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ABSTRACT 

Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and 
energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 using analytical 
equations. Petrol tankers are not circular but elliptical probably for stability during transportation. This paper has used 
the finite element method to investigate in-plane displacements and Von-Mises stresses in both circular and elliptical 
cylindrical tanks under full loading. An elliptical OANDO® tanker of 66.78 m3 volume and shell thickness of 0.2 mm 
and an equivalent volume circular cylindrical tank was used for the simulation. MATLAB® was used to generate geo-
metrical mesh model of the petroleum tankers, extract element coordinates and conduct the finite element analysis. 
Plane strain condition was used in analyzing a section of the petroleum tanker. It was observed that an equivalent vol-
ume circular cylindrical tank was under a higher internal pressure (16,858 N/m2) compared to the elliptical cylinder 
(14,480 N/m2). Von-Mises stress and in-plane displacements showed direct linear relationships with internal fluid pres-
sure. Von-Mises stress in the elliptical tank was found to be lower (5.7 × 106 N/m2) than for the circular tank (8 × 106 
N/m2). In plane displacements was zero in the longitudinal direction for both tanks and of the order of 10−4 mm in the 
y-direction for both tanks with the circular larger by about 2.5 × 10−3 cm. So in addition to tank stability on the lorry, 
the Von-Mises stresses were lower as well for the elliptical tank. It was also observed that Von-Mises stresses were far 
below the yield stress of the steel plate. However, the effect of weldment area on lowering of yield stress was not stud-
ied. Stress values were validated using analytical method and found to be insignificantly different (P > 0.05). 
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1. Introduction 

Road tankers are cylindrical or ellipsoidal pressure ves-
sels used to convey liquids especially petroleum products. 
Petroleum tanker is widely used over other means of 
transporting petroleum products (pipeline, trains, badges 
and trucks) due to its cost effectiveness and energy-effi- 
ciency [1]. According to the projection of Ekpen [2], 
Nigeria’s petroleum product consumption will rise to 
about 300 Kb/day, a large part ofher total energy con-
sumption in the country. Recently, there has been in-
creasing number of reports of tanker explosion during 
transit, claiming several lives and properties [3-9]. There 
is therefore need to consider petroleum tanker safety in 
line with design. 

Road tankers constructed locallyare designed based on 
ASME standards for pressure vessels (ASME VIII divi-
sions 1 and 2). The ASME standard presents design for-

mulae that are simple to use, but limited to specific ge-
ometries and geometry details such as welded supports 
and openings. It does not put into consideration several 
actions or combination of actions such as local loads, 
seismic load, wind loads and external pressure in its de-
sign formula. A better approach is the design by analysis. 
According to Josef et al. [10], design by analysis is very 
flexible, it allows for any combination of actions, it can 
be used for complicated geometry, and it addresses di-
rectly the creativity of the designer. Finite element method 
is an efficient technique of design by analysis as it gives 
result close to corresponding experimental values. 

The Finite Element Method is a numerical technique 
ideally suited to digital computers in which a continuous 
elastic structure (continuum) is divided (discretized) into 
smaller but finite well defined sub-structures (element) 
that can be represented by simple equations [11]. Ac-
cording to George [12], it represents an approximate nu-
merical solution of a boundary value problem described *Corresponding author. 
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by a differential equation. 
There are several publications on application of Finite 

element analysis of specific pressure vessels. Mirko et al., 
[13] applied Finite element method in the determination 
of the stress state of a cylindrical vessel with variable 
thickness. The stress distribution of deformed tank i.e. a 
tank with part that has been formally repaired was ana-
lyzed [14]. Jaroslav [15], In his work made a listings of 
over 865 papers and conference proceedings on finite 
element in the analysis of pressure vessels and pipelines 
which he classified into the following categories: linear 
and nonlinear, static and dynamic; stress and deflection 
analyses; stability problems; thermal problems; fracture 
mechanics problems; contact problems; fluid-structure 
interaction problems; manufacturing of pipes and tubes; 
welded pipes and pressure vessel components; develop-
ment of special finite elements for pressure vessels and 
pipes; finite element software. 

Most Finite element analysts develop own codes using 
MATLAB, C++, or FORTRAN. Meshing of geometrical 
models is done manually giving poor results. Other chal-
lenges faced by finite element analysts include: high cost 
of acquiring CAD software for numerical simulation, 
difficulty in managing read data from standard CAD 
programs such as dwg format (AutoCAD file) when us-
ing own code, and erroneous results, due to improper use 
of commercial software. 

