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ABSTRACT 

Mark-recapture models are extensively used in 
quantitative population ecology, providing es- 
timates of population vital rates, such as sur- 
vival, that are difficult to obtain using other 
methods. Vital rates are commonly modeled as 
functions of explanatory covariates, adding con- 
siderable flexibility to mark-recapture models, 
but also increasing the subjectivity and com- 
plexity of the modeling process. Consequently, 
model selection and the evaluation of covariate 
structure remain critical aspects of mark-recap- 
ture modeling. The difficulties involved in model 
selection are compounded in Cormack-Jolly- 
Seber models because they are composed of 
separate sub-models for survival and recapture 
probabilities, which are conceptualized inde- 
pendently even though their parameters are not 
statistically independent. The construction of 
models as combinations of sub-models, together 
with multiple potential covariates, can lead to a 
large model set. Although desirable, estimation 
of the parameters of all models may not be fea-
sible. Strategies to search a model space and 
base inference on a subset of all models exist 
and enjoy widespread use. However, even though 
the methods used to search a model space can 
be expected to influence parameter estimation, 
the assessment of covariate importance, and 
therefore the ecological interpretation of the 
modeling results, the performance of these 
strategies has received limited investigation. We 
present a new strategy for searching the space 
of a candidate set of Cormack-Jolly-Seber mod- 
els and explore its performance relative to ex- 
isting strategies using computer simulation. The 
new strategy provides an improved assessment 
of the importance of covariates and covariate 

combinations used to model survival and re- 
capture probabilities, while requiring only a 
modest increase in the number of models on 
which inference is based in comparison to ex- 
isting techniques. 
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1. INTRODUCTION 

Mark-recapture models are among the most widely 
utilized classes of models in quantitative population eco- 
logy. Historically, mark-recapture models were primarily 
used to estimate abundance [1,2] and survival rates [3,4]. 
The diversity and complexity of these models have ad-
vanced rapidly in recent years, and modern mark-recap- 
ture models are now commonly utilized to estimate a 
variety of vital rates and parameters related to processes 
such as immigration, state transition, and geographic 
transience [5-11]. A key factor in the utility of mark-re- 
capture models is the ability to model natural parameters, 
such as survival rates, as functions of explanatory co- 
variates [12]. The use of covariates substantially enhances 
the value of mark-recapture models for ecological inves- 
tigation by providing a mechanism for both generating 
and testing hypotheses regarding linkages between popu- 
lation vital rates and characteristics of individual animals 
and their environments. 

An unavoidable consequence of using covariates is an 
increase in the complexity and subjectivity of the mod- 
eling process itself. Most mark-recapture experiments are 
not explicitly designed to test specific hypotheses, but 
rather generate observational data that may be used to 
investigate relationships and formulate hypotheses through 
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exploratory modeling [13]. Mark-recapture investiga- 
tions are therefore subject to the difficulty of establishing 
causation with an analysis of observational data [14]. 
Furthermore, the number of covariates available for in- 
clusion in a model may be large, and ecological data of- 
ten possess high variance and collinearity. Such proper- 
ties, in combination with the complexity of ecological 
processes underlying population vital rates, often com- 
plicate the modeling process. 

Several aspects of mark-recapture modeling continue 
to generate considerable interest in the ecological and 
biometrics literature, including the formation of a candi- 
date set of models. Many investigators advocate devel- 
oping a relatively small number of models that embody 
explicit biological or ecological hypotheses [15-17]. Other 
investigators have noted potential drawbacks with that 
approach in certain situations. In particular, inference is 
conditional on the candidate model set, which can cause 
significant bias if knowledge about the system under 
study is limited and well-fitting models are not included 
in the candidate model set [13]. Model formulation is 
subject to the experience and subjectivity of the investi-
gator, and an overly restrictive model set can also lead to 
biased estimates [18]. Similarly, ecological processes can 
be dynamic and an overreliance on prior information to 
inform model development may mask important eco- 
logical relationships. A rigid focus on testing a priori 
hypotheses by definition precludes exploratory modeling 
that may generate new insights which merit further in- 
vestigation [13,19]. These varied perspectives are largely 
encapsulated by model classifications as “white box (the-
ory-based), black box (empirical) and grey box (theory- 
influenced empirical)” [20], or predictive versus explan- 
atory [21]. 

The development of a candidate model set is a crucial 
component of the modeling process that is naturally sub- 
ject, in part, to the particular objectives of individual 
investigations. If the primary objective is to test a priori 
hypotheses, developing a relatively small number of 
models that embody the hypotheses of interest is obvi- 
ously sound [15-17]. In such investigations, identifying 
the covariates that seem most strongly associated with 
natural parameters, i.e., the survival and recapture prob- 
abilities of interest rather than covariate coefficients that 
are the parameters directly estimated, may be of more 
interest than estimates of those probabilities. In other 
investigations, the primary objective may be to estimate 
natural parameters, perhaps to describe and ultimately 
forecast population dynamics [22], and covariates and 
their coefficients may or may not be of great interest. 
Investigations that are more exploratory in nature are 
likely to incorporate a larger number of covariates into 
the candidate model set than investigations designed to 
test a small number of hypotheses. 

