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ABSTRACT 

This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological 
(MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers 
an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the for- 
ward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, 
a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. 
Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhance- 
ments to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by 
around 40%. 
 
Keywords: System Identification; Magneto-Rheological Dampers; Group Method of Data Handling; Polynomial  
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1. Introduction 

System modeling is instrumental for designing new proc- 
esses, analyzing existing processes, designing controllers, 
optimizations, supervision, and fault detection and diag- 
nosis. Nonetheless, it is not always possible to have an 
explicit mathematical expression for nonlinear systems. 
Hence, the use of pattern recognition based on input and 
output patterns of a system is a viable alternative for sys- 
tem identification and modeling [1]. The choice of input 
patterns, modeling technique, and model architecture are 
crucial factors in obtaining an accurate model of a system 
[2]. Various modeling techniques for system identifica- 
tion based on pattern recognition and multivariate regres- 
sion have been reported in the literature. Artificial neural 
networks [3], neuro-fuzzy systems [4,5], genetic algori- 
thm [6] and polynomial classifiers [7] are examples of 
such techniques. In general, these techniques use learning 
paradigms to estimate the system parameters. As such, 
the modeling of nonlinear systems of high order entails 
acquiring large amount of input and output patterns for 
accurate modeling and identification. 

Polynomial classifiers have been used for various ap- 
plications of classification and regression. It has been 
shown that they outperform other classical modeling tech- 
niques such as neural networks [8]. 

However, the use of polynomial classifiers becomes 
prohibitive from computational and storage standpoints 
when modeling a highly nonlinear systems. Moreover, 
numerical instabilities may arise due to the need of high 
order polynomials. Subsequently, the technique of Group 
Method of Data Handling (GMDH) was introduced [9]. 
GMDH is a multilayered network of second-order poly- 
nomials structured based on a training scenario [10]. 

In this paper, a variety of GMDH-based techniques are 
proposed for modeling magnetorheological (MR) damp- 
ers and compared against previously published modeling 
techniques using neural networks and fuzzy logic, and 
polynomial model [11-13]. An MR damper is filled with 
a fluid electrically controlled by a magnetic field. The 
damping characteristics are continuously controlled by 
varying the power of an electromagnet. MR dampers are 
semi-active control devices. They have unique character- 
istics such as low power requirement, fast response rate, 
mechanical simplicity, low manufacturing and mainte- 
nance cost, compactness, and environmental robustness 
[14]. MR dampers have various applications in many 
fields such as automotive and biomedical industries. MR 
dampers possess a highly nonlinear dynamic behavior 
that is characterized by a system of nonlinear differential 
equations that cannot be explicitly solved. Hence, as men- 
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tioned above, they are often modeled via pattern recogni- 
tion techniques. 

The organization of this paper is as follow. In Section 
2 we give an overview of generic system identification 
and modeling using GMDH. In Section 3 we describe the 
MR data generation process and propose the use of GMDH 
for modeling the generated data. Enhanced GMDH-based 
solutions for MR modeling are proposed in Section 4. 
Modeling results are discussed and compared in Section 
5. Finally, the paper is concluded in Section 6. 

2. System Identification with GMDH 

GMDH is a modeling technique that provides an effec- 
tive approach to the identification of higher order non- 
linear systems. It was first introduced by A. G. Ivakh- 
nenko [9]. A GMDH is a network comprised of a group 
of quadratic neurons that are arranged in a special struc- 
ture to map a given set of training feature vectors into 
their corresponding response variables. GMDH automa- 
tically learns the relations that dominate the system vari- 
ables during the training process. In other words, the op- 
timal network structure is selected automatically in a way 
that minimizes the difference between the network output 
and the desired output. Therefore, GMDH has good gen- 
eralization ability and can fit the complexity of non-li- 
near systems with a relatively simple and numerically 
stable network. 

GMDH uses a multilayer network of second order 
polynomials (quadratic neurons) to characterize the com- 
plex nonlinear relationships among the given inputs and 
outputs of a system. Each quadratic neuron has two in- 
puts and a single output. If the two input variables are [x1, 
x2] the output of each quadratic neuron is calculated as 
described in Equation (1): 

2 2
2 4 1 5 20 1 1 2 2 3 1g w w x w x w x x    w x w x     (1) 

where,  ; 0, ,5w i  i  are the weights of the quadratic 
neuron to be learnt. 

