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ABSTRACT 

Layzer’s approximation method for investigation of two fluid interface structures associated with Rayleigh Taylor in- 
stability for arbitrary Atwood number is extended with the inclusion of second harmonic mode leaving out the zeroth 
harmonic one. The modification makes the fluid velocities vanish at infinity and leads to avoidance of the need to make 
the unphysical assumption of the existence of a time dependent source at infinity. The present analysis shows that for an 

initial interface perturbation with curvature exceeding  1 2 A , where A is the Atwood number there occurs an almost 

free fall of the spike with continuously increasing sharpening as it falls. The curvature at the tip of the spike also in- 
creases with Atwood number. Certain initial condition may also result in occurrence of finite time singularity as found 
in case of conformal mapping technique used earlier. However bubble growth rate is not appreciably affected. 
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1. Introduction 

Hydrodynamic instabilities such as Rayleigh Taylor in- 
stability (RTI) which sets in when a lighter fluid supports 
a heavier fluid against gravity or Richtmyer Meshkov 
instability (RMI) which is initiated when a shock passes 
an interface between two fluids with different acoustic 
impedances are of increasing importance in a wide range 
of physical phenomena starting from inertial confinement 
fusion (ICF) to astrophysical ones like supernova explo- 
sions. In ICF, the capsule shell undergoes the RTI both in 
the acceleration and deceleration phases. RTI can retard 
the formation of the hot spot by the cold RTI spike of 
capsule shell resulting in the destruction of the ignition 
hot spot or autoignition [1-4]. The hydrodynamic insta- 
bilities lead to development of heavy fluid “spikes” pene- 
trating into the lighter fluid and “bubbles” of lighter fluid 
rising through the heavier fluid. Different approaches 
have been used for the study of such problems. Among 
these Layzer’s [5] approach applied to single mode po- 
tential flow model [6-11] is a useful one giving approxi- 
mate estimate of both Rayleigh Taylor and Richtmyer 
Meshkov instability evolution. The bubbles were shown 
by Zhang [7] to rise at a rate tending asymptotically to a 

terminally constant velocity while spikes were shown to 
descend with a constant acceleration. However, whether 
for bubbles or for the spikes, Zhang’s analysis was ap- 
plicable only for Atwood number A = 1, i.e., only for 
fluid-vacuum interface. An extension to arbitrary value 
of Atwood number A was done by Goncharov [8]. With- 
in limitations of Layzer’s model as pointed out by Mi- 
kaelian [12] bubbles were shown to rise with a velocity 
tending to an asymptotic value dependent on A and hav- 
ing a fairly close agreement with the simulation results of 
Ramaprabhu et al. [13]. But the spikes were found to 
descend with a terminal constant velocity in contrast to a 
constant acceleration as obtained by Zhang [7] for A = 1. 

Asymptotic spike evolution in Rayleigh Taylor insta- 
bility behaving almost as a free fall was obtained by 
Clavin and Williams [14] and also by Duchemin et al. 
[15] by conformal mapping method. Associated with the 
free fall of the spike, the surface curvature of the spike 
was also found to increase with time (i.e. the spike shar- 
pens as it falls). 

The present paper described the dynamics of bubble 
and spike tips arising at the two fluid interfacial structure 
due to RTI with extended Layzer’s model replacing the 
zeroth harmonic term [8] by second harmonic term to 
satisfy the condition that the fluid velocity vanishes at *Corresponding author. 
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infinity. The obtained asymptotic velocity of the bubble 
tip is slightly large compared to the classical value de- 
rived by Goncharov [8] and coincide when A = 1. Al- 
though the asymptotic curvature of the bubble tip remain 
unchanged. On the other hand, the curvature of the spike 
tip is an increasing function of time as well as Atwood 
number. As time increases, the tip of the spike is shown 
to become sharpen and falling nearly free fall. 

This paper is organized in the following manner. In 
Section 2, we described the potential flow model with 
extended Layzer’s approach and derived the governing 
equations of the interfacial structure. The behavior of the 
bubble and spike tips are discussed analytically and nu- 
merically in Section 3 and finally we conclude the results 
in Section 5. 

2. Basic Model and Governing Equation  

In the single mode Layzer model with generalization [8] 
for arbitrary Atwood number the equation to the in- 
terface taken in X-Y plane as  

 y x t       2
0 2, ;t t x
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with , 2  for bubble while  0 t    0t0  , 

2  for spike. The velocity potential describing 
the motion of the heavier fluid (density h

  0t 
 ) and the 

lighter fluid (density l ) are (gravity g is along the ne- 
gative y direction)  
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are amplitudes. This conventional single mode Layzer 
model has the drawback that rather than conforming to 
the physical requirement:  as  it ne- 
cessitates the assumption of a time dependent source at 

 [16]. To avoid this difficulty we modify the 
single mode Layzer model by replacing the zeroth mode 
term  in Equation (3) by a second harmonic term 
viz,  
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Equations (2) and (4) give  
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Setting the pressure boundary condition h l  in 
Bernoulli’s equation for the heavier and lighter fluids 
leads to [7,8,11,17-22]  
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Following the usual procedure [19-22], i.e., expanding 
 , x t  and the velocity potentials in powers of kx
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and equating coefficients of ,  we obtain 
from Equations (7)-(9) the evolution equation for the RT 
bubbles/spikes (non-dimensionalized) tip elevation  
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and  
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is nondimensionalized time. 