Once a candidate model set is formed, one must im- 
plement a strategy to evaluate the models. The most 
natural and logically unbiased strategy is to evaluate all 
candidate models. However, even when candidate mod- 
els are developed with careful consideration of their bio- 
logical relevance and plausibility [15-17], the number of 
models in the set can exceed reasonable limits. Large 
model sets can easily result when models are formed 
from combinations of sub-models for different classes of 
natural parameters, such as survival and recapture prob- 
abilities. In addition, the existence of animal classes with 
potentially unique vital rates or the need to model com- 
plex patterns of capture effort through time can substan- 
tially increase the number of models to be considered. As 
an example, a mark-recapture investigation of polar 
bears (Ursus maritimus) in which we were recently in- 
volved (unpublished), modeled survival probabilities for 
four age classes with 24, 10, 1, and 6 sub-models, re- 
spectively, totaling 1440 (= 24 × 10 × 1 × 6) sub-models 
for survival. The number of sub-models considered for 
recapture probabilities was a more modest 96, constructed 
to incorporate age-class heterogeneity and a complex 
pattern of capture effort through time. These sub-models 
were selected from a much larger collection of potential 
models identified using prior knowledge, expert opinion, 
and ecological relevance. The model set of all combina- 
tions of survival and recapture probability sub-models 
was therefore 138,240 (= 1440 × 96). Given such a large 
model space, which is common in mark-recapture inves- 
tigations, an effective method of searching the model 
space without estimating the parameters of every candi- 
date model is obviously advantageous. 

Several investigators have developed strategies for 
evaluating a subset of all mark-recapture models within a 
Bayesian framework. For example, McCrea et al. [23] 
start with a null model and incrementally increase the 
complexity of component sub-models until a stopping 
rule is reached, leading to a single preferred model. Note 
that inference based on a single model increases the risk 
of model selection bias and precludes the benefits of 
multi-model inference [15]. King and Brooks [24] use 
reversible jump Markov chain Monte Carlo to explore a 
subset of a model space and simultaneously estimate 
model parameters, which facilitates multi-model infer- 
ence. Similarly, Sisson and Fan [18] use a simulated an- 
nealing algorithm to search a model space and base in- 
ference on a subset of high scoring models. 

The development of strategies to efficiently search a 
model space appears to have received less attention out- 
side of a Bayesian framework, and the evaluation of mo- 
del structure and covariate importance for the Cormack- 
Jolly-Seber (CJS) mark-recapture model [25,26] remains 
an important area of inquiry. The CJS model is among 
the earliest open population models and one of the most 
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simple structurally, being comprised of sub-models for 
survival (φ) and recapture (p) probabilities, but never- 
theless continues to enjoy widespread application [27- 
31]. An underappreciated consequence of the statistical 
dependence between sub-model parameters is that the 
covariate structure in one sub-model can influence the 
apparent predictive ability of covariates in the other 
sub-model, termed information “leak” by Catchpole et al. 
[32], which complicates model evaluation. In addition, it 
is not unusual for several biologically plausible sub- 
models for p and φ to have substantially different covari- 
ate structure and yet be similarly supported by data. 
Consequently, methods used to search a CJS model space 
can be expected to influence parameter estimation, the 
assessment of covariate importance, and therefore the 
ecological interpretation of the modeling results. 

The most common strategies to search a CJS model 
space are the so-called p- and φ-first strategies [25,26]. 
In the p-first strategy, one first searches the p dimension 
of the model space by pairing all candidate sub-models 
for p with a general and flexible sub-model for φ. One 
then searches the φ dimension after conditioning on a se- 
lected sub-model for p and pairing it with the remaining 
sub-models for φ. This stepwise method can be repeated 
as often as desired, but in practice one or two rounds of 
pairing a fixed sub-model with a number of candidates 
for the other sub-model are common. From among the 
resulting subset of models, a single model may emerge as 
overwhelmingly dominant and be selected as the pre- 
ferred model [33] or, more typically, several models will 
have meaningful support and multi-model inference will 
be employed [15]. In the φ-first strategy, the order of 
sub-model evaluation is simply reversed. Variations of 
these basic strategies are common [3,27,28]. 

Doherty et al. [34] conducted a simulation study to 
compare the performance of the p- and φ-first strategies 
with that of all combinations (AC) of candidate p and φ 
sub-models for CJS models. They found that all three 
strategies performed similarly with respect to estimation 
of natural parameters, but that the p- and φ-first strate- 
gies provided inferior assessments of covariate impor- 
tance. If assessing the utility of covariates for modeling p 
and φ is a research objective, the AC strategy is preferred 
to such stepwise procedures [34]. However, as previously 
noted, the size of the candidate model set in some inves-
tigations may render the AC strategy infeasible. 

We introduce a new strategy, called the plausible com- 
binations (PC) strategy, and investigate its performance 
by amending the simulations of Doherty et al. [34] to 
include the PC strategy as an additional alternative. The 
results reveal that the PC strategy closely mimics the 
performance of the AC strategy and provides an unbiased 
assessment of covariate structure, with only a modest 
increase in the average number of models evaluated 

compared to the p- and φ-first strategies. We recommend 
this new strategy for situations in which the number of 
component sub-model combinations is sufficiently large 
as to render the AC strategy unattractive. 

