ask price  will be not less then the 
price before the trade . Therefore we can say 
that 

t

1

i j 

,

a b

1

1
i
ta 

e e
i i
t t

tB  

A B
i
ta

i
ta 

i i
t ta a



 

where i
t  is a nonnegative random variable (it is 

possible to add one more value  if the agent decides 
to leave the market). For the bid prices we can write 
similarly  



e e1 ,
j j

t t
tA   j j

t tb b  

with nonnegative random variable j
t  (with the same 

note about  ). The random variables i
t  and j

t  are 
- and i

tF j
tF -adapted, respectively, where  and i

tF
j

tF  are  -fields containing information which the 
agents know before the time , inclusively. Note that 

t

t
  and t  are defined only at the moment  of 
trades. 

t
1For a treatment of the case wherein the duration, defined as the length 
of time between trades, is stochastic, see [14]. As in the previous case we can write the same equ- 
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al

1) 

where 

ities for a moment t  when the respective agent was 
not involved in a trade. ence for any tT  we have 

,
i i
t ti i      (2.

 H

1 1e and et t t ta B b A  
i
t  and i

t , 
e m

1, 2, ,i N   
oment t

are nonnegative ran- 
dom va les. Thriab   an

2,
d the price tS  of the 

last trade before time 1,t    inclusively a  given 
by  

  

re

   sup 0 : and .
t tt s s ts t A B S A B      (2.2) 

Set 0 0 
purpos

 and 
t paper is to calculate the dis- 

tri

0 1S  . 
resenThe e of p

butions of t  and tS  from Equation (2.2) by using 
the known dis ibutions of ta  and tb  from Equations 
(2.1). 

Tak

tr

ing min and max in Equations (2.1) yields  

1 1e and et t t tA B B A ,t t          (2.3) 

where  and 

 are nonnegative random vari-  

ables. Notice that 

 min :1i
t t i N   

 n :1i i N  mit  t

t  and t  are tF -measurable, 
where  :1i

t t F F  inform on known to 
at least t , inclusively. 

Let us consider two nonn gative random

i N
one agent be e 

is ati
fore tim

e  processes 

t t tX A B  and t t tY A B . From Equalities (2.3) we 
t deduce tha

1 e ,t t
t tX X  
               (2.4) 

1 e .t t
t tY Y 
                (2.5) 

Since the trade occurs at the moment t  if and only if 

t tA B  or, equivalently, if 1tY  , then the last moment 
e before the time t   

s 0 

of a trad

     (2.6) 

is the last moment before  when the process

up : 1t ss t Y    

t  tY  
hereached the level 1. The price of the last trade before t  

time t  is given by  

.
ttS X              (2.7) 

Now the problem is reduced to
ra

 finding the law of 
ndom time t  given by (2.6) and the law of the 

process tX  gi n by Equation (2.4) at the time tve  . 

3. Simplest Behavior of Agents 

the agent in even Since the bid prices can be changed by 
moments only, then 2 1 2k kB B  . Therefore from Equ- 
ation (2.3) we deduce that 

 2 2log .k kA B2k         (3.1) 

Similarly 1  and 

 

2 2m mA A 

 2 1 2 1 2 1 .m m mA B          (3.2) 

Then Equations (3.1), (3.2) and (2.5)

log

 imply that 
2 1

2 e kY 
k


2 1 2k

 and 2 1 ekY   . Moreover, we have 

k

2k

    and 2 2 1k k   . Define a new sequence t  

1tby t    for 2t k  and 1t t    if 2 1t k  , 
1, 2,k   . Then 0t  , e t

tY   and  
  1sY sup 0 : sup 0 : 0t ts t s t      

if 
 
e t  if an

 
d only 

. He
0

nce
the trade occurs at tim t 

 to
. 

 haIn order to obtain som t we nee ve more 
assumptions on the beha ior of the proces

e resul d
v ses   and  . 

