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ABSTRACT

The design of this study is to investigate the evolution of a stochastic price process consequent to discrete processes of
bids and offersin a market microstructure setting. Under a set of flexible assumptions about agent preferences, we gen-
erate a price process to compare with observation. Specifically, we allow for both rational and irrational economic be-
havior, abstracting the inquiry from classical studies relying on utility theory. The goal is to provide a set of economic
primitives which point inexorably to the price processes we see, rather than to assume such process from the start.
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1. Introduction

We propose to model a price process based on micro-
structural activity of a market. We assume a set of agents
such that each agent at any moment has both bid and ask
prices present in the market. A trade occursif and only if
the bid of one agent is equal to the ask of another, this
common value becoming the price of a trade. We cal-
culate the dynamics of the resulting price process, in-
cluding the moments of trades, in a discrete time setting
for behavioral choices of the agents. These choices are
formalized in relevant probability distributions specific
to the agents' behaviors. In this way, we alow for a
multitude of behavioral patterns, including, but not re-
stricted to traditional motivations inspired by utility func-
tions. Our model is flexible enough to allow for “marks’
to a trade, ancillary data such as its time stamp, so that
we may study independently such features as trade clu-
stering and time deformation.

Recent history is rich with microstructure studies of
financial markets and with associations of specific fami-
lies of probability distributions to financial stochastic
processes. For good reviews of the microstructure litera-
ture see these works respectively [1,2]. For associations
of probability distributions such as the widely applied
Gaussian, normal inverse Gaussian, and more inclusively
the generalized hyperbolic, see these studies [3,4]. In
many instances such inquiries assume at the outset va-
rious forms of stochastic processes, as defined by sto-
chastic differential equations, and then set forth to esti-
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mate parameters. Popular choices are 1t diffusions and
Ornstein-Uhlenbeck processes, with and without the super-
position of pure jump Lévy processes.

Most studies of microstructure take an econometric
approach, that is, they define some structure, assume
distributions as appropriate, then estimate parameters
using data. In his survey with important bibliography,
Bollerdev reviews the state of financial econometrics [5].
In a subsection discussing time-varying volatility, he
notes that, “severa challenging questions related to the
proper modeling of ultra high-frequency data, longer-run
dependencies, and large dimensional systems remain.”
Further in the text, he qualifies this remark by stating:
“Not withstanding much recent progress, the formulation
of a workable dynamic time series model which readily
accommodates all of the high-frequency data features,
yet survives under tempora aggregation, remains elu-
sive.”

Engle provides just such an econometric study [6]
employing the Autoregressive Conditional Duration
(ACD) model developed by him with Russell [7] in the
study of IBM stock transactional arrival times. In the
former paper, Engle, in referring to cases of the con-
ditiona duration function, relates, “In each case, the
density is assumed to be exponential.” Such assumptions
are typical, and necessary, for an econometric study fo-
cusing on time series of prices as the fundamental data
structure.

Hasbrouck, in focusing on the refinement of bid and
ask quotes, proposes and estimates an Autoregressive
Conditional Heteroskedasticity (ARCH) model using
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Alcoa stock transactions, evenly spaced at 15 minute
intervals [8]. Routinely, he asks the reader to consider, “a
stock with an annual log return standard deviation of
0.30" The reference “return” is of course to the price
sequence, a necessary expedient in the classical eco-
nometric framework which considers a price process as
fundamental, rather than consequential to a set of
underlying bid and ask processes.

Other studies, such as one by Bondarenko, delve into
the bid and ask series, but rather as a difference, the
spread [9]. The focus of this work and its principal
results are in the realm of market liquidity, rather than in
the estimation of the price process. Once again, the
classical framework requires an assumption on the dis-
tribution of the price process, as evidenced in this remark
made within the context of evaluating a price change
between periods. “The asset’s fina value is denoted V",
a normal random variable with mean v, and variance
ol
Yet further studies attempt to develop directly a price
process from first principles. An interesting and pro-
vocative example is a paper by Schaden, which for-
mulates conclusions from financial analogues to fun-
damentals of quantum physics [10]. As he observes in
the introduction, “At this stage it is impossible to decide
whether a quantum description of finance is fundamen-
tally more appropriate than a stochastic one, but
guantum theory may well provide a simpler and more
effective means of capturing some of the observed
correlations.” Indeed, though the basic process in-
vestigated is yet a price process, not those of bids and
asks. The analysis is grounded on five at first qua
litative assumptions about the market, and concludes
with the assertion that the evolution of prices follows
“the lognormal price distribution.” In this setting it is
difficult to discern how a different—and more rea-
listic—distribution could emerge without changing sub-
stantially the assumptions, or the physics. For further
background reading see[11-13].