2. METHODS 

The strategy for model selection and covariate evalua- 
tion we propose is a generalization of the p- and φ-first 
strategies which provides a more effective search of a 
model space. The most general sub-model for φ is first 
paired with all candidate sub-models for p. The resulting 
models are then used to identify a list of “plausible” sub- 
models for p using a two-step procedure. In the first step, 
models with an AICC weight [15] exceeding a minimum 
threshold of, say, 0.01 are identified. These models, 
termed “high weight” models, provide a reasonable fit to 
the data and are parsimonious. Models with lower weight 
may provide an equal or better approximation of the data, 
but rank low by AICC due to the penalty caused by the 
number of parameters in the general φ sub-model. Con- 
sequently, models with a likelihood exceeding the mini- 
mum value of the likelihood among high weight models, 
Lm, are identified as “high likelihood” models in the 
second step. These models approximate the data as well 
as the high weight models and could become competitive 
from an AICC perspective if some of the sub-models for 
φ with fewer parameters provide a good approximation 
to the data. The sub-models for p associated with both 
high weight and high likelihood models are deemed 
“plausible” for p. Note that the only product of this 
two-step procedure is a list of plausible sub-models for p; 
the estimates themselves are discarded and not utilized 
further. A list of sub-models deemed plausible for φ is 
similarly developed by reversing the order of p and φ 
sub-model conditioning. The parameters of all combina-
tions of plausible sub-models for p and φ are estimated 
and inference is based on the resulting subset of the en- 
tire model space, an approach termed the plausible com- 
binations (PC) strategy. 

The performance of the PC strategy was evaluated by 
replicating the essential elements of the simulations of 
Doherty et al. [34]. Independent simulations were based 
on three sets of parameters, each consisting of survival 
probabilities (φ), four survival probability covariates (x1φ, 
x2φ, x3φ, x4φ), recapture probabilities (p), and four recap-
ture probability covariates(x1p, x2p, x3p, x4p) for 15 cap-
ture occasions (Table 1); the parameter sets were kindly 
provided by Dr. Paul Doherty and Dr. Gary White. A total 
of 16 sub-models, consisting of a temporally-invariant 
model containing no covariates (the “.” model) and all 15 
possible additive sub-models containing 1, 2, 3, and 4 
covariates were evaluated for both φ and p. 

For each parameter set, the covariates were treated as 
fixed constants and φ and p (Table 1) were used to 
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Table 1. Three parameter sets, each consisting of survival (φ) and recapture (p) probabilities and their four respective covariates for 
15 capture occasions. 

  φ covariates  p covariates 

Occasion φ x1φ x2φ x3φ x4φ p x1p x2p x3p x4p 

Parameter set 1          

1 0.78054 4.10682 3.36879 3.19860 3.77595 - - - - - 

2 0.54653 3.00457 3.91050 2.33771 4.79420 0.36174 3.04087 3.57580 4.30982 6.54941

3 0.69731 3.45072 3.48765 3.53167 4.96847 0.73155 4.76051 4.06977 4.61496 4.82786

4 0.90672 5.14742 4.51119 5.23463 4.78903 0.32954 2.19080 2.98441 4.53637 4.74755

5 0.85285 4.42197 6.12590 1.90597 4.12622 0.43003 4.01534 3.12950 3.45100 4.05404

6 0.85305 3.90633 4.83529 2.52349 5.21135 0.36717 2.94002 3.01845 3.77055 4.70762

7 0.80897 4.62007 3.44390 4.04234 1.83646 0.47062 2.81586 3.83578 4.16405 4.70793

8 0.91751 5.19080 5.48953 4.31543 5.05406 0.63429 4.39905 4.79794 4.22775 4.02451

9 0.77080 4.57286 3.61606 1.75918 3.98934 0.64571 4.73330 3.66544 2.51173 2.70288

10 0.79407 3.50609 4.24305 4.94334 2.54711 0.85093 5.93548 4.29249 5.85046 4.99177

11 0.87805 4.48614 4.88278 5.16065 3.29780 0.65336 3.55556 5.68795 3.48044 3.58899

12 0.80695 3.89087 4.71763 3.94112 3.63841 0.36164 3.16790 3.34932 3.10263 4.22011

13 0.65418 3.15993 3.84917 4.70577 4.09989 0.18730 1.99428 1.91211 4.05147 3.24748

14 0.70558 2.83526 2.47648 4.65518 3.67438 0.60062 4.35061 2.48810 5.26609 4.24447

15 - - - - - 0.47631 3.06997 3.08562 1.87541 4.60062

Parameter set 2          

1 0.80715 4.15101 3.54239 3.91634 4.76327 - - - - - 

2 0.96775 6.40023 5.78733 3.39285 3.51462 0.73822 5.32159 4.09081 3.23499 4.70665

3 0.55040 2.01089 5.75926 3.46112 3.27696 0.62410 4.03667 3.55712 4.28458 3.78543

4 0.69337 3.94577 3.59877 2.56060 4.17914 0.72735 4.06055 5.05990 4.75615 3.38056

5 0.69579 2.36536 4.04049 4.02345 5.11190 0.44829 2.59276 4.56668 3.91611 4.84179

6 0.87801 5.28450 3.66794 3.65808 2.96759 0.45604 3.67669 3.51874 3.68676 4.02163

7 0.91283 4.71649 5.57875 4.72345 4.09710 0.25670 1.43081 3.91371 4.90297 5.03117

8 0.72801 4.22758 2.48859 4.11427 5.48212 0.85316 5.39869 5.94874 5.49458 5.50698

9 0.85654 4.92854 3.70778 4.32183 3.54931 0.62645 3.01264 5.52889 2.61170 3.04019