The simplest assumption is that t , 1, 2,t    is a 
sequence of independent identically distribu  (i.i.d.) 
random variables. Denote by p the probability that 1

ted
  

takes value zero:  1Pr 0p   . The variable t  is a 
last zero of the sequence   before the moment t . We 
put 0t   if there are no zeros (no trades) befo  time 
t , inclusively. Hence t

re
  takes values 0, , t . The pro- 

babilities of these values are given by  

   
   1

; 0

Pr 0 1 ,
t t

p





1 2Pr 0 Pr 0; 0;t   t    

     


 

1, ,k t   and for 

   
 

1Pr Pr 0; 0; ; 0

1 .

t k k t

t k

k

p p

   



    

 


 

tM , 1,2,t  
 inclusiv

Let  denote the number of trades 
bef ely. Heore  t nce t time M  is number of zeros 
in the sequence k , 1, 2, ,k t  . Then tM  has a 
binomial distribution with parame  p  and t , i.e., 

   Pr 1 , 0,1, ,
t kkt

ters

tM k p p t
 

       k
k 

  ! ! !
t

t k t k
k

 
  

 
 here is a binomial coefficient.  

reover Mo t s sM M   
rameters p

h th 
the sam

as a binomial distribution wi
e pa  and . As a consequence of 

independence of the variables t

t
  we get that for any 

0 10 mt t t T      the random variables 
0
,tM  

1
, ,

mt tM M M M
1 0 mt t 
   are in ependent. 

 k

d
Define the sequence  , tT  of random t  

ng expression.  
imes

inductively by the followi

 1inf : 0 ,k k tt      

1, 2,k  with  and 0 0  . We adopt the convention 
that th f em t is equal to infinity. Then 

k

e infinum o pty se
 , 1, 2,k    is a moment of k -th trade (or zero of 
the sequence t ) and  

   ; 1k m M k M k  

 
1

1 11; 1

m m

m m mM M M k

 

 

 

    
 

, 1, 2, ,m k k k T   for . Easy calculation shows that 
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   

 

1 1Pr Pr 1; 1

1
1 , , 1, ,

1

k m m m

m kk

m M M M k

m
p p m k k T

k

  



     

 
     


 

and 

   

 1

0

Pr Pr 1

1

k T

T jk j

j

M k

T
p p

j







    

 
  

 


. 

Furthermore for all ,  
 we ha

1 21 km m m T    
ve 1,2, ,k T 

 
1kp p  
1 1 2 2Pr ; ; ;

k

k k

m k

m m m  


  
 

and 

 
 
1 1 2 2 1Pr ; ; ; ;

1 .

k k k

T kk

m m m

p p

    



  

 


 

 

r any  and kFo 1, 2,k   1,2,m T   we have 

 

 

 

 

   

1 2
1

1

1

1 1 2 2 1
1

11

11

0

Pr

Pr ;

Pr ; ; ; ;

1
1

1

1
1 1

1

k

k k

T m

k k

T m

k k
j k m m

m j

T m
j m kk

j k

T m k
m jk

j

m

j m j

m m j m

j
p p

k

j k
p p p

k

 

 

   












  

  


  



 




 

   

   

 
   

  
    



 







  

j k

j 

and 

   

   

1 1

0

Pr Pr

Pr 1 .

k k k

k
T jj

T
j

T
M k p p

j

   





     

 
    

 


 

In the same way one can obtain  

 

 

 

 

1 2
1 2

1 2
1 2

1 2
1 2

1 1 1 2

11

11

1

1
21

0

Pr ;

1

1
1

2

2
1 .

2

k k k k

T n n
j n n kk

T n n
j n n kk

j k

T n n k
j n nk

j

n n

p p

j
p p

k

k j
p p

k

    

 
   

 
   

 

   
  



   

 

 
   

  
   

 





 
1 2 21 1 kj k m m m j      

 
  

1 1 1 2

1 1 1

Pr ;

Pr Pr

k k k k

k k k k

n n

n n

   

   
 

 

   

     2

. 

Hence 1k k    and 1k k  
s 

 are not indepe nt. 
Let us co roces

nde
nsider p tX  given by Equatio (2.4). 

