
Journal of Information Security, 2013, 4, 42-53
http://dx.doi.org/10.4236/jis.2013.41006 Published Online January 2013 (http://www.scirp.org/journal/jis)

Technology of Secure File Archiving in the Uniformly
Random Distributed Archive Scheme

Ahmed Tallat, Hiroshi Yasuda, Kilho Shin
Applied Information Engineering, Tokyo Denki University, Tokyo, Japan

Email: taltdulat@gmail.com

Received September 29, 2012; revised October 30, 2012; accepted November 10, 2012

ABSTRACT

This paper investigates the security features of the distributed archive scheme named Uniformly Random Distributed
Archive (URDA). It is a simple, fast and practically secure algorithm that meets the needs of confidentiality and avai-
lability requirements of data. URDA cuts a file archived into fragments, and distributes each fragment into randomly
selected n − k + 1 storages out of n storages. As the result, users only need to access at least k storages to recover origi-
nal file, whereas stolen data from k − 1 storages cannot cover original file. Thus, archived files are nothing but se-
quences of a large number of fixed length fragments. URDA is proved of disappearing both characters and biased bits
of original data in archived files, indicating the probabilities of both a fragment and a bit appearing at particular position
are uniformly constant respectively. Yet, through running experiments, we found out the risk of likelihood that URDA
might be vulnerable to bit pattern attack due to the different ratios of characters appearing in real world files. However,
we solved the problem by modifying URDA with variable fragment lengths, which results in that all the bits in revealed
sequences are distributed uniformly and independently at random.

Keywords: Cloud Computing; Archive; Secret Sharing; Character Set

1. Introduction

Cloud computing is attracting attentions of people of a
wide variety of fields including users, service providers
and facility manufacturers. From the users’ point of view,
the most attractive advantages of cloud computing must
be the ubiquity and affordability of services that cloud
computing can realize. Since cloud computing is con-
structed on top of the Internet, users can take advantage
of services anytime and anywhere. The recent rapid sp-
read of mobile computing certainly enhances the de-
mands for the ubiquity of service provision. On the other
hand, the affordability of cloud computing is based on
exploitation of public infrastructures. The Internet itself
is apparently public good, and cloud computing is enlar-
geing its scope to computational powers and storages that
are available in the Internet. For example, the data back-
up services provided by data center companies are very
expensive, and small and middle-sized enterprises cannot
afford them. In contrast, the same services are now being
provided at significantly lower prices based on cloud
computing.

Thus, the advantages of cloud computing are due to
the fundamental idea of exploiting the Internet and public
goods existing in the Internet. This, however, can pro-
duce disadvantages as well. In particular, in terms of se-

curity, the Internet has serious problems. ISO 17799 [1]
determines that confidentiality, integrity and availability
(CIA) are the three important factors in considering se-
curity issues, and the Internet has vulnerability in all of
them: Communication over the Internet is in principle
subject to eavesdropping and tampering; Nobody con-
trols the overall the services of the Internet, and cutoff
and delay of communication can happen anytime. Fur-
thermore, we cannot deny the possibility that the provid-
ers of services are malicious. Although cryptographic
technology will provide us with strong countermeasures
with respect to confidentiality and integrity, we need
different technologies to solve the issue of availability.

Let’s consider a data backup service based on cloud
computing. A user uploads his or her data to the Internet
for the backup purpose, and the data are distributed
across many inexpensive storages unknown to the user.
Different storage providers operate different storages
under different policies. Even their connectivity may
vary. Thus, the user can have a problem when he or she
needs to restore the data. In the worst case scenario, it is
still possible that some of storage providers have ceased
their services without notification, and therefore, a part
of the backup data has been lost forever.

To solve this problem of availability, storing data with
redundancy is probably the only solution, and we have

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 43

already had technologies to realize availability by re-
dundant storing.

RAID [2] (Redundant Array of Inexpensive Disks) is
daily use technology, and combines more than one
physical hard disks into a single logical unit by distribut-
ing the whole data mostly with redundancy across multi-
ple disks, which is necessary in case of data lost; A failed
disk is replaced by a new one, and the lost data will be
built from the remaining data and the redundancy such as
parity data. This technology enables computer users to
achieve high level storage reliability from PC-class com-
ponents.

Although RAID is appropriate to apply to “home”
servers, it has evidently issues in its scalability. In par-
ticular, RAID can accept failures of only one (RAID 3
and 5) or two disks, and will not be able to apply to the
Internet, where users may lose access to more than two
storages.