Consider a set of training data comprised of N feature 
vectors each of which is d-dimensional, and a corre- 
sponding set of response variables (i.e. targets, {yk; k = 
1···N}). Accordingly, a GMDH network can be construc- 
ted by considering the combinations of all possible input 
pairs. Each pair of the d dimensions will then be the in- 
put to a quadratic neuron of the first layer of the network. 
Figure 1 shows an example with d = 4; in this case the 
first layer will be comprised of 6 quadratic neurons. Each 
neuron will be trained via the well-known least squares 
method as a second order 2-input polynomial classifier. 
This training process yields a set of weights for each 
neuron as shown in Equation (1). For a large number of 
inputs to any layer, the number of neurons in the subse- 
quent layer can be prohibitively large. As such, a neuron  

 

Figure 1. 4-input 3-layer GMDH network example. 
 

selection criterion per layer is required in order to keep 
the network complexity feasible. More specifically, neu- 
ron selection is based on a regularity criterion defined by 
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where gk is the output of the mth neuron on the Lth layer 
for the kth feature vector. Consequently, a neuron is se- 
lected if its ,L m  value is below a certain threshold R LT

,
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respectively such as 

           (3) 

where α is a parameter between 0 and 1. 
The Lth layer is retained if L  is smaller than 1L , 

otherwise, layer number L 1  would be the last layer in 
the network (i.e. the output layer). In this layer only the 
neuron that corresponds to 1L  is retained. For further 
illustration, Figure 1 shows an example of the neuron 
selection process. According to 1 , only one neuron was 
eliminated yielding 5 neurons in the first layer. Subse- 
quently, the second layer contains 10 neurons for which 

2  is found to be smaller than 1 ; hence, layer 
number 2 is retained. Likewise, according to 2 , 4 neu- 
rons are retained to comprise the second layer. The third 
layer contains 6 neurons for which 3  is found to be 
smaller than 2  suggesting that this layer will be con- 
sidered; and according to 3  only three neurons will be 
retained. For the fourth layer 4  is found to be larger 
than 3 ; hence this layer is discarded and the neuron 
corresponding to  is retained to comprise the out- 
put layer. 
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3. GMDH Application to MR Dampers 

3.1. Data Generation 

In this work, the mathematical model of the MR damper 
proposed by Spencer Jr. et al. [15] is used to generate 
training and testing data that are used in the modeling 
and evaluation of the proposed GMDH-based solutions. 
As such, the phenomenological model is governed by the 
following equations: 

 1 1 0f c y k x x                (4) 

 0 0c x k x y   
0 1

1
y z

c c
 


         (5) 
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               (7) 

              (8) 

c c                  (9) 

                   (10) 

where “x” and “f” are the displacement and the force 
generated by the MR damper respectively; “y” is the in- 
ternal displacement of the MR damper; “u” is the output 
of a first order filter whose input is the commanded vol- 
tage, “v”, sent to the current driver. In this model, the ac- 
cumulator stiffness is represented by k1, the viscous dam- 
ping observed at large and low velocities are denoted by 
c0 and c1 respectively; k0 controls the stiffness and large 
velocities, x0 is the initial displacement of spring k1 asso- 
ciated with the nominal damper force due to the accu- 
mulator; γ, β and A are hysteresis parameters for the yield 
element, and α is the evolutionary coefficient. A set of 
typical parameters of the 2000 N MR damper is pre- 
sented in Table 1. 

 
Table 1. 2000 N MR damper parameters [15]. 