The solution of this equation  be written as 

k         (3.3) 

k

n 
 can

 
1

0
0

exp .
t

t k
k

X X  




   
 


Notice that 

Since 2 1k 2 2k    and 12 2 1 2k k k      then   

 

   
t

t

1 1

1
2 1 20 0 2 2

1

t t

k k k k
k k

k

   

0
1

2 1 1 ,k t
k

  


    

 

           



 
   
 
 

 
 

where  m  
erefor

denotes the integer part of number 
Th e taking into account that 

m . 
 log Y  one 0 0

has  

    10

10

exp 1 2
t k

X 1 .
t

t t k
k

X

Y
 



    
 

    

From the Equation (3.4) and definition of 

  (3.4) 

0X  and 
we obtain the prices  an  of th e 

and the -th trade: 
0Y  tS d  kS e last trad

k

   1

0 exp 1 1
t j

jB



   

(3.5) 
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S X


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





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 

   1
2

k

k

k j

S X






 


   (3.6) 

ulate the characteristic function

0
1

exp 1 1 .k

kj
j

B  


   
 


Now we calc   tf z  
of the logarithm  0log tS B . It follows from
tation (3.5) that 

 represen- 

    

    

 

  
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0
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k

j j
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k m m j m
m t m






     
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0

0
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exp i log

exp i log 1

Pr

exp i log 1
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t

t
k
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f z E z S B

E z X B

t

E z X B

  



 




   

    

 

 
 
 
 



  

ent 



Notice that ev

 

 1 1; ; k km m  
0

km
 occur if and 

only if 
1 2m m      and 0j 

me of the  im . This 
nd the distribution of 

 if  does 
not coi ula 
(3.5), i

j
fact, formncide with so

ndependence a i  im y pl

Copyright © 2013 SciRes.                                                                                 JMF 



P. C. KETTLER  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMF 

5

 

           

     

1

1 2 1 1 2

1

1 2 1

1
11

0
=1, ,

1

2k

j
k

k
k

j mm k
j mk

jm

m
T m

y


 







1 0

11 1 1, ,

11

11 1 =1

Pr 1 1 exp 1 1

1 1 1

m jk k

k

k k

mkt k

t
k m m m t m j j j m m

t T
t mk k

k m m m t m t j

f z t E iz

p p p p p


 











         

 

       

 
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 
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 
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
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1 1j
k
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
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
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1 1 ,
j
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where  is the characteristic func-  

tion of 

   
1

1

i
0e 1zz E 

 
   

1  conditioned on . From the relation-  

ships 

  1 0 

   z z    and      2
z z   z  we 

have 

   
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
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 

2 2j km
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
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hat if only mbers of



     

  


Notice t r  nu 1, km 1 2, ,m m   are 
even then 

r

Therefore 

where is a number of possibilities to choose 
 even odd numbers from the set . 

here are only 

      
1

1

1

1 .j
k

m r k

j

z z z  

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
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j
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m

m
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
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 
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  
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
 1 2 11 1
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k

     







 , ,P m k r  
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r
r
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1,2, , m
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 , , 0k r   if 
m m
P m
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     2 2
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r k r

  
     

 if  2r m  and  

 2k r  . Putting this expression into the 
Formula (3.7) s 



m m
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Using equation (3.6) one can compute joint characteri- 
stic function 
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
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and the random variables 1 2, , , k    are independent
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     

 
   

  

1

1
21

1

1 1 2

1
1i

2 00
1 1 1

1
i 1i

00
1 1

1
1i

2
1 1

,

e exp i 1 2 1 1

e e 1 1

e 1 ,

kj

j
j

kj

kT k
jkz

j k
k j j

kT
zkz

k j

kT
jkz

k j

f z z

E z

E E

p z






 









  





 




 

  
    

   

       

 

  

 

 

 

(3.8) 

where    
1

1

i
0e 1zz E 

 
     is defined above. The re-  

lationships    z z   and      2
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Similarly we can find joint characteristic function 
 1 2,kf z z  of the difference 1k k  

es, k 
 between mo- 

-th and -st trad  and the 

logarithm 

ments of k  1k 
 

2,3,
  1k klog S S  of the ratio between these 

trades provided there were at least  trades, , k k   . 
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Now we consider one more simplest case. 
Recall the expressions for 