10 0.84578 4.81498 4.83275 1.90901 4.10746 0.80853 5.63651 4.96053 5.09375 5.15802

11 0.87960 4.88099 2.73035 5.38649 4.16983 0.67767 4.97605 3.76371 5.74120 1.74198

12 0.92863 4.65170 6.78657 5.53511 5.45633 0.60850 4.22143 3.75905 3.21514 2.37209

13 0.74538 4.23777 4.13487 2.16674 3.35181 0.47810 2.75882 4.59186 3.07973 5.23670

14 0.95844 5.45418 6.19805 3.32524 4.93703 0.47621 3.26942 2.31183 5.26073 3.61626

15 - - - - - 0.72368 5.60889 3.70113 4.40537 5.51616

Parameter set 3          

1 0.81688 4.64674 3.05472 3.31596 3.83961 - - - - - 

2 0.92647 5.03590 6.05558 3.57843 5.34556 0.68090 4.69925 4.88705 3.51999 4.05543

3 0.82242 4.67945 3.66638 4.62771 2.42649 0.68934 5.45352 1.91894 2.93835 4.89466

4 0.88447 4.42961 4.48874 3.95199 4.97414 0.71687 5.34087 3.23969 5.66851 2.33607

5 0.79864 4.08107 3.99195 4.07886 3.48046 0.44347 3.83043 2.08761 4.18036 4.48236

6 0.76479 3.30962 4.22027 4.83650 4.31012 0.39863 3.22502 3.30458 3.46726 2.51518

7 0.93929 5.24350 5.62082 4.12056 4.48738 0.54487 3.44159 3.94949 3.17209 4.38880

8 0.63162 2.51629 3.86661 4.08282 2.45180 0.51466 3.65704 3.90787 3.93766 4.04720

9 0.68473 2.15965 3.80472 5.02869 4.84598 0.71013 4.69741 4.37175 5.26810 4.78659

10 0.86962 5.23654 3.87029 3.84034 2.46841 0.51633 3.68482 3.13815 3.54855 3.43981

11 0.82458 3.81315 3.32939 4.80756 4.18999 0.80994 5.20251 5.61024 3.16975 5.28320

12 0.93074 4.69994 5.55690 4.62027 2.68545 0.47346 3.97540 2.83237 2.76890 5.56294

13 0.84399 3.65195 4.43899 3.14567 4.06658 0.70629 5.04407 4.37958 4.80395 1.72245

14 0.66032 2.79740 4.19595 2.84050 5.00316 0.64932 3.63556 4.77600 4.85341 3.65096

15 - - - - - 0.50844 2.72753 4.97611 5.05539 3.14040
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simulate capture histories over 15 capture occasions. The 
true model was therefore fully time-variant (φtpt) and the 
covariate models were used to approximate this temporal 
structure. This procedure mimicked the analysis of real 
data in which the covariates are known constants and the 
observed capture histories are a realization of random 
survival and recapture processes. Given that the mean of 
φ over all occasions was approximately 0.80 in all three 
parameter sets, an initial release of 100 marked individu- 
als in the first occasion was followed by the release of 20 
newly marked individuals in each of the subsequent 13 
occasions to maintain approximately 100 marked indi- 
viduals in the population through time. The 15th occa- 
sion was a recapture event only and no newly marked 
individuals were released. A total of 1000 sets of capture 
histories were randomly generated for each of the three 
parameter sets. 

For each set of capture histories, the p-first strategy 
was implemented by pairing the most general sub-model 
for φ, consisting of an intercept and all four covariates 
additively, with all 16 sub-models for p. From among the 
resulting 16 models, the model having the minimum 
value of AICC was identified, after which the correspond- 
ing sub-model for p was paired with each of the remain- 
ing 15 sub-models for φ. The φ-first strategy was con- 
ceptually identical, with the order between φ and p sub- 
model conditioning reversed. Inference under both the p- 
and φ-first strategies was therefore based upon 31 (12%) 
of the possible 256 sub-model combinations. Under the 
AC strategy, the parameters of all 256 models were esti- 
mated. The PC strategy was implemented as previously 
described. 

The fit of estimated models was evaluated by comput- 
ing the relative sum of squares (RSS): 

2
13

1

î i

i i

RSS
 


 
   

 
  

where i  represents an element of either φ or p for an 
individual capture occasion and î  is the corresponding 
estimate based on either a single model or computed by 
model averaging [15]. Given that there were 15 capture 
occasions, there were 14 φ and 14 p parameters (Table 1). 
Although all 28 parameters were theoretically estimable 
for models using covariates, assessing estimation per- 
formance for only 13 φ and 13 p parameters allows com- 
parisons to be made with the fully-parameterized time- 
variant model used to generate capture histories, in 
which the last φ and p parameters are confounded [25,26]. 
The sum of RSS statistics for φ and p was computed to 
provide a measure of performance for the entire model. 

For each of the four model selection strategies, the 
RSS for φ, p, and their sum was computed using the 
model with the lowest AICC. The RSS statistics were 

similarly computed for the model-averaged estimates, 
using the models considered under each strategy. For 
comparative purposes, we also report RSS statistics for 
the one model among all 256 having the smallest total 
RSS, as well as the fully time-variant model used to gen- 
erate capture histories. The mean and standard deviation 
of RSS statistics among the 1000 capture histories with 
each parameter set were computed. 