Parameter Value 

c0a (N·s/cm) 21.0 

c0b (N·s/cmV) 3.50 

k0 (N/cm) 46.9 

c1a (N·s/cm) 283 

c1b (N·s/cmV) 2.95 

k1 (N/cm) 5.00 

x0 (cm) 14.3 

aa (N/cm) 140 

ab (N/cm V) 695 

γ (cm−2) 363 

B (cm−2) 363 

A 301 

η (sec−1) 190 

n 2 

To produce a useful model of an MR damper, the input 
data must include information in the entire operating 
range of the system, and cover the spectrum of operation 
in which the damper functions. Usually, the limits of the 
input signals are based on the characteristics and applica- 
tions of the MR damper. Advance knowledge of the in- 
put signals enables the generation of a more useful train- 
ing dataset. The range of the voltage signal is between 0 
and 2.5 V. The upper limit (i.e. 2.5 V) represents the 
saturation voltage of the damper and is obtained experi- 
mentally. The saturation voltage implies a voltage level 
at which no further increase in the yield strength of the 
damper is exhibited. Similarly, the displacement signal 
varies within ±2 cm. Matlab is used to generate 4-sec- 
ond worth of simulation data according to equations 4 to 
10. This corresponds to 8000 samples, considering that 
the sampling rate is 2000 Hz. Figure 2 shows the simu- 
lated data corresponding to displacement x(n), voltage 
v(n), and damper force f(n), respectively. The velocity 
will also be used as an input in modeling the MR damper. 
Velocity is denoted as s(n) and is obtained by taking the 
time derivative of the displacement signal. 

3.2. Forward Model 

In the forward model, the damper force is predicted from 
the applied voltage. The GMDH has 11 inputs and one 
single output. The inputs are comprised of three displace- 
ment samples, three velocity samples, and three voltage 
samples taken at times n, n − 1 and n − 2. The remaining 
inputs are two history samples of the force at times n − 1 
and n − 2. The output of the model is the damping force 
at the current time n, ˆ  f n . Out of the generated 8000 
data points, 4000 of which are randomly selected for the 
training set while the remaining 4000 points are used for 
testing. 

After completing the GMDH training, the eleven input 
variables are reduced to 6 and the irrelevant input vari- 
ables are automatically eliminated. The relevant inputs of 
the network are found to be the displacements at times n 
and n − 2, the voltages at times n and n − 2, and the 
forces at times n − 1 and n − 2. The final structure of the 
forward MR damper model is shown in Figure 3. 

The prediction accuracy of the GMDH model is eva- 
luated by computing the force root means square error 

  (RMSE) defined as 
24000

1

1 ˆ ( )
4000 n

f n f n


 , where 

ˆ   f n f and n  are the actual and the predicted forces 
respectively. The GMDH model described above yielded 
a force RMSE of 6.44 N. Plots of the time sequences of 
the predicted and the actual forces along with the predic- 
tion error are shown in Figure 4. Plots are shown for the 
entire time sequence while the RMSE is computed from 
the testing data only. Figure 4 shows an excellent agree- 
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Figure 2. Simulated data for 2000 N MR damper; displacement in cm (top); voltage in volts (middle); and force in Newtons 
(bottom). 

 

 

Figure 3. The final structure of forward MR damper GMDH model. 
 

gle output is implemented. The inputs to the model are 
comprised of three displacement samples, three velocity 
samples, and three voltage samples taken at times n, n − 
1 and n − 2. The remaining inputs are two history sam- 
ples of the voltage at times n − 1 and n − 2. 

ment between the actual and the predicted force time se- 
quences indicating the adequacy of the GMDH model. 
The horizontal axis is labeled in seconds where 4 seconds 
are equivalent to 8000 samples. 

The output of the model is the command voltage at 
time n, 

3.3. Inverse Model 
 v̂ n . After completing the GMDH training, the 

11 input variables are reduced to 6, and the rest of the 
input variables are automatically eliminated. The relevant 
input variables to the inverse model are shown in Figure 5. 

In the inverse model, the output of the system is the pre- 
dicted command voltage. To model the inverse MR mo- 
del, another GMDH network with 11 inputs and one sin- 
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Figure 4. (a) Actual and predicted force using GMDH; (b) Prediction error. 
 

 

Figure 5. The final GMDH network structure of inverse MR damper model. 
 

The GMDH model of the inverse MR damper yielded 
a voltage RMSE of 0.03 V. Plots of the time sequences 
of the predicted and the actual voltages along with the 
prediction error are shown in Figure 6. Again, plots are 
shown for the entire time sequence while the RMSE is 
computed from the testing data only. Like in the forward 
model, Figure 6 shows an excellent agreement between 
the actual and the predicted voltage time sequences. 

It is worthwhile to mention that we have presented the 
results in Figures 4 and 6 in the 6th International Sym- 
posium on Mechatronics and Its Applications (ISMA’09) 
[16]. 