   

tX , tY  and t .  
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tY e , 1t t    for  and 2t k 1t t    if 

Assume that
2 1  , k t k 1,2, . 

 k k   is a sequence of independent 

random variables. Then the power of exponent in the 
expression for tX  is a random walk and tX  is a 
discrete analo  of geometrical Browni oti , 
which is classi  choice for modeling of t rice 
pr

 
ongue

cal
an m

he p
ocess. But in our model the price process describes by 

t
X , geometrical random walk computed at random time 

and the distributions o tX  and 
t

Xf  can be letely 
rent. We h  
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w uality: 
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do les. Then m variab

   ess inf ess inf .       

Proof. Recall the formula for distribution function of 
th wo in ent rando blese sum of t depend m varia    and 
  

    d ,F z F z x F x       





   PrF z z    
dom variable 

where is the distribution function of 
the ran  . Since   0F z   for all  

 s infesz   then 

    
 ess inf

0,F z F z x   




 dx F    

  ess inf ess infz   for all . This implies that 
     ess inf ess inf ess inf    

equality is obvious then we hav
 . Since the oppo- 

ent of the 
le
site in e the statem

mma. 
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It follows from the vity of  and l
above t

non-negati emma t
hat for all  

   

0t 

 
1

0ess i f ess inf 1 0
k

t k  


   
=0

n .
t

k
  

The trade occurs at time t if and only if 0t  , i.e. 
when the last inequal ty becomes in fact equality. In this  i

case we have that     1 ess inf 1
k k

k k     for any  


1, , 1 . Therefore 

   sup 0 : 1 ess inf 1 ;
k k

t k kk t

k t 

   1

0=0
ess inf 1 0

kt

kk

  

    
 

     

And the price of the last trade is deterministic and is 
 the following expequal to ression  

    
1

0
0

1
exp 1 ess inf 1 .

2

t
S Xt

t
k k

k
k

X 




  



 

lar, if 0





In particu  for all 0, 1,k  1
k

k      

s  a last possible 
moment of trade. There is a trade at each time t t
then   isinf 0 : 0 1t s T     

  
with the same price 0t

 all after the moment t . 
S X  and there are no tr

at

4. The Connection to Continuous Time 
Analogue of the Model 

In agents

imit of the price process 

ades 

 this section we give an example of the ’ be- 
havior such that the geometrical Brownian motion can 
be regarded as the l

ttS X  with di rpose let screte time . For this put

n  
stat
at ea

hist

be a sequence of random ables describing the 
e of the real world (noise sequence). Assume that 

ch time the agents heir decisions about 
 according to the 

ory of th se sequen he present time 

 vari

make t
k prices
ce before t

t  
how to change bid or as

e noi
t . For instance 1 0, , ,t t tf        and 

 1 0, , ,t t tg     . The simplest case, with agents 
taking into account only the present value of noise t  
was considered above. 

Now we consider the case when the agents are ng 
into account only the present 

 taki

t  and previous 1t   

t  for information, 
even a m

 1,t t tf   
u

 and 
e that 

 1,t tg   
nd odd moments. Ass n  is a seque

 vari

2 1

nce 
ablesof ri

t 
 independent identi ed random  cally dist

2 2 2k k k   
   

but

k and se k  and  

2 2 1 2 1 2 2 2k k k k k

2 1 1
     

      , where  0,maxx x   
and  min 0,x x  

For such 
. 

  and   w ae c n compute the distribution 
of t

   1 1Pr 0 Pr 0 1 2     . If there are no trades then 

 
 
   
   

   
   

1 2 1

1 0 0 1

1 2 2 3

1 0 0 1

1 2 2 3

Pr 0; 0; ; 0; 0

Pr 0 0 0 0

0 0 0 0

Pr 0 0 0 0

0 0 0 0

t

t t   

   

   

   

   



   


   



    

    
    

    
    



  

    

  

    

 