In our paper we choose to move to a more basic level
of explanation, to specify the market mechanisms among
interacting agents, and then to let the model determine
the price process and its features. In this way we derive
such features as the distributions of prices, rather than
assuming them ab initio.

We now proceed forthwith to present our case.

2. Specification of the Model

We consider for smplicity the model of the market for
one stock in discrete time teT={0,1---,T}" It is
reasonable to assume that in each time ¢te T there are
only finite number n, of agents taking part in the trad-

'For a treatment of the case wherein the duration, defined as the length
of time between trades, is stochastic, see [14].
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ing on the market. Let N be the number of all agents
which have ever taken part in trading. At each moment
teT the agent number i, 1<i< N proposes a bid
price b and anask price @ for agoods on the market.
We assume that a; > b/ . It is convenient to set a, =
and b =0 if atthemoment e T the i-th agent does
not take part in the trading. Supposing the rational be-
havior of agents on the market we have 4, > B,, where
A4 = mintlzj :1<i<N{ and B, :max{bf :1Si£N} :
We say that there is a trade between i-th and ; -th
agentsa moment teT if a =4, =B, =b’ or
a! = A =B, =b/. It means that there is a trade between
agents with minimal ask price 4, and maximal bid
price B, provided that they are equal 4, = B, . In order
to escape some pathological examples we always assume
that at every time ¢ there exist two different agents, say
number i andj, i # j, suchthat @, =4, and b/ =B, .In
the case when more than one of the agents have the same
minimal ask price and maximal bid price, say
A =a'=---=a" and B, =b"=---=b" , we suppose
that a trade occurs between agents with numbers
iy, 0, and e, j,, where k=man.

The bids and asks can be changed only by the agents.
It may happen that A4, < B, after such changing of
prices. In order to avoid such possibilities we suppose
that bid prices can be changed by agents only at even
moments and ask prices only at odd moments. Never-
theless the trades can occur at any moment: even or odd.

How should the bid and ask prices change? The rules
of changing bid and ask prices by the agents are different
for each agent and they are based on different reasons;
for instance: aims of agents, interpretations of informa-
tion, persona reasons, and so on. If these prices are
changed at time ¢ when atrade occurs, say between the
i-th and j-th agents with prices a/ =b/ = 4, = B,, then
the respective ask price a/,, will be not less then the
price before the trade « <a! ,. Therefore we can say
that

a,= afe“’[ = Bte“f ,
where @ is a nonnegative random variable (it is
possible to add one more value « if the agent decides
to leave the market). For the bid prices we can write
similarly
b’ :b/e*ﬂ/ :Ale*ﬂ/

t+1 t

with nonnegative random variable g’ (with the same
note about o). The random variables o/ and B/ are
- and F/ -adapted, respectively, where F' and
J’ ae o -fields containing information which the
agents know before the time ¢, inclusively. Note that
a, and S, are defined only at the moment ¢ of
trades.

As in the previous case we can write the same equ-

JMF



P.C.KETTLER ET AL. 3

alities for a moment ¢ when the respective agent was
not involved in atrade. Henceforany ¢t T wehave

a,,=Be" ad b, =4’  (21)

where o/ and g, i=12,--,N are nonnegative ran-
dom variables. The moment z, and the price S, of the
last trade before time ¢=1,2,--- inclusively are given
by

r,=sup{O<s<t:4 =B}adSs =4 (=B,) (22

Set 7,=0 and S,=1.

The purpose of present paper is to calculate the dis-
tributions of 7, and S, from Equation (2.2) by using
the known distributions of 4, and b, from Equations
(2.1).

Taking min and max in Equations (2.1) yields

A.,=Be€e" and B, =A4e", (2.3
where 4, = min{aj :1£i£N} and
v, = min{ﬂj 11<i< N} are nonnegative random vari-
ables. Notice that g and v, are ‘[, -measurable,
where 7, =o{ ' :1<i<N} is information known to
at least one agent beforetime ¢, inclusively.