The importance of parameter covariates and covariate 
combinations was evaluated by computing cumulative 
AICC model weights [15] for each covariate and covari- 
ate combination among the models considered under 
each selection strategy. The mean and standard deviation 
of cumulative weights were computed across the 1000 
replications using each parameter set. Note that the fre- 
quency with which individual covariates were included 
in models was equal, or balanced, under the AC strategy, 
while the frequency of covariate combinations was bal- 
anced under the AC and PC strategies. The simulations 
were conducted using version 2.14.1 of R [35] and model 
parameters were estimated using version 2.10 of the R 
package mra [36]. 

3. RESULTS 

The AC, PC, and p-and φ-first evaluation strategies all 
yielded approximately equal means and standard devia- 
tions for the RSS statistic (Table 2), and the values were 
similar to those reported by Doherty et al. [34]. None of 
the strategies resulted in parameter estimates with a 
mean RSS that approached that of the single model with 
the smallest RSS, indicating that for each set of capture 
histories there was usually at least one model among all 
256 models with parameter estimates closer to the true 
values than either the minimum AICC model, and closer 
than the model-averaged estimates. The model with the 
minimum RSS had an average of 1 to 1.5 more parame- 
ters than the model with minimum AICC. Because of the 
increased variance associated with estimating the large 
number of parameters in the fully-parameterized time- 
variant model (φtpt), all strategies produced smaller mean 
RSS values. Model-averaging produced a modest but 
consistent improvement in parameter estimation. 

All strategies gave the largest cumulative weights to 
the individual covariates most highly correlated with φ 
and p (x1φ, x2φ, x1p, and x2p, Table 3). However, covariates 
having low correlations with the parameters accumulated 
more weight than might be expected [34]. In particular, 
the φ-first strategy tended to result in relatively large 
cumulative weights for the covariates having small cor- 
relations with p (x3p and x4p). For example, the covariate 
x4p in Parameter set 1 had a correlation with p of only 
−0.013, but its cumulative weight under the φ-first strat- 
egy was 0.509 (Table 3). Similarly, the p-first strategy 
tended to produce relatively large cumulative weights for 
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Table 2. The mean and standard deviation (SD) of relative sum of squares (RSS) observed among 1000 simulations with each of 
three parameter sets for the φ and p parameters, the sum of the two RSS values (φ + p), and the mean and standard deviation of the 
number of parameters in the model (No. param.). Estimation performance is summarized for the single model with the minimum RSS 
(Min. RSS) value, the fully-time variant model (φtpt), and each of the four model selection strategies. For each strategy, results are 
shown for the model with the minimum AICC value (Min. AICC) among the models considered, as well the model-averaged estimates 
(Model Ave.). 

    Mean RSS SD of RSS  No. param. 