The last event happens if and onl  if the following 
on is sat : for all  

Pr 0 

y
conditi isfied 0,1, , 1 2k t     at 
least one of the numbers 2 1k   and 2k  is positive and  

for all  0,1, , 2 2m t    m-  

be

  at least one of the nu  

rs 2m  and 2 1m   is negative. If i  and 1i   have 
the same sign then the sign of other  j , ,j i i 1 

d.
 

satisfying the is uniqu  The 
condition above is also satisfied if i

c on above onditi ely determine
  and 1i   have the 

different signs for all 1,2, , 1i t   . Hence the number 
of possible choices of signs of i  satisfying condition 
above i  equal ts o 2t  , where t  is a numb  
i  su

er of choices of
ch that i  and 1i   have th

th
e same sign and 2  is 

number of possibilities at i  and 1i   have the different 
signs for all 1,2, , 1i t   . Since for any choice of signs 
of i  the 

. For sim me that  plicity assu

probability is equal to 11 2t  then we get 

    1

1
Pr 0 2 .

2t t
t     

Notice that if  then 1 0k    and 1 0k    

2 1k

0k 
a.s. Indeed, for  we haeven k ve k k   

   and  
since  1Pr 0 0   then  
         10 k 2 1  10 0k k  0 k 0k  

 odd k  
0

 
a.s. For

1k

 
. The 

  
fact that 


the proof is the same

    if k 0   can 
, 1

be sho
Henc

wn in the same way. 
e for 0,1,s t   we get 

 
 

    

 

1 2

Pr

Pr 0; 0;

1

t

t s t s t s

t s

      

 

   

2 1

0; ; 0

0 Pr 0;

t

t s t s



   



2

1
1 .

2s
s 

Pr ; 0 Pr 0
4t s    



     

 

Now consider tX . From Equalities (3.3) and (3.4) we 
have 

2
2

1 1 2
0

exp 2 2 ,
t

t k t t
k

X B    



  



     
 
     (4.1) 

where t t

0

   if 2t m  and t t    if 2 1t m  , 
and t t   if 2t m  and t t    if 2 1t m  . 
Notice that the representation (4.1) is also ue in the case 
when th dom variables 

 t

t

r
e ran   are not essary in nec - 

depe d Sin , ndent and identically istributed. ce 0
t

 

Copyright © 2013 SciRes.                                                                                 JMF 
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then 1 2 0
t t    
hat  

 and from the last equation we 
deduce t

2

.
t 






  0 1
0

exp
tt

k

S X B


  
 

   
 
 k

Let us compute joint characteristic function  ,1 2tf z z   

of the sum  2

0 1log tS B
0

t

kk

   
   and t

 .  

2t  

 
2

1 2 1 2
0

2
i

1
0 0

, exp i i

e exp i 1
t

t k
k

jt
jz

k j
j k

f z z E z z

E z 

 








 

 
   

  
  

   
  



 
 

.

t

It has been shown above that  
. Since          2 3 00 0 0

1 1 1 1 1
t tj j jj       

  k  depends  

on 1k   and k 2  only then  

 

 

     

   

   

 

 

2

1 21 0

2

1 2

2
i

1
0

ii
10

2

i

1 1

,

e exp i 1

e e 1 Pr 0

1 e
2

2 2

2

j

j

t

jt
jz

k
k

zz
t j

j

z

t t

t j

f z z

E z

E

t t












 


 



  
   

 

 

         

  

 

0 1 ,
j 


  

 

(4.2) 

where   1 0i
0 1 e zz E       is the characteristic function 

of 0 . 

 
1 2i

0
e 1j

j

z
E







 
  

 The expression can be simplified as  

follows. If 2j m  then  
         1 2 1 20 0j j j   

   0 0j j  0         
and 

   
1 2 1 2

2

i i

0 0

1
e 1 e 1

2
j j

j j

z z
E E

 

 
 

 
.   

     
 



For 2 1j m   we have  
     1 2j 0 0j j  0    . Therefore  

   
1 2 1 2

2

i i

0 0

1
e 1 e 1

2
j j

j j

z z
E E

 

 
 

 
.   