Let us consider two nonnegative random processes
X,=4B, and Y, =4,/B, . From Equalities (2.3) we
deduce that

X, =Xe, (2.9

Y=Y, (2.5)

Since the trade occurs at the moment ¢ if and only if
A =B, or, equivalently, if Y, =1, then the last moment
of atrade beforethetime ¢

7, =sup{0<s<r:Y =1} (2.6)

is the last moment before ¢ when the process Y,

t

reached the level 1. The price of the last trade before the

time ¢ isgiven by
S, =X, . 27

Now the problem is reduced to finding the law of
random time z, given by (2.6) and the law of the
process X, givenby Equation (2.4) at thetime ,.

t

3. Simplest Behavior of Agents

Since the bid prices can be changed by the agent in even
moments only, then B,,., = B,, . Therefore from Equ-
ation (2.3) we deduce that

Vo =109( Ay /By ) (3.1
Smilarlly 4,, =4,,, and
Hopa = |Og(A2m—l/B2m—l)' (3.2

Copyright © 2013 SciRes.

Then Equations (3.1), (3.2) and (2.5) imply that
Y, =€%t and Y, =€ . Moreover, we have
Vs =Vy @d 1, = 1, . Define anew sequence &,
by &=v,, for t=2k and & =p_, if t=2k-1,
k=12--.Then £ >0, ¥ =e" and
7, =sup{0<s<r:¥,=1 =sup{O<s<r:&=0}. Hence
thetrade occursat time ¢ if andonly if & =0.

In order to obtain some result we need to have more
assumptions on the behavior of the processes ¢ and v.
The simplest assumption is that &, r=12,-- is a
sequence of independent identically distributed (i.i.d.)
random variables. Denote by p the probability that &
takes value zero: p="Pr[& =0]. The variable 7, isa
last zero of the sequence & before the moment . We
put 7, =0 if there are no zeros (no trades) before time
t, inclusively. Hence r, takesvalues O,---,¢ . The pro-
babilities of these values are given by

Pr(z, =0]=Pr[£ >0;&, >0;-+;& > 0]
=[Prl&>0]] =(1-p),
andfor k=1---,¢
Pr[rt :k]: Pr[§k =0,&,,,>0;---;¢ >O]
=p(t-p)".

Let M,, t=12,.- denote the number of trades
before time ¢ inclusively. Hence M, is number of zeros
in the sequence &,, k=12,--,t. Then M, has a
binomial distribution with parameters p and ¢, i.e.,

Pr(M, =k| z[/t{jpk (1-p) ™ k=011

here [;{j = t}/(k(t—k)!) isabinomial coefficient.

Moreover M,, —M_ hasabinomial distribution with
the same parameters p and ¢. As a consequence of
independence of the variables & we get that for any
O0<fo <t <---<t,<T the random varisbles M, ,
M,-M, - M, —M,  areindependent.

Define the sequence o, , teT of random times
inductively by the following expression.

o, =inf{t>0,_,:& =0},

with £=12,--- and o, =0. We adopt the convention
that the infinum of empty set is equal to infinity. Then
o,, k=12,--- isamoment of k -th trade (or zero of
the sequence ¢ ) and
{Gk = m} = {Mm =kM,_, :k—l}

= {Mm _Mm—l =l' Mm—l = k_l}
for m=k,k+1Lk+2,---,T . Easy calculation shows that
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Prlo, =m|=Pr[M,-M, ,=LM,  =k-1]
-1 _
and
Pr[O'k =oo]:Pr[MT Sk—l]
T T-j*
-2
Furthermorefor all 1<m, <m, <---<m, <T,
k=12,---,T wehave
Prio, =m0, =my;--+;0, =m, |
=p*(1-p)""
and

Pr[alzml;azzmz;---;ak=mk;0'k+1:<>0]
:pk(l_p)Tfk
Forany k=212 and m=212,T-k wehave

Pr[0k+1—0'k :m]
T-m

= Z PI’[O‘k
Jj=k
T-m

= z z Pr[alz my;C,=My, ;0

J=k1<m<my
<e<myp_g<j

S

=j;0-k+1:m+j]

:j;0k+1:m+j]

k+1 < Jj+ k _1] Jj
1—
RS R g (Y
and
Pr [O-k+l —O0p = [O-k+l ]

I=
:Pr[MTSk]zi(] /(1-p) .