MATLAB is a computer language and the software 

has an interactive computing environment that enables 
numerical computation, analysis and data visualization 
[16]. This work has explored MATLAB’s plotting capa-
bility and powerful computational tools to generate the 
geometrical mesh model of a petroleum tanker, extract 
element coordinates and conduct a finite element analysis 
of Von-Mises stress on a loaded tanker. The values ob-
tained were compared with ASME standard. 

2. Methodology 

2.1. Automated Mesh Generator 

The ellipsoidal tanker which is predominantly more com-
mon compared to the cylindrical ones has three inner 
segments (Figures 1 and 2). Each segment can be di-
vided into four symmetrically similar sections (Figure 3). 
For ease and simplicity, the left bottom section was con-
sidered (Figure 4), and an automated mesh generation 
code was written with MATLAB®. 

The common ellipse (Figure 5) and the ellipse Equa-
tion (1) was used in the development of the code. The 
automated mesh generator was developed using piece-
wise straight lines to approximate the curve and element 
continuity created during the meshing relations. The 
flowchart for the automated mesh generator is shown 
(Figure 6). Figure 7 shows meshing of the quarter sec- 
tion. 

 

 

Figure 1. The tank model. 
 

    

Figure 2. The tanker model divided into 3 parts initially joined together. 
 

     

Figure 3. A part of the tanker further sectioned into parts. 
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Figure 4. Section for automated meshing.
  

 

Figure 5. An ellipse with its dimension.
  

 

Figure 6. Algorithm for automatic mesh generator.

 

(a) 

 

(b) 

 

(c) 

Figure 7. (a) 10 elements mesh; (b) 200 elements mesh; (c) 

500 elements mesh. 
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where a represents half the horizontal axis, and b half the 
vertical axis as shown in Figure 5. 

2.2. Estimation of Stiffness Matrix and Force 
Vector 

After generating the meshed model, an element was ex-
trapolated and used in developing the stiffness matrix 
and force vector, needed to evaluate the displacement 
vector for plane strain elasticity of the model and Von- 
Mises stress. 

The equation for the rectangular shell elements was 
derived by combining the linear rectangular element (mem-
brane element) and the plate element (bending element). 

2.2.1. Membrane Element 
The equilibrium equations for a three-dimensional linear 
elasticity express in terms of stress is given [17,18] as; 

, 0ij j if    

where ,ij j  are the stress components, if  are the body 
forces. 

The above equilibrium equation expressed in terms of 
displacement for two dimensional analyses is given as 
follows. The equation was reduced to two dimensional 
since plane strain condition is being considered. 
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hx and hy are the in-plane displacement in the x and y 
directions respectively of the Cartesian coordinate sys-
tem. 

2.2.2. Weak Formulation of the Membrane Element  
Equation 
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2.2.3. Stiffness Matrix for the Membrane Element 
The finite element equation is expressed as 

    K U F  

[K] is the stiffness matrix, {F} is the force vector and {U} 
is the displacement vector. 

For plane strain condition, assuming homogeneity of 
material, 
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E and v are the material elastic constant and poison ra-
tio respectively. 

2.2.4. Interpolating Function for the Membrane  
Element 

  i ih w h  where  h  is the in-plane displacement 
vector,  iw  are the weight functions. The weight func-
tion for the rectangular element was used in the analysis.  

2.2.5. Bending Element 
The standard equation governing plate bending [19] is 
given as follows; 
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Bij is the bending stiffness matrix for the shell element. E, 
v and t are the elastic modulus, poison ratio and thickness 
respectively of the tanker being considered. 
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2.2.6. Weak Formulation of the Bending Element 
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2.2.7. Stiffness Matrix for the Bending Element 
For the plate element, on application of the classical plate 
theory [19], the Finite Element Model is given as follows 

     e e e eK F Q       

Every term retains their meaning as above except for 
 which is used to represent one out-of-plane dis-

placement in the thickness axis and two rotations. Mass 
matrix was neglected since dynamics of the system was 
not considered. 