Strategy Criterion  φ p φ + p φ p φ + p  Mean SD 

Parameter set 1           

  Min. RSS  0.078 0.204 0.283 0.035 0.069 0.079  8.0 1.0 

  φtpt  0.192 0.329 0.522 0.091 0.167 0.206  27.0 0.0 

 p-first Min. AICC  0.113 0.255 0.369 0.065 0.097 0.117  6.5 0.9 

  Model Ave.  0.105 0.252 0.357 0.056 0.092 0.109  - - 

 φ-first Min. AICC  0.114 0.256 0.370 0.065 0.096 0.116  6.5 1.0 

  Model Ave.  0.110 0.257 0.367 0.061 0.095 0.114  - - 

 PC Min. AICC  0.114 0.255 0.369 0.065 0.095 0.116  6.5 1.0 

  Model Ave.  0.106 0.251 0.358 0.056 0.091 0.108  - - 

 AC Min. AICC  0.114 0.255 0.369 0.065 0.095 0.116  6.5 1.0 

  Model Ave.  0.106 0.252 0.358 0.056 0.091 0.107  - - 

Parameter set 2           

  Min. RSS  0.051 0.123 0.175 0.016 0.051 0.053  7.9 1.1 

  φtpt  0.100 0.197 0.298 0.052 0.105 0.121  27.0 - 

 p-first Min. AICC  0.072 0.149 0.221 0.027 0.072 0.076  7.0 1.1 

  Model Ave.  0.064 0.147 0.211 0.025 0.069 0.072  - - 

 φ-first Min. AICC  0.072 0.149 0.221 0.027 0.072 0.076  7.0 1.0 

  Model Ave.  0.069 0.146 0.216 0.026 0.067 0.070  - - 

 PC Min. AICC  0.072 0.149 0.221 0.027 0.072 0.076  7.0 1.1 

  Model Ave.  0.067 0.145 0.210 0.025 0.065 0.069  - - 

 AC Min. AICC  0.072 0.149 0.221 0.027 0.072 0.076  7.0 1.1 

  Model Ave.  0.064 0.145 0.210 0.025 0.065 0.069  - - 

Parameter set 3           

  Min. RSS  0.025 0.066 0.092 0.011 0.024 0.027  7.7 1.0 

  φtpt  0.088 0.152 0.240 0.040 0.065 0.081  27.0 - 

 p-first Min. AICC  0.037 0.084 0.121 0.019 0.036 0.042  6.6 1.0 

  Model Ave.  0.032 0.082 0.114 0.018 0.035 0.040  - - 

 φ-first Min. AICC  0.037 0.084 0.121 0.018 0.036 0.041  6.6 1.0 

  Model Ave.  0.035 0.082 0.116 0.017 0.034 0.039  - - 

 PC Min. AICC  0.037 0.084 0.121 0.019 0.036 0.042  6.6 1.0 

  Model Ave.  0.032 0.080 0.112 0.018 0.034 0.039  - - 

 AC Min. AICC  0.037 0.084 0.121 0.019 0.036 0.042  6.6 1.0 

  Model Ave.  0.032 0.080 0.112 0.018 0.034 0.039  - - 
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Table 3. The mean and standard deviation (SD) of cumulative Akaike Information Criterion (AICC) model weights for individual 
survival (xiφ) and recapture (xip) probability covariates observed among estimates from 1000 simulations with each of three parame- 
ter sets under the p-first, φ-first, PC, and AC model-selection strategies. Bivariate correlations between the logit of the φ and p pa-
rameters and their covariates (Corr.) are taken from [34]. 

     p-first φ-first PC  AC 

Covariate  Corr.  Mean SD Mean SD Mean SD  Mean SD 

Parameter set 1           

 x1φ  0.861  0.823 0.208 0.817 0.315 0.808 0.244  0.805 0.222 

 x2φ  0.645  0.719 0.228 0.647 0.399 0.681 0.252  0.680 0.249 

 x3φ  0.266  0.601 0.229 0.525 0.401 0.559 0.238  0.556 0.235 

 x4φ  0.052  0.490 0.168 0.312 0.341 0.432 0.169  0.432 0.167 

 x1p  0.917  1.000 0.000 1.000 0.000 1.000 0.000  1.000 0.000 

 x2p  0.660  0.989 0.076 0.975 0.076 0.969 0.092  0.966 0.091 

 x3p  0.325  0.195 0.310 0.508 0.146 0.367 0.136  0.367 0.136 

 x4p  −0.013  0.199 0.314 0.509 0.147 0.370 0.139  0.370 0.138 

Parameter set 2           

 x1φ  0.864  1.000 0.000 1.000 0.000 1.000 0.000  1.000 0.000 

 x2φ  0.484  0.753 0.217 0.737 0.362 0.708 0.239  0.706 0.236 

 x3φ  0.262  0.694 0.228 0.641 0.400 0.641 0.248  0.639 0.246 

 x4φ  0.058  0.531 0.170 0.293 0.352 0.420 0.168  0.420 0.167 

 x1p  0.900  1.000 0.000 1.000 0.000 1.000 0.000  1.000 0.000 

 x2p  0.491  0.914 0.195 0.900 0.149 0.891 0.159  0.899 0.158 

 x3p  0.228  0.248 0.304 0.484 0.159 0.380 0.153  0.379 0.152 

 x4p  0.052  0.282 0.327 0.499 0.168 0.396 0.161  0.396 0.161 

Parameter set 3           

 x1φ  0.865  0.986 0.045 0.993 0.044 0.986 0.053  0.984 0.053 

 x2φ  0.706  0.722 0.229 0.704 0.362 0.693 0.243  0.692 0.241 

 x3φ  −0.005  0.452 0.155 0.236 0.289 0.376 0.146  0.376 0.145 

 x4φ  0.063  0.521 0.205 0.381 0.376 0.463 0.211  0.462 0.210 

 x1p  0.817  1.000 0.000 1.000 0.000 1.000 0.000  1.000 0.001 

 x2p  0.470  0.972 0.130 0.962 0.093 0.953 0.116  0.950 0.115 

 x3p  0.225  0.257 0.353 0.535 0.175 0.408 0.172  0.408 0.171 

 x4p  0.076  0.260 0.355 0.532 0.174 0.406 0.170  0.405 0.170 

 
the covariates having small correlations with φ (x3φ and 
x4φ). The AC and PC strategies produced cumulative 
weights for these covariates that were intermediate be- 
tween those of the p- and φ-first strategies. However, 
note that the use of individual covariates was not bal- 
anced under the p- and φ-first strategies (see DISCUS- 
SION). 

Substantial differences in the standard deviations of 
the cumulative weights for individual covariates were 
also observed among the strategies. For example, con- 
sider the p-first results for Parameter set 1 (Table 3). The 
standard deviations of the cumulative weights for x3p and 

x4p, which both have low correlations with p, were more 
than double the values observed under the other strate- 
gies. Similar results were obtained for x3φ and x4φ under 
the φ-first strategy, and the results were consistent across 
the three parameter sets. Covariates that might be con- 
sidered unimportant on the basis of pairwise correlations 
accumulated considerable AICC weight if they were in- 
cluded in the first sub-model selected and so were also 
included in the subsequent 15 models, but accumulated 
reduced weight otherwise, resulting in elevated variabil- 
ity.  

The difference among the strategies was perhaps most 
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clearly revealed by the cumulative model weights for 
combinations of covariates, which represent model struc- 
ture more effectively than weights associated with indi- 
vidual covariates. The results were similar for all three 
parameter sets, so only the results for Parameter set 1 are 

shown (Table 4). Under the p-first strategy, the most 
complex sub-model for φ had a mean cumulative weight 
of 0.204, approximately twice its mean weight of 0.106 
observed under the AC strategy. 