J
In the same way one can obtain

Pr[ak+1 —0; =N;,0, =04 = nz]

T—m—ny

— z Z pk+l (1_p

J=k=1 1<my<mp<---<my_p<j

T2 ] -1 f+1 Jm+np—k-1
= 1_
2 (k_sz (1-p)

)j+n1+n27kfl

J=k-1
T—m—ny—k+1 k+j_2 R o
_ ikt 1— Jmtny )
8 e
Notice that

Copyright © 2013 SciRes.
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Pr[o'ku 0, =N,0, —0 4 = ”2]
#* Pr[ak+l -0, = ”1] Pr[ak -0, = nz]
Hence o,,,—0, and o, —o,,; arenotindependent.

Let us consider process X, given by Equation (2.4).
The solution of this equation can be written as

X, =X, eXp(tz_%,(/lk Vi )j (3.3)

Since vy =vy =&y and wy =ty =865, th

= t=1

Zon-w-El 5
=23 (1) 4 (1) & -

k=1
where [m] denotesthe integer part of number m .
Therefore taking into account that v, =log(Y,) one
has

AN

X +
X, :Toexp(( 1)¢& +22( e kj' (3.4)
0
From the Equation (3.4) and deflnltlon of X, and
Y, we obtain the prices S, and S of the Iast trade
and the £ -th trade:

S, =X,

(3.5
=B, exp(

7t

(-)"¢

pE

+(-1)" &, /2}.

sW =[x

Tk

-meo{ T 0l

(3.6)

s o)

Now we calculate the characteristic function f,(z)
of the logarithm log(s,/B,). It follows from represen-
tation (3.5) that

ft(z)zE[exp(izIog(S /B, ))J
_ZE[exp(lzlog(\/j/B )) oy si<opa) }

=Pr[t<oy]
+§Lm§< E exp(lzlog(r/B ))1ﬁ }

<my St<myyq

Notice that event {o; =my;---;0, =m, } occur if and
onlyif ¢, =¢, =-=¢, =0 and & >0 if j does
not coincide with some of the {m,} . This fact, formula
(3.5), independence and the distribution of &, imply
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t

fi(z)=Prlt<oy]+),

k+l
m -1 /+1 mk
1[6 ) 41~ 1{5 0 x exp ZZZ( ) g’”k /2
k=11<my<mp<-- <mk <t<myyq '—lj¢m1 my,:

a2 [Z pk+l(1—p>"“"“**+pk<1—p>””Jxﬁ () /Thol(-"")

k=11<my <mp<---<my <t \ my g =t+1

where ¢(z)=E [eizﬁ]1 §1>OJ is the characteristic func-
tion of & conditioned on {& >0} . From the relation-
ships ¢(-z)=p(z) and |o(z) =0(z)p(z) we
have

m—

+22|<o<z)|2H <>< e o (1

/| 2k 2

p)" (37

I<my<mp<---<my_y<m j=1

Notice that if only » numbersof m,m,,---,m, ;, ae
even then
k-1
(- 2)= (=) (==
j=1
Therefore
k-1 m
Y e((v72)
I<my<mp<---<my_g<m j=1
= r k-1-r
=20(z) o(=2) " P(m-Lk-1r),
r=0

where P(m,k,r) is a number of possihilities to choose
r evenand k—r odd numbersfromtheset 1,2,---,m
Here m>k>r . There are only [m/2] even and
m—[m/2] odd numbersamong 1,2,---,m . Hence

P(m,k,r):O if r>[m/2] or k—r>m—[m/2] and

P(m,k,r):[[mr/ 21}(’”‘[’”/ 2]] it r<[m/2] and

k—r
k—r<m-[m/2] . Putting this expression into the

Formula (3.7) yields
fi(2)=(1-p)
B3P o e

Gt Jp(z)"
| il {[m 1) /Z]J( ][{(jnr—l)/ﬂ]

r:max{O,k—m+[(m—l /2]} r

o(z) o(-2)"

Using equation (3.6) one can compute joint characteri-
stic function f;(z,z,) of the moment o, of the first
trade and the logarithm Iog(S /B) provided there

Copyright © 2013 SciRes.