The technology known as “secret sharing” also pro-
vide a method to distribute secret information with re-
dundancy: For , n members have their shares
derived from a secret, and the secret will be completely
reconstructed when k members exhibit their own shares;
By contrast, collusion of (k − 1) members will reveal
none or only a few bits of the secret. This property of
secret sharing is referred to as k-out-of-n threshold se-
crecy. The initial (k, n) threshold secret sharing scheme
(SSS) known in the literature were independently in-
vented by Adi Shamir [3] and George Blackley [4] in
1979, and since then the scheme has been widely studied
and applied on a variety of fields. (for example, Rabin
[5], Bai [6,7], Blundo [8], He [9], Wang [10]).

0n k 

Although these schemes support the severe require-
ment of k-out-of-n threshold secrecy, their computational
complexity is extremely high, and it cannot show practi-
cal performance when applied to archive of bulky data:
data should be fragmented into a number of fragments so
that they are short enough to be dealt with by the secret
sharing algorithms, and the algorithms need heavy com-
putation such as modular exponentiation and matrix ma-
nipulation in calculating shares from each fragment.

The recent technology of P2P also provides the func-
tion of storing data with redundancy. P2P aims at sharing
decentralized resources (CPU, storage, bandwidth and
contents) of each participant, while eliminating conven-
tional centralized unit to provide browsing and down-
loading, and thus the participants are both consumer and
provider of the resources in distributed networks. The
principle is simply uploading and downloading simulta-
neously and continuously, and the acceleration of data
transferring can be improved significantly by download-
ing desired pieces simultaneously with random order
from multiple providers that treat distributed contents as

sequence of pieces through fragmenting them into se-
quences. We already have several P2P based global sto-
rage products (for example, OceanStore [11] and PAST
[12]).

The most important problem of the P2P technology
when applying to our purpose should be its extremely
low efficiency in storage spaces and bandwidth. The ini-
tial aim of P2P is to realize sharing data among an un-
specified number of people, and hence, data are ex-
changed and stored with very high redundancy exceeding
the necessity for the backup purpose.

In our previous work [13], we investigated a simple
scheme, called the uniformly random distributed archive
scheme (URDA). The algorithm of URDA is extremely
simple and easy: The original data is fragmented into a
number of tiny fragments (several bits long), and each
fragment is distributed across n − k + 1 storages out of n
storages: The most important feature of URDA consists
in that the selection of the n − k + 1 storages is domi-
nated by a completely random process: Storages are se-
lected uniformly and independently at random per frag-
ment. By this, URDA meets the condition of k-out-of-n
threshold robustness: that is, even if the owner of the data
loses access to k − 1 storages of the entire n storages, the
user can restore the original data from the data fragments
retrieved from the remaining k storages.

In terms of confidentiality, it has been revealed in pre-
vious work that URDA has a couple of remarkable prop-
erties.

1) Except for bits existing in the very narrow neigh-
borhood of the start and the end of the original file, the
probability that a guess on the position where a particular
fragment of the original file appears in a distributed
backup file is very small, and almost constant.

2) When assuming that the original data consists of
ASCII characters selected at random from the entire pos-
sible values, the probability that a particular bit pattern
appears at a particular position in a distri- buted backup
file is independent of the position. To be precise, we can
theoretically derive the following formula.

  1

1 1 7 9
Pr 0

8 2 2 2t t l l l l

l l l
b b   

         
 

 4
 (1)

The symbol bt represents the t-th bit from the head of
the backup data, and the formula holds unless the bit falls
into narrow neighborhoods of the head and the tail of the
distributed backup file.

The first property implies that, if attackers do not take
advantage of biases of bit patterns in the original data,
they cannot guess the contents of the original data from
the distributed backup data. On the other hand, in the
second property, we take ASCII data as an instance, and
show that the evident bias of bit patterns, that is, 0 ap-

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 44

pears every eight bits, disappears in distributed backup
files. Thus, these properties indicate the possibility that
URDA can provide confidentiality of a certain degree,
without relying on cryptographic techniques. This would
be an important advantage of URDA in terms of time-
efficiency of the scheme.

In this paper, we further investigate the second prop-
erty. In the real world, any text files have particular bi-
ases in the distributions of bit patterns, and the theoretic-
cal conclusion of URDA might not hold true for data in
the real world. We struggle with this problem through
experiments.