The standard deviation of this φ sub-model was also 
 
Table 4. The mean and standard deviation (SD) of cumulative Akaike Information Criterion (AICC) model weights for combinations 
of survival (φ) and recapture (p) probability covariates observed among estimates from 1,000 simulations with parameter set 1 under 
the p-first, φ-first, PC, and AC model-selection strategies. 

   p-first   φ-first  PC   AC  

Covariates  Mean SD  Mean SD Mean SD  Mean SD 

φ covariates            

 -  0.001 0.006  0.001 0.004 0.001 0.006  0.001 0.006 

 1  0.062 0.084  0.094 0.232 0.068 0.090  0.069 0.089 

 2  0.056 0.083  0.087 0.222 0.061 0.089  0.061 0.088 

 3  0.001 0.004  0.000 0.003 0.001 0.005  0.001 0.005 

 4  0.001 0.004  0.000 0.002 0.001 0.004  0.001 0.004 

 1+2  0.110 0.094  0.152 0.275 0.122 0.101  0.121 0.100 

 1+3  0.096 0.096  0.120 0.255 0.102 0.105  0.102 0.104 

 1+4  0.038 0.053  0.026 0.101 0.042 0.060  0.043 0.058 

 2+3  0.036 0.054  0.026 0.100 0.039 0.058  0.039 0.057 

 2+4  0.053 0.072  0.056 0.168 0.058 0.080  0.059 0.078 

 3+4  0.001 0.003  0.000 0.001 0.000 0.003  0.001 0.003 

 1+2+3  0.153 0.100  0.209 0.318 0.175 0.125  0.174 0.122 

 1+2+4  0.078 0.061  0.061 0.158 0.089 0.070  0.088 0.070 

 1+3+4  0.087 0.108  0.112 0.257 0.104 0.135  0.103 0.134 

 2+3+4  0.029 0.040  0.013 0.048 0.032 0.045  0.032 0.044 

 1+2+3+4  0.204 0.130  0.045 0.108 0.107 0.081  0.106 0.080 

p covariates            

 -  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 1  0.005 0.054  0.010 0.032 0.012 0.038  0.013 0.038 

 2  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 3  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 4  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 1+2  0.655 0.386  0.304 0.127 0.389 0.133  0.388 0.132 

 1+3  0.001 0.005  0.006 0.018 0.007 0.022  0.008 0.021 

 1+4  0.003 0.036  0.006 0.021 0.007 0.025  0.008 0.025 

 2+3  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 2+4  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 3+4  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 1+2+3  0.139 0.272  0.172 0.075 0.222 0.096  0.221 0.096 

 1+2+4  0.141 0.274  0.172 0.074 0.225 0.098  0.224 0.097 

 1+3+4  0.002 0.019  0.004 0.014 0.005 0.018  0.005 0.018 

 2+3+4  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 1+2+3+4  0.053 0.154  0.327 0.144 0.133 0.089  0.133 0.089 
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elevated under the p-first strategy; 0.130 versus 0.080. 
Sub-models for φ having fewer covariates therefore 
tended to have smaller mean weights and slightly re- 
duced standard deviations under the p-first strategy. 
Conversely, under the p-first strategy, the more complex 
sub-model for p tended to accumulate less weight, sub- 
models with fewer covariates (especially x1p + x2p) 
tended to accumulate more weight, and the cumulative 
weights of all sub-models were more variable than under 
the AC strategy. The results were symmetric for the 
φ-first strategy (Table 4). The results for the PC and AC 
strategies were nearly identical in all cases (Table 4). 

The numbers of models evaluated under the φ-first, 
p-first, and AC strategies are known in advance, while 
the number of models evaluated under the PC strategy 
cannot be predetermined. The frequency distribution of 
the number of models evaluated by the PC strategy for 
each of the three parameter sets is presented in Figure 1. 
The mean number of models evaluated under the PC 
strategy was 150%, 141%, and 126% of the number of 
models evaluated under the φ-first and p-first strategies 
for parameter sets 1, 2, and 3, respectively. However, in 
11%, 12%, and 15% of the simulations, the number of 
models evaluated under the PC strategy was less than the 
number evaluated under the φ-first and p-first strategies. 
The maximum number of models evaluated under the PC 
strategy was 128, 64, and 128, which were either 50% or 
25% of the number of models evaluated by the AC strat- 
egy (256). Note that these statistics do not include the 
initial models whose results were used to identify plausi- 
ble sub-models. 

4. DISCUSSION 

The PC strategy has several attractive characteristics. 
Under the p- and φ-first strategies, one initially condi- 
tions upon a complex sub-model for either p or φ, while 
evaluating candidate sub-models for the other parameter 
class. The estimation results from these models are car- 
ried forward and constitute over half of the models that 
are evaluated (16 of 31 models in this investigation). The 
cumulative weights in Tables 2 and 3 suggest that these 
stepwise procedures tend to inflate the apparent impor- 
tance of complex covariate models for one parameter 
class and, consequently, overly simplistic covariate mod- 
els for the other parameter class. This phenomenon con- 
stitutes an information “leak” between sub-models [32]. 
Neither strategy produces an accurate assessment of co-
variate importance for either φ or p. While flexible sub- 
models for either p or φ are also conditioned upon in the 
first step of the PC strategy, the only results from the 
initial modeling step that are carried forward are lists of 
sub-models for subsequent evaluation, i.e., the initial 
parameter estimates are discarded. Consequently, results 
of models evaluated during the search through the model 

 