was at least onetrade, o, <o inthefollowing way
filzz) = E[exp(izlo-l +iz, IOg(S(l)/Bo ))1(01@}}
L , izp |
kzlE[ og| \/Z/Bo)l{glzk} j|

Since

{oy=k}={& >0}N{& > 0[N N{&, >0} N{E, =0}
and the random variables &,¢&,,--+,&, are independent
then

A (Zl'ZZ)
= k: |: (IZZZ( )/+1 f/ + ‘fk /ZJ ﬁ%;/w}%g 0}:|
=Yg~ ﬁE |:eizz(_l)l'+1§j ]_{§/>0} } E []'{fk o) }

k=1 Jj=1
T k-1 )
=p elkzl (p((_l)jﬂzz),
k=1 j=1
(38)
where ¢(z)=E| €91, , | is defined above. The re-

lationships  ¢(-z)=¢(z) and |p(z
imply
f;.(zl’ZZ)

— p[elzl + e2|21§0( )+ e3|zl

| =0(2)e(z)

¢(zz)|2 4.

ez, gz 7 j
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Similarly we can find joint characteristic function
fi(z,2,) of the difference o, —o0,_, between mo-
mentsof k-thand (k-1)-sttrades, k=23 andthe

logarithm Iog(S(")/S("'l)) of the ratio between these
trades provided therewere et least & trades,, o, <.
fi(212,)

E[exp(lzl( —-0, +|z2Iog( 0/st )) Jk@]

-3 e en(in 8 (75 o |

= r=l+l

. j-1
Since 1{0/::/}1{%1:1} = 1{4‘_,:0} Hr:l+1]1§r>0} 1{01(71:1} and
all multipliers here are independent then

where ¢(z)=E eiz’fllﬁpo}] as above. After the chang-
ing the order of summation and summation indexes we have

fi(z7,)
- Z( j “(1- p)]HljZiézzjﬁ(p((—l)HMzz).

I=k-1

The same arguments as after Equality (3.8) lead to the
following expression

S (21122)

-1 k I-k+1 2
= (k - ZJ P (1_ p) e . T'Zl_l}l

= _ 5 1—(e 2
B ()

+eip((-1) zz)[l—(eZizl oz, )|2)[T2_I}H.

Now we consider one more simplest case.
Recall the expressionsfor X,, ¥, and r,.

X, =X, exp(i(yk _Vk)j’

7, =sup{0<s<7:Y, =1 =sup{O<s<t:& =0},

where ¥ =¢*, & =v,, for t=2k and &

t=2k-1, k=12,
Assume that x4, —v, is a sequence of independent

=u, if

Copyright © 2013 SciRes.

random variables. Then the power of exponent in the
expresson for X, is a random walk and X, is a
discrete analogue of geometrical Brownian motion,
which is classica choice for modeling of the price
process. But in our model the price process describes by
X, , geometrical random walk computed at random time
and thedlstrlbutlonsof X, and X, canbecompletely
different. We show that indeed this is the case and the
distribution of X istrivid.

Denote ¢, = u, —v,: then we have
=1
- o035
k=0

Since vy =vy ad py =y, then
Cor =My =Vyr AN Gy = iy, —Vyy. Therefore

Hop —=Vo = Zjio(_ ) é’j and Vo1~ Vo = Zfigl(_l)/ é/j
which impliesthe following equality:
-1
Y, :YoeXP(Z(—l)k ij- (3.9)
k=0

From the meaning of process Y, we have Y, >1 for
al t>0 hence ¢, for any t>0 as. sdaisfy the
following system of inequalities

i

() & +v, 20,

k=0

Denote the | eft side of the last inequality by
Kf = ;c;l()(_l)k é/k + VO Then Kt+l - Kt +(_1)t évz and
k,20 for all +>0. It is evident that the random
variables x, and ¢, are independent and Y, =1 if
andonly if «, =0.

The following technical lemmawill be needed.

Lemma 3.1. Let y and & be two independent ran-
dom variables. Then

(7 +0) =essinf (y)+essinf (8).