4. Enhanced GMDH Models 

While the GMDH models described above resulted in 
satisfactory prediction results there seems to be further 
room for improvement to reduce the corresponding RMSE 
values. As such, two different GMDH-based systems are 
proposed. In the system, we propose the use of a two-tier 
architecture in which the estimated force/voltage is aug- 
mented to the feature set and the training is carried out 
again in a second tier. In the second system, we apply the 
technique of stepwise regression to reduce the dimen- 
sionality of feature vectors prior to the evaluation of the  
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Figure 6. (a) Actual and predicted voltage using GMDH; (b) Prediction error. 
 

GMDH network. 

4.1. GMDH with Two-Tier Architecture 

The two-tier identification architecture is illustrated in 
Figure 7. Basically, in the first tier, the training feature 
vectors and the true Forces or Voltages, depending on 
whether the forward or backward model is used, are em- 
ployed to estimate the GMDH network parameters. The 
network parameters are then used to estimate either the 
Force or the Voltage of both the training and testing data. 
In the second tier, the estimated Force or Voltage result- 
ing from evaluating the GMDH network on each vector 
of the training set is concatenated with that feature vector; 
hence, adding a new feature variable. Likewise, the esti- 
mated Force or Voltage resulting from evaluating the 
GMDH in on each vector of the testing set is concate- 
nated with that feature vector. The GMDH network is 
then re-trained using the extended training set. The two- 
tier trained GMDH network is then used to estimate ei- 
ther the Force or the Voltage of the extended testing set. 

The prediction results of the force and the voltage of 
the MR damper using the proposed two-tier approach are 
shown in Figures 8 and 9 respectively. The reported ex- 
perimental results show that such architecture noticeably 
improves the accuracy of the identification process. 

4.2. GMDH with Stepwise Regression 

In the second proposed system, stepwise regression is  

 

Figure 7. Block diagram of the proposed two-tier system. 
 

used as a preprocessing step to reduce the dimensionality  
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Figure 8. (a) Actual and predicted forces using the proposed two-tier system; (b) Prediction error. 
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Figure 9. (a) Actual and predicted voltages using the proposed two-tier system; (b) Prediction error. 
 

of the feature vectors [17,18] using the training dataset. 
The outcome of this step is the indices of the retained 
dimensions of the feature vectors. This arrangement is 
further illustrated in the block diagram shown in Figure 
10. 

Figure 11 shows the prediction results of the force 
using the stepwise regression with GMDH. Discussing 
and further comparisons with other methods are given in 
Section 5. 

Alternatively, the stepwise regression procedure can  
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Figure 10. Block diagram of the proposed stepwise regression algorithm with the GMDH. 
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Figure 11. (a) Actual and predicted force using the proposed stepwise regression approach; (b) Prediction error. 
 

be implemented after the polynomial expansion in each 
neuron in the GMDH network. The stepwise regression 
procedure is elaborated upon next for completeness. 

Stepwise regression is a widely used regressor variable 
selection procedure. To illustrate the procedure (as de- 
scribed in [16,17]), assume that we have K candidate 
variables 1 2 kx , , ,x x  and a single response variable y. 
In identification, the candidate variables correspond to 
the elements of the feature vectors and the response va- 
riable corresponds to either the actual force or voltage. 

Note that with the intercept term β0 we end up with K + 1 
variables. In the procedure, the regression weights are 
iteratively found by adding or removing variables at each 
step. The procedure starts by building a one variable re- 
gression model using the variable that has the highest 
correlation with the response variable y. This variable 
will also generate the largest partial F-statistic. In the se- 
cond step, the remaining K − 1 variables are examined. 
The variable that generates the maximum partial F-sta- 
tistic is added to the model provided that the partial  
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F-statistic is larger than the value of the F-random vari- 
able for adding a variable to the model, such an F-ran- 
dom variable is referred to as fin. Formally the partial 
F-statistic for the second variable is computed by:  

 
 
2 1

2

| ,

,
R

E

SS
f

MS x
0

2 1x

  
  2 1,E. Where MS x x

 0| ,

 denotes the  

mean square error for the model containing both x1 and x2. 

2 1RSS   



 is the regression sum of squares due to 
β2 given that β1, β0 are already in the model. 