3. Results and Discussion  

Starting from a set of initial values 1  0, 2    and 

3 0  which correspond to the description of temporal 
evolution of the tip of the bubble we arrive at the as-
ymptotic value     

2

1

6
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and  
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(by classical we mean the single mode Layzer approxi-
mation as used by Goncharov [8]). Two values coincide  

as 1h l

h l

 
 

 
   

30 and 0

A . The growth rate of the develop-  

ment of the height of the bubble tip is shown in Figure 1 
and compared with classical value. It is seen that pre- 
sence or absence of a source does not give rise to any 
qualitatively significant change in the growth rate of the 
bubble height [8,9,17]. 

To get spike like behavior of the perturbation of the 
interface we used  
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Figure 1. (a) Variation of ξ3 against A; and (b) Variation of 
ξ3 against τ, where the black line gives the saturation growth 
rate since by Equations (11) and (12) and the dashed line 
gives the classical value of growth rate of the tip of the bub- 
ble.  

Equation (11) shows that 2  increases monotonically  

( 2 0
d

d

 0 for all   ) while from Equation (12) it fol- 

lows that the depth of the spike tip below the surface of 

separation increases continuously ( 1
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). These are shown in Figures 2(a) and (b) by  

 2  3plotting   and   as function of     obtained 
from numerical solution of Equations (11) and (12) by 
employing fifth order Runge-Kutta-Fehlberg method. 
The initial value taken are  3 initial 2 initial
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−0.5 which satisfy condition (17) for all the following  
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2. The value of   which represents the 

curvature at the tip of the spike is an increasing function 
of   for every value of the Atwood number A (Figure 
2(a)). Moreover for every given value of   the curva- 
ture 2  increases with A. This implies that the spike 
continues to sharpen with time as well as with increasing  
 

 
(a) 

 
(b) 

Figure 2. (a) Variation of ξ2 against τ; and (b) Variation of 
ξ3 against τ with initial value ξ1 = −0.1, ξ2 = 1.0, ξ3 = −0.5 and 
r = 2 (dot-dashed), 5 (dashed), 20 (black). 
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Atwood number and is explicitly shown in Figure 3. 
Figure 2(b) shows that except very close to the starting 
instant the spike descends with a constant acceleration 

g  (i.e., nearly a free fall). This agrees with the con- 
clusions [7] for Atwood number A = 1. 

The time development of spiky behavior for  2 initial
   

1 1

2 1

r

r




 and  3 initial
0   is demonstrated in Figures  

4(a) and (b). This is shown both for increasing A with 
fixed   (Figure 4(a)) and with increasing   for given  

A (Figure 4(b)). But for  2 in

1 
itial
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r
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
 with  

 3 initial
 one encounters development of finite time 

singularity i.e., 2

0 
   and 3    at a finite value 

of  . The possibility of the occurrence of such an even- 
tuality at (or near) the tip of the spike is also found to 
arise when the RT instability is addressed by conformal 
mapping method [23,24] as mentioned by Clavin and 
Williams [14]. 

Finally for a trajectory starting from  3 initial
0   and  

 2 initial

1 1
0

2 1 2

r

r A
 
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 2

1 1
 one finds that   con- 

tinues to increase towards 2

1

2
  , i.e., the spike contin-  

ues to sharpen as time progresses and its speed of fall 
slowly decreases in magnitude. Because of the presence  

of singularity at 2

1

2
   (Equation (12)), it is not possi- 

ble to continue the numerical integration towards and 
beyond this point. This is shown in Figure 5 for initial 
values in the domain mentioned above. 

4. Conclusion  

In this report, we have extended the Layzer’s model with  
 

 

Figure 3. Variation of ξ2 against A with initial value ξ1 = 
−0.1, ξ2 = 1.0, ξ3 = −0.5. 

 
(a) 

 
(b) 

Figure 4. Shows formation of spikes for different values of 

(a) A
1

3
  (dashed), 

2

3
 (dot-dashed), 

19
 (black) for fixed 

21
.2 5  and (b) .2 1  (Dashed), 2.3 (dot-dashed), 2.5 

(black) for fixed A
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3
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the inclusion of second harmonic term. In asymptotic 
stage, the velocity of the tip of the bubble becomes  

 
8

3 5 3

A

A
 which is slightly large compared to classi-  



cal value and agree with the previous obtained results. 
However, in case of spike, the curvature of the spike tip 
is increasing with time as well as the Atwood number  
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(a) 

 
(b) 

Figure 5. (a) Variation of ξ2 against τ; and (b) Variation of 
ξ3 against τ with initial value ξ1 = −0.1, ξ2 = 0.1, ξ3 = −0.1 and 
r = 2 (dot-dashed), 5 (dashed), 20 (black). 
 
and as time goes the spike becomes sharpen and behave 
like a free fall. This is a theoretical work supported by 
the other previous results. 
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