Proof. Recall the formula for distribution function of
the sum of two independent random variables » and
0
F,(2)= [ F, (2= x)dF, (x),

y+
—0

where F,(z)=Pr[@<z] isthe distribution function of
the random variable 6. Since F,(z)=0 forall
z<essinf () then

[ F(e-x)d, (x)=0,

essinf(6)

F

;/+HZ:

for all z<essinf(y)+essinf(@). This implies that
essinf (y +6) > essinf (y)+essinf (#) . Since the oppo-
site inequality is obvious then we have the statement of the
lemma
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It follows from the non-negativity of x, and lemma
abovethat foral >0

essinf (x,) = Zeﬁslnf(( )g“k)+v020.

The trade occurs at time ¢ if and only if «, =0, ie.
when the last inequality becomes in fact equality. In this
case we have that ¢, :(—1)" essinf ((—1)" gk) for any

k=1,--,t—1. Therefore
T, =sup{0s k<t:l, =(_1)" essinf ((_1)" Q)i
::loessmf ((_1)k gk)"‘vo = 0}

And the price of the last trade is deterministic and is
equal to the following expression

S, =X,
—Fexp( Zl

* essinf ((—1)k <, )j

In particular, if ((—1)k§k):0 for all k=0,1,---

then ¢ =inf{O<s<T:{ #0}-1 is a last possible
moment of trade. There is a trade at each time ¢<¢"
with the same price S, = \/70 and there are no trades
at all after the moment ¢*.

4. The Connection to Continuous Time
Analogue of the M odel

In this section we give an example of the agents be-
havior such that the geometrical Brownian motion can
be regarded as the limit of the price process
S = \/Xil with discrete time ¢. For this purpose let
n, be a sequence of random variables describing the
state of the real world (noise sequence). Assume that
at each time ¢ the agents make their decisions about
how to change bid or ask prices according to the
history of the noise sequence before the present time
t.Forinstance u, = f(n,,7,4.+*,1,) and
g(1,,1,4,+-.m,) . The simplest case, with agents
taking into account only the present value of noise 7,
was considered above.

Now we consider the case when the agents are taking
into account only the present 7, and previous 7,
information! /ur = f.(']ﬂnt—l) and Vt = g(77w77[71) for
even and odd moments. Assume that 7, is a sequence
of independent identically distributed random variables
and Set iy = flyy =13 + 154 = Spy AN
Vo =Varr = s T 1oz = & » Where x™ =max {0, x|
and x~ =-min{0,x} .

For such ¢ and v we can compute the distribution
of z,.For simplicity assume that

Copyright © 2013 SciRes.

Pr[n, > 0] =Pr[n, <0]=1/2. If there are no trades then
Pr[ft:O]
=Pr[& >0,&,>0;;&, >0 >0]
= Pr[ (", > 0Ung >0)N(m; >0Un; >0)
ﬂ(’?f >0Un, >O)ﬂ(772’ >0Un; >0)ﬂ---]
:Pr[(ry_1>OU770>O)ﬂ(770<OU771<O)
N(7>0Un, >0)N (7, <0Un, <0)N--]

The last event happens if and only if the following
condition is satisfied: for al k=0.1---,[(:-1)/2] at
least one of the numbers 7,, , and 7,, is postive and
for al m=0,1-[(r-2)/2] at least one of the num-

bers 7,, and n,,,, is negaive. If n, and 7, have
the same sign then the sgn of other 7, , j=i,i+1
satisfying the condition above is uniquely determined. The
condition above is aso sdtisfied if 7, and 7,, have the
different sgnsfor al i=-12,---,#—1. Hence the number
of possible choices of signs of 7, sdisfying condition
aboveisequa to ¢+2,where ¢ isanumber of choices of
I such that », and 7,,, have the same sign and 2 is
number of possibilitiesthat 7, and 7,,, havethedifferent
sgnsforal i=-12,---,t—1. Sincefor any choice of Sgns
of 7. theprobability isequal to ]/2’+1 then we get

Pr[Tt = ] (t+2) t+1

Notice that if & =0 then &, >0 and & _,>0
as. Indeed, for even & we have &, =73, ,+7,, ad
since Pr[£ =0]=0 then
& =0}={n,_, 20} {7, 2 0 {m,, > O} {1 > O
as. For odd k& the proof is the same. The fact that
& ,>0 if & =0 can be shown in the same way.