     
 



Then the Equality (4.2) has the following form 

 

2 3

2

2

0
0

00 0

i

2

2
i

1 1 1

e
Pr 0 Pr 0

4

e

j

tj j

j

z

t t

t j
jz

E

E



 

 

 




 





 

   

   





2i 1
e 1

t
jz t j      1 22 i

e 1jj z
z E

  
2j

 0



 

   
  

 

 
  

 

 
 

   

2

1 0

0

2

2

1 0

0

1 0

0

1 2

i

1

2

0 1 i
1 1 0

2

i

1 1

2 2i22
0 1i

2 1
1

2 11 2
0 1i

0 2
=1

,

e

e
1 e 1

2

2 e

2 2

e
e 1 1

e
e 1 2 .

2

j

t

z

t

j

z
t j

j

z

t t

jjzt
z

t j

jt
z

t j
j

z

t j E

t
t

z

z
E t j



















   


 



  

f z

1

1
2

2 2t
t t  

2ijzt z

2

0

i 2 1

2
2j

j z

E t j




 
  

 

 
    

 


 

   

   





 

Suppose at first that . Then from the last 
eq

 

2t m
uality we get 

           
   

     

222
1 0 1 0

0

2 2
1 02

0

2 2i 2 1ii 1
0 1 0 1i i

1 2 001 1 1 2
2 =1

1
i i1

2 ii
0 1 01 1

=1 0 1

e e2 e
, e 1 1 sgn e 2

2 2 2 2

2 e 1 e
= e e 1

2 22 2

1

2

j jj zjzz t m
z z

t t t t j t j
j j

j
z zt

t ztz
t t

j

z zt
f z z t E t j E m j

t
t z E j

z

 





 







1



    





 

            

          



 



   
 

 
 
     

 
   
 

2
1 02

22 2
1 0

0 22

2

1 0

1
2i

i( 1)
0 1 2

=1 0 1

i 1i i
0 1i

01 1 2 i1i
0 10 1

1i 1
0 1i

0
2 2

0 1

e

2e 1 22 e e
e 1

2 2 2 2 e2 e

8e
sgn e

4 e

j
z

t z

j

ttz tz z
z

t t ztz

tt z
z

z E
z

zt t
t E

zz

z
E

z


























  





 
    

 
            

   
 

1
i

0

e
sgn e

4

m
z j






3t

 
  


  

2 2

22 2

i i
0 1

2 2
i 23

0 1

e

2 4 e2 4

z z

z zt

z

z





 
 

 
 

 

 

(4.3) 

0 1

2 2i32 i
0 1

e
.

e
zt

z m

z

 







P. C. KETTLER  ET  AL. 9

2 1t m   Similarly we have for 

   
 
    

 
   
     

 
  

22 2
1 0

0 2
2

2 2
1 0

22 2

i 1i i
0 1i

1 2 01 1 2 i1i
0 10 1

1i 1 2i
0 1i

0 2 2 2 2i22 22i 2i1
0 10 1 0 1

2e 1 22 e e
, e 1

2 2 2 2 e2 e

8e 1e
sgn e

2 4 e4 e 2 4 e

ttz tz z
z

t t t ztz

tt z z
z

ztz zt

zt t
f z z t E

zz

z m
E

zz z












 



  
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The last Equalities (4.3) and (4.4) allow one to obtain the 

characteristic function of a continuous time model anal- 
ogous the process as the limit of the discrete time mo- 
del. 

For instance, consider the partition 
1  of the interval 

tS  

0 2h h nh      0;1
0  and 

. Let 
. Assume that 

t  
take values 0,1,2, ,n h 
th s , where  0s e ;1 . If th noise sequence t  is  

Gaussian,   2 2hz 1
0 1 ez  , then 
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Hence from (4.3) and (4.4) we have  
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1 22 i

1 2 1 2
0

, lim , e e .sz sz
s th

h
th s

F z z f z z 



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Therefore for Gaussian noise the continuous version of 
rp ice process tS  is a geometrical Brownian motion and 

t t  . 

5. Conclusions 
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parallel model in continuous ti
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haviors, and to perform simula
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