Figure 1. The frequency distribution of the number of models 
on which inference was based under the PC strategy using each 
of the three parameters sets, with the mean number of models 
indicated by a green triangle. The number of models under the 
φ-first and p-first strategies (31) is indicated with a red triangle, 
while the number of models under the AC strategy (256) is not 
shown. 
 
space are disassociated from model results on which in- 
ference is based, and the selection of a flexible sub- 
model in the initial modeling step has little influence on 
the ultimate parameter estimates and covariate weights 
obtained under the PC strategy. Unlike the p- and φ-first 
strategies, the PC strategy is symmetric with respect to p 
and φ and the order in which they are considered is im- 
material. Finally, the PC strategy explores the potential 
model space more effectively than the p- and φ-first 
strategies by considering all models that provide a com- 
paratively good approximation to the data, conditioned 
on the candidate model set, leading to an improved as- 
sessment of the importance of covariates and covariate 
combinations, and its numerical performance was indis- 
tinguishable from that of the AC strategy. 

One potential disadvantage of the PC strategy is that 
the number of models to be evaluated cannot be prede- 
termined, and will vary as a function of the observed 
capture histories and the candidate sub-models. Logically, 
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one can expect the number of models evaluated to in- 
crease with the number of competitive sub-models, espe- 
cially if there are numerous competitive sub-models for 
both p and φ. However, note that the PC strategy can be 
modified in straightforward fashion to influence the 
number of models evaluated. For example, the threshold 
AICC model weight of 0.01 used in this investigation 
could be increased, which would reduce the number of 
models evaluated. In addition, a threshold based on 
ΔAICC could be implemented. In any case, achieving 
performance equivalent to that of the AC strategy while 
estimating the parameters of far fewer models should 
outweigh concern about how many models need to be 
evaluated in many investigations, especially if parameter 
estimation can be performed efficiently, as is possible in 
the R programming environment [35,36]. 

The equivalent performance of all strategies with re- 
spect to parameter estimation, as measured by RSS, is 
intriguing. We suspect that this is a consequence of 
working with several additive covariate combinations 
that provide approximately equal explanatory power. 
However, based on our experience modeling real data, it 
is not uncommon for models with different covariate 
structures to produce parameter estimates with non-triv- 
ial differences but have similar model weights. The in- 
formation “leak” between sub-models [32] that is appar- 
ent in the results of the p- and φ-first strategies is indica- 
tive that this may have occurred to some degree in the 
simulation. Under such conditions, differences among 
the strategies with respect to parameter estimation are 
more likely to exist and model-averaging is likely to 
provide greater benefits than our results suggest. In any 
case, we caution against the potentially naïve interpreta- 
tion of our results that use of either the p- or φ-first 
strategies is adequate if one is primarily interested in the 
estimation of natural parameters, rather than the impor- 
tance of covariates or covariate structure. 

The issue of covariate balance in a model set is critical 
when using covariate weights to assess the explanatory 
utility of covariates. Covariates that are included in a 
large number of models can accumulate substantial 
weight even if they are not truly informative. Conversely, 
a covariate with meaningful explanatory value could 
conceivably accumulate lower weight than it merits if 
included in few models, although those models should 
tend to have relatively high weights. Of the model 
evaluation strategies considered in this investigation, 
only the AC strategy was balanced for individual covari- 
ates. Various approaches to adjust for unequal covariate 
balance within a model set have been implemented [34, 
37], although no such adjustments were made in this 
investigation (Table 3) because differences among the 
strategies were being evaluated. Even if such methods 
correctly adjust for the number of times a covariate is 

used, our view is that the use of model weights to assess 
the importance of individual covariates is overempha-
sized. Covariate combinations define model structure and 
covariates are rarely uncorrelated, hence model structure 
is more effectively assessed by examining cumulative 
weights associated with unique covariate combinations 
[38]. Note that the subset of models evaluated under the 
PC strategy is naturally balanced for covariate combina- 
tions. 

We would like to reemphasize the importance of de-
liberately formulating a candidate model set with careful 
consideration of prior information, expert opinion, eco- 
logical relevance, and research objectives or hypotheses 
[13,15,16,18]. Including every conceivable model and 
using an automated or semi-automated strategy to search 
the model space is data or model dredging [15], and can 
lead to spurious results even when using model average- 
ing. If such an approach is implemented, the utility of the 
resulting model or parameter estimates should be as- 
sessed using cross validation or the collection of inde- 
pendent data. However, even when model sets are con- 
structed with great care, the number of models included 
can still be excessively large. In cases with an unfeasibly 
large number of models to evaluate, an objective algo- 
rithm for searching the model space, such as the PC 
strategy, is likely to prove useful. 

Model selection and the evaluation of model structure 
will continue to be fundamental aspects of mark-recap- 
ture modeling. The PC strategy offers substantial advan- 
tages compared to other strategies in common use, pro- 
ducing parameter estimates and cumulative covariate 
weights that are nearly indistinguishable from those 
produced by the AC strategy, without substantially in- 
creasing the average number of models evaluated in 
comparison to the p- and φ-first strategies. Although the 
performance of the PC strategy was investigated using 
CJS mark-recapture models, the conceptual approach is 
easily extensible to other classes of models in which the 
global model can be viewed as a combination of compo- 
nent sub-models, such as multistate CJS models. An in- 
vestigation of the performance of the PC strategy with 
more complex models would be informative. 
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