Hencefor s=0,1---,r—1 weget
Pr(z, =t—s]
:Pr[‘fts Ogt A+1>O§t 542 > g >0]
=Pr[¢_, =0]Pr[& ., >0 ¢ >0]:ZPr[rs_1 =0]
1
(S+1)2_S+2

Now consider X, . From Equalities (3.3) and (3.4) we
have

-2
X, =B; exp(ZZﬂk +2n 4+ %zj, (4.1)

k=0
where ¢ =7 if t=2m and ¢, =-n if t=2m+1,
and y,=n if t=2m and y,=-n if 1=2m+1.

Notice that the representation (4.1) is also true in the case
when the random variables 7, are not necessary in-
dependent and identically distributed. Since £, =0,
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then ¢, , =y, ,=0 and from the last equation we

deduce that

7,-2
S, = \IXT, =B, exp(th +77+1]-
k=0

Letus computejoi nt characteristic function £, (z,,z,)
of the sum Zk o =109(S, /By)-n" and z,.

fi(z1,2,) = E{exp(izlrrz_znk + izzz'tﬂ
ol

It has been shown above that
]-{r’:j} :1{5/':0}1{‘5]+2>0}1(§j+3>0} ”']15/>0}' Since £, depends
on 7, and 7,_, onlythen

VACREN)
Z e E{exp[ul]fm%; 0 }

~

£ [J&HPO}]{éHpO} “Lesg }

izp

= Pr[r, = 0]+ = -Pr[r, , =0]
+Zev22 ( [ g J)F E[eizm”2 L g } Priz,,1=0]
(4D

JrZe"z2 (1-j+1) 21

CElEm |

(4.2

where ¢, (z,) = E[€¥°] is the characteristic function
of 7,.

The expression E[eizl"”zlTg :O}} can be simplified as

follows. If j=2m then
R L A S O R
an

S

For j=2m-1 wehave
{(fj = O} = {qj_l < 0} ﬂ{q < 0} . Therefore

o) )

Then the Equality (4.2) has the following form
1 (Zl’ 2 )

1 e‘Z2
(t + 2) 2t+l 2t+1
d . eijzz (po (Zl)j72 iz1770
+j§2(t_] +l) 21—j+1 Ele 1‘(71)]”020}
+2 €=
= Tl
o [1/2] d?r 20 (21)2/'*2
+E|: 1’]01{ >O}:|Z(t 2]+1)T
i [(-1)/2] ei(2j+1)zz(p Z 2j-1
e, ] 3 -2
j=

Suppose at first that ¢=2m . Then from the last
equality we get

+2 & o Lo €0(5) o e ()"
ft(zpzz)ZF“FJfE[e' 1"°%UOZO}J;(I—J+1) 2? ———E[son(n,) '1”"]]:12( J) 2;3,- -
. i _1

t+2 €2 1 itz, -2 i L[ e ’
= P I L E 2170 -

2+t ! 2+t " Ze %o (Zl) [e 1{’7020} ]JZ:‘I/(Z% (Zl)]

j-1

1 i(t-1)zp Lo '21'70 S e
——€ z sgn

2 %( 1) [ (’70) ]Fl 4%(21)

o & 2gy (o) V2T e
:F+[F+E|:elmol{”020}:| 0 B 2 r—1 izp

(2(%(21)_6'22) 2 <2¢0(Zl) )
8ei([71)zz(0o (Zl )Hl e—iz2¢o (Zl) m ézz¢0 (Zl)

~E[san(1) €™ |

Copyright © 2013 SciRes.

(0,2 o) 22(an(a) o) 2°(4m(a)-e™)|

(4.3)
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Similarly we havefor t=2m+1

J/2t—1

¢ eiZZ

iz2 )2 - 229, (z)- e

e

(4.9

2iz,

(m+1)

(+2 é» i 26" Po (21 )t -
/. (21’22) =gt gtE elzml‘; <0}
2 2 [ o ] (2(00(21)—8_
i(l—l)zz t+1
+ E[syn () €™ | CZ1CY)

The last Equdlities (4.3) and (4.4) dlow one to obtain the
characterigtic function of a continuous time mode and-
ogous the process S, asthelimit of the discrete time mo-
del.

For instance, consider the partition
O<h<2h<--<nh=1 of the interval [0;1]. Let ¢
takevalues 0,1,2,---,n. Assumethat #— 0 and
th— s, where se[0;1]. If the noise sequence 7, is

1

Gaussian, ¢,(z)= e/ then
limE .
2

iz1770 iz1770
limE[ &1, | (€00 ]

Hence from (4.3) and (4.4) we have

F; (Zl’ZZ):LLrgfth (lezz):

th—s

=limE

h—>
efszlz /2 eiSZz

Therefore for Gaussian noise the continuous version of
price process S, is a geometrical Brownian motion and
T, =t.