In general the partial F-statistic for variable j is com- 
puted by: 

 0 1,| , , , 1 1, , ,R j j

j
E

SS
f

MS

j k   


   

 
 

    (11) 

If variable x2 is added to the model then the procedure 
determines whether the variable x1 should be removed. 
This is determined by computing the F-statistic  

1 2 0

2 2

|

,
R

EMS x x1

SS
f

  
 . If f1 is less than the value of the  

F-random variable for removing variables from the mo- 
del, such an F-random variable is referred to as fout. 

The procedure examines the remaining variables and 
stops when no other variable can be added or removed 
from the model. Note that in this work we experiment 
with a maximum P-value of 0.05 for adding variables 
and a minimum P-value of 0.1 for removing variables. 

Again, note that the elements of the expanded feature 
vectors are examined using the aforementioned proce- 
dure during the training stage of the identification system. 
The indices of the retained elements of the expanded fea- 
ture vectors are stored and passed on to the testing or 
stage. Only the feature vector elements corresponding to 
the indices found from the training stage are retained. 

5. Comparison of Results 

In this section we compare the results obtained using the 
three proposed methods described above (GMDH, two- 
tier GMDH, and GMDH with stepwise regression) with 
two previously published techniques. These two model- 
ing techniques are neural networks (NN) and adaptive 
neurofuzzy inference systems (ANFIS) [11,12,19]. The 
results using ANFIS are taken from [12] since the same 
dataset has been used in our work. Nonetheless, for NN 
we have reproduced the results since previous work [11] 
used a different dataset. The NN architecture that we 
used is feed-forward network with 11 neurons in the in- 
put layer, 22 neurons in the hidden layer and one neuron 
in the output layer. Network training is done via back- 
propagation. 

The comparison of the prediction results for both force 
(forward model) and voltage (inverse model) is being 

done using RMSE values as described above. Figure12 
shows the forward model performance (force RMSE val- 
ues) of the proposed and reviewed methods. Likewise, 
Figure 13 shows the inverse model (voltage RMSE val- 
ues) of the proposed and reviewed methods. 

Figure 12 indicates that NN is inferior to all other me- 
thods while GMDH is superior to ANFIS as it yields a 
reduction of RMSE by 21%. Furthermore, the two en- 
hanced GMDH techniques outperform ANFIS by appro- 
ximately 41.7% reduction in the RMSE of the MR dam- 
per force prediction. 

On the other hand, Figure 13 (inverse model) still in- 
dicates that NN is inferior to all other methods while 
GMDH is comparable to ANFIS. However, only the tech- 
nique of GMDH with stepwise regression outperforms 
ANFIS and the two other proposed methods. It is worth 
mentioning that the GMDH with stepwise regression 
technique offers a reduction of approximately 40.7% of 
the RMSE in the MR damper voltage prediction as com- 
pared to ANFIS. 

Lastly, unlike neural networks and neuro-fuzzy model- 
ing, the proposed GMDH-based techniques can be viewed 
as layered second order polynomial networks, where the 
processing function of the node is a polynomial rather 
than a sigmoid function. Therefore, the optimization in 
the proposed GMDH-based techniques is based on a se- 
ries of least-squares fittings rather than iteration-based 
optimization as in back propagation training of neural net- 
works or ANFIS. 

 

 

Figure 12. Forward model (force RMSE) of proposed and 
reviewed methods. 

 

 

Figure 13. Inverse model (voltage RMSE) of proposed and 
reviewed methods. 

Copyright © 2013 SciRes.                                                                                  ICA 



K. ASSALEH  ET  AL. 

Copyright © 2013 SciRes.                                                                                  ICA 

79

6. Conclusion 

In this paper, we investigated the use of GMDH net- 
works for modeling MR200 damper in the context of sys- 
tem identification. We have also introduced two enhan- 
ced versions of GMDH networks. Firstly, two-tier archi- 
tecture was used where the predicted values in the first 
tier are fed to the network for a second tier training. Se- 
condly, a hybrid of GMDH and stepwise regression in 
which feature selection is done by stepwise regression 
prior to GMDH training. Modeling the MR200 damper is 
done in forward and inverse modes where force and vol- 
tages are being predicted respectively. The GMDH-based 
modeling has been compared to two modeling methods 
(i.e. NN and ANFIS). GMDH with stepwise regression is 
found to offer significant reduction of about 40% in 
RMSE for both forward and inverse models. 
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