2.2.8. Interpolation Function for the Bending Element 
  i iU  . Where    represents one out-of-plane 

displacement in the thickness direction and two rotations 
and  iU  are the weight functions. Bij’ are the material 
elasticity matrices for the bending element. 
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2.3. Calculation of p and q for Each Element 

The stiffness matrices, and force vectors are basically a 
function of the side length of the rectangular element 
(Figures 8(a) and (b)) used to form the tanker model. 
From Figure 8, the values of p and q were calculated 
applying coordinate geometry as follows: 

   2 2
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2 1

p y y x x

q z z

   

 
 

xi, yi and zi are the coordinate locations of each element. I 
= 1 to 4 represents the four nodes of a 4 nodal rectangu-
lar element. 

 

(a) 

 

(b) 

Figure 8. (a) Element mesh of the section; (b) An element 
showing dimensions for FEA. 

2.4. Combination of Membrane and Bending 
Stiffness Matrices and Force Vectors 

     K Kb KG   

where [K] is the 8 × 8 membrane stiffness matrix and [Kb] 
is the 12 × 12 bending stiffness matrix, both combining 
to give the total elemental stiffness matrix [KG] in the 
form shown below 
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The force vectors were combined in similar manner to 
form the total elemental force vector as follows 

  F
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2.5. Boundary Conditions and Calculation of 
Displacement 

Each element has five degrees of freedom (two in-plane 
displacements u and v, one out-of-plane displacements w, 
and two rotations. The displacements and bending at the 
edges were given zero since they are fixed. 

Code for evaluating the finite element equation {U} = 
   K f , introducing boundary conditions and estimat-
ing the displacement was done using the flow algorithm 
(Figure 9). 
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Figure 9. Algorithm applying extracted elemental coordi-
nate for FE analysis. 

2.6. Calculation of Stresses and Von-Mises Stress 

       Stress A B U    

Aij represent the elasticity matrices for both the mem-
brane element and bending element respectively. 

[B] Represents the strain vectors and moment vector 
for membrane and bending element respectively. 

[Stress] is the bending and membrane stress being 
computed. 

2.7. Analytical Von-Mises Stress Calculation 

To compute the Von-Mises stress analytically, there are 
three principal stresses which are all functions of the 
pressure. 

P1 = Principal stress 1 = Hoop stress = pressure × 
horizontal radii axis/t; 

P2 = Principal stress 2 = Hoop stress/2; 
P3 = Principal stress 3 = radial stress pressure; 

     

2.8. Dimensions Used for Analysis 

Length of tanker = 485 cm; 
Vertical axis of tanker = 180 cm; 
Horizontal axis of tanker = 244 cm; 
Thickness of tanker = 0.2 cm; 
Poison ratio = 0.3; 
Material of construction = A516M Grade 70; 
Specified minimum yield stress = 25 × 107 N/m2; 

Maximum allowable stress = 13.8 × 107 N/m2; 
Elastic modulus = 200 × 109 N/m2. 

3. Results and Discussions 

3.1. Results 

Figure 10 shows Von-Moses stress variation with load-
ing. At full loading, Von-Mises stress was 5.7 × 106 
N/m2 and this decreased linearly to zero as the tank is 
offloaded until there is an empty tank with zero Von- 
Mises stress. 

Figure 11 shows Von-Mises stress converge to a con-
sistent value at large mesh elements for both elliptical 
and circular tanks. It also shows Von-Mises stress for 
circular tanks slightly higher than for the elliptical tank. 
Both FEM computed values converged to the analytical 
values for both circular and elliptical. ASME values tal-
lied with the values for circular tank which are the same 
as the analytical values for the circular tank. 

Figure 12 shows the effect of tanker internal pressure 
on in-plane displacement in the longitudinal (x) direction 
of elliptical cylindrical tankers. It shows a linear rela-
tionship between both parameters consistent with Hooke’s 
law at elastic dimensions. 

Figure 13 shows the effect of variation in internal 
pressure in elliptical tank on in-plane circumferential (y) 
displacements. It shows as well a linear relationship be-
tween both parameters. 

Figure 14 shows the combined plots of in-plane lon-
gitudinal displacements for both circular and elliptical 
cylindrical tanks at full loading. The plots show that lon-
gitudinal displacements were the same for both tanks and 
were as it were non-existent (zero). 

Figure 15 shows the combined plot of the circumfer-
ential in-plane displacements for both tanks at full load-
ing. The plots show that the circumferential in-plane dis-
placements were existent but at an order of 10−4 cm. The 
circular cylindrical tank showed higher circumferential 
displacement than the elliptical with a difference of about 
2.5 × 10−3 cm. 