5. Conclusions

With this work we have set forth the structure for
computing a price process from first principles of agent
behavior in providing bid and ask quotes to a market. As
well, we have provided some content by analyzing a
basic case, that of a binomial assumption on the i.i.d.
sequence {¢,} recording the moments of trades. This
assumption led to the specification of a geometric
random walk computed in random time, and to the joint
characteristic function f, (z,,z,) of the difference

o, —0,, between moments of k-th and (k-1)-st

trades, k=1,2,--- and the logarithm Iog(S(")/S("‘l))

of the ratio between these trades. The study culminated
with an explicit expression for S, and implications for a
parallel model in continuous time.

Next on the agenda is to explore aternative hypo-
theses on agent behaviors, and to perform simulations
and other numerical work as necessary to establish a
theory of consequential price processes.

REFERENCES

[1] A. Madhavan, “Market Microstructure: A Survey,” Jour-

Copyright © 2013 SciRes.

(4mn(=f e ) 27 (4p(a) e 27 (40u(=)

(2]
(3]

(4]

(9]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

_ 672i22 ) ’

nal of Financial Markets, Vol. 3, No. 3, 2000, pp. 205-
258. doi:10.1016/S1386-4181(00)00007-0

H. R. Stoll, Elsevier/North-Holland, Amsterdam, 2003.

O. E. Barndorff-Nidsen, “Processes of Normal Inverse Gaus-
sian Type,” Finance and Stochastics, Vol. 2, No. 1, 1998,
pp. 41-68. doi:10.1007/s007800050032

E. Eberlein and U. Keller, “Hyperbolic Distributions in
Finance,” Bernoulli, Vol. 1, No. 3, 1995, pp. 281-299.
doi:10.2307/3318481

T. Bollerdev, “Financia Econometrics. Past Develop-
ments and Future Challenges,” Journal of Econometrics,
Vol. 100, No. 1, 2001, pp. 41-51.
doi:10.1016/S0304-4076(00)00052-X

R. F. Engle, “The Econometrics of Ultra-High-Frequency
Data,” Econometrica, Vol. 68, No. 1, 2000, pp. 1-22.
doi:10.1111/1468-0262.00091

R. F. Engle and J. R. Russdll, “Autoregressive Condi-
tiona Duration: A New Model for Irregularly Spaced
Transaction Data,” Econometrica, Vol. 66, No. 5, 1998,
pp. 1127-1162. doi:10.2307/2999632

J. Hasbrouck, “The Dynamics of Discrete Bid and Ask
Quotes,” The Journal of Finance, Vol. 54, No. 6, 1999,
pp. 2109-2142. doi:10.1111/0022-1082.00183

O. Bondarenko, “Competing Market Makers, Liquidity
Provision, and Bid-Ask Spreads,” Journal of Financial
Markets, Vol. 4, 2001, pp. 269-308.
doi:10.1016/S1386-4181(01)00014-3

M. Schaden, “Quantum Finance,” Physica A, Vol. 316, No.
1-4, 2002, pp. 511-538.
doi:10.1016/S0378-4371(02)01200-1

S. Hermannn and P. Imkeller, “The Exit Problem for
Diffusions with Time Periodic Drift and Stochastic Reso-
nance,” Prepublication No. 01, Institut de Mathématiques
Elie Cartan, Université Nancy 1, Lorraine, 2003.

P. C. Kettler, O. M. Pamen and F. Proske, “On Local
Times: Application to Pricing Using Bid-Ask,” Preprint
#13, University of Oslo, Oslo, 2009.

www.paul carlislekettler.net/docg/Oliv. pdf

G. Di Nunno, B. @ksendal and F. Proske, “Malliavin Cal-
culus for Lévy Processes with Applications to Finance,”
Universitext, 2nd Edition, Springer, Berlin, 2009.

A. Cartea and T. Meyer-Brandis, “How Does Duration
between Trades of Underlying Securities Affect Option
Prices?’ 2007. http://ssrn.com/abstract=1032714

JMF