2 2

Von-Mises1

= 1 2 1 3 2 3P P P P P P     2
2

 

Figure 16 shows Von-Mises stress variation with tanker 
shell thickness. It shows an increasing stress as shell 
thickness is reduced and after 5.0 × 10−2 m shell thick-
ness, Von-Mises stress increased rapidly till yield stress 
is reached. 
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Figure 10. Von-Mises stress variation with internal tank pressure for elliptical cylindrical tank using 800 element meshes. 
 

 

Figure 11. Von-Mises stress variation with no of meshing elements for cylindrical and elliptical cylindrical tank at 16,858 
N/m2 and 14,480 N/m2 loading pressure respectively. 
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Figure 12. Variation of in-plane displacement in the longitudinal (x) direction of elliptical cylindrical tankers with internal 
load pressure. 

 

 

Figure 13. Variation of in-plane displacement in the circumferential (y) direction of Elliptical cylindrical tankers with inter-
nal load pressure. 
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Figure 14. In plane displacement in the longitudinal (x) directionof elliptical and circular cylindrical tankers at full loading. 
 

 

Figure 15. In plane displacement in the circumferential (y) direction of elliptical and circular cylindrical tankers at full load-
ing. 
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Figure 16. Von-Mises variation with tanker shell thickness. 
 

3.2. Discussion of Results failure by yielding but just as had been mentioned earlier 
future work on weldment defects coupled with stress- 
corrosion need to be done to investigate what is transpir-
ing here which could lead to other types of failure over 
time. 

The direct linear relationships between internal loading 
pressure and Von-Mises stress (Figure 10) and that be-
tween in-plane displacements and internal pressure (Fig-
ures 12 and 13) are not unexpected because of the linear-
ity of the stress-strain relationship in the elastic region. 
The result clearly showed that at full load Von-Mises 
stress is maximum (Figures 10 and 11). However, the 
Von-Mises stress for the fully loaded tanker still fell far 
below the yield stress of the material and the maximum 
allowable stress (Figure 11). This showed that the tanker 
will not yield during transportation from the loading 
pressure. However, since the tanks are always welded 
and not seamless, the tanks are susceptible to yield stress 
lowering effect of heat-affected-zone (HAZ) from welding. 
The HAZ causes embrittlement, hence a lowering of 
yield stress and if care is not taken, there could be micro- 
hole defects from where rapid crack propagation could 
develop causing catastrophic failure of the tank. If this 
effect is coupled to the corrosive effect of the petroleum 
product over time causing what can be termed stress- 
corrosion effect on the welded portion could as well 
cause failure over time. However, these issues were not 
addressed in this paper and are concerns for future work. 

The inverse and non-linear relationship between tank 
shell thickness and Von-Mises stress (Figure 16) was 
also not surprising because of the relations between 
hoop/longitudinal stresses and shell thickness. This result 
showed clearly that it is important to design for a thick-
ness that would guarantee a sufficient factor of safety 
especially since the effect of the welded parts’ heat af-
fected zone (HAZ) on lowering of yield stress must be 
considered. 

4. Conclusion 

Von-Mises stresses in circular and elliptical petroleum 
tankers under full loading have been obtained using the 
finite element method. It was observed that an equivalent 
volume circular cylindrical has a higher internal pressure 
(16,858 N/m2) compared to the elliptical cylinder (14,480 
N/m2). Von-Mises stresses showed a linear relationship 
with variation in internal fluid pressure. Von-Mises stresses 
in the elliptical tank were found to be lower (5.7 × 106 
N/m2) than for the circular tank (8 × 106 N/m2. Von- 
Mises stresses were far below the yield stress of the steel 
plate (25 × 107 N/m2). However, the effect of weldment 
area and stress corrosion on lowering of yield stress was 
not studied. Values obtained for the circular cylindrical 
tank were compared with ASME VIII divisions 1 and 2 
standard values and found not to be significantly differ-
ent (P > 0.05). 

The results also show that circular cylinderical tanks 
have higher internal pressures as well as higher Von- 
Mises stresses than elliptical tanks of the same loading 
volume (Figure 13). The lower Von-Mises stresses de-
veloped in elliptical cylindrical tanks as well as their sta-
bility during transportation gives the elliptical tank a big 
edge over the circular cylindrical tank. 

The in-plane displacements (Figures 14 and 15) showed 
good tanker material integrity and nullifies any idea of  
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