In the experiments, we downloaded 200 ASCII files
from the Internet, applied URDA to these files to gene-
rate 1000 backup files, and looked into the statistical
features of the backup files. First, we found that the
Equation (1) still holds true for the backup files we in-
vestigated in our experiments. This was verified by per-
forming the one-sample t-test: It has turned out that the
“null” hypothesis that the Equation (1) does hold cannot
be rejected even with a large significance level. Secondly,
we synthetically generated 200 random ASCII files and
1000 backup files in the same way as for the downloaded
ASCII files. Then, we compared between the synthetic
and the real backup files in terms of the variance of the
distributions of the particular bit pattern. The result this
time showed that the null hypothesis can be rejected with
the significance level 0.05 by the F-test. This means that
the distributions of bit patterns between the real and syn-
thetic backup files are different, and therefore, we cannot
deny the possibility that a clever attacker can invent an
effective pattern analysis to guess the original contents
from the contents of the backup files.

Based on the result of this experiment, we modified
the algorithm of URDA so that the length of fragments
are to be determined at random per fragment, and per-
formed the same experiment using this modified URDA.
The result was surprising. The two groups of distribu-
tions, one for the real backup files generated by the
modified URDA and the other for the synthetic backup
files, are concluded to be the same. To be precise, even
with a large significance level, we could not reject the
null hypotheses that claim that the distributions are the
same as Gaussian distributions. This consequence is sig-
nificant: The backup files of real ASCII files generated
by the modified URDA are indistinguishable from the
synthetic backup files. By definition, the synthetic
backup files show the uniform randomness in terms of bit
pattern distributions, and hence, we can conclude backup
files generated by the modified URDA are secure against
bit pattern analysis.

Following Section 2 describes some related studies
followed by URDA scheme proposed in previous paper
for the consistency of the paper, and it also includes

analyses of security feature of URDA. Section 3 clarifies
problem that the paper is tackling, and provides solution
by running experiments and applying statistical methods.
We conclude the paper with future work in section 4.

2. Distributed Archive Schemes

In this section, we provide a brief review over the data
storage techniques of redundancy known in the literature,
and then describe URDA proposed in our previous work.

2.1. Distributed Schemes in Storage Pools

Digital high density recording technologies have made a
variety of data recorded in storage medium. As a result,
the form of utilizing storage devices has been greatly
changed, and a variety of home appliances, computers/
servers, and even micro device in mobiles have become
to have their own storages and to utilize them at a higher
level.

However, with the advent of the Internet the need of
sharing information made rapid increase of data in terms
of variability and amount, which in turn led to creation of
high technical processing power of computers and also
posed strong demand to the scale of flexibility of stor-
ages for these ever-increasing data. Since there are limits
of computational power and capacity within conventional
devices having attached to individual storages inside,
they are no longer able to meet the need the way of data
being accessed, stored and shared. Furthermore, tracking
and backing up files distributed into a variety of storages
constitute significant hardship. Some storage techniques
[14] try to address these problems by allowing all the
files to be stored in a single, secure storage that can be
accessed by other clients and servers regardless of the
operating systems from anywhere within the same do-
main.

However, independency of storages and servers is
costly in terms of updating, managing and running. Thus,
the conception of “storage pool” [15] aims at providing
the scale of flexibility to solve the problems by allowing
servers to utilize storage capacity from the pool so that
virtual hard disk drives can be dedicated to servers based
on their needs without buying extra storage to each of
them individually. The storage pool is also known as a
dedicated storage network, because it is separated and
independent from servers, allowing several servers to
connect one drive and vise verse. Same as the independ-
ent storage, drive enclosure in the storage pool can hold
any number of drives with a variety of types and expand
on demand. Mostly the variety of drives has a central
control unit to manage all the Input/output and they are
equipped with some technical schemes for providing
security and recoverability in case of disaster or system
failure.

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL.

Copyright © 2013 SciRes. JIS

45

However, to guarantee the availability, integrity and
confidentiality of the data stored in storage medium is
not easy task. Because every system is vulnerable to cer-
tain damages caused by natural, physical and technical
attacks, and thus these data can be lost, delayed or even
stolen. Redundancy probably is the only feasible solution
to address the issues. The fastest method to realize re-
dundancy is replication [16], which distributes redun-
dantly copied fragments of data across infrastructure, but
it is space inefficient, and p2p is a typical example of the
replication-based systems. Another resilient method is
erasure coding that splits data into n fragments, which
are then further redundantly encoded into k additional
fragments using parity, matrix, polynomial etc. Thus, k
specifies the level of resiliency or Maximum Distance
Separable (MDS), where k = MDS.

techniques when applying them to cloud computing in
the context of robustness and security, and to provide
affordable backup techniques, we have introduced URDA
in our previous work.

The outline of the algorithm of URDA is as follows:
URDA first fragment the source file to archive into mul-
tiple tiny fragments, and then distributes each fragment
to n − k + 1 destination storages selected out of the entire
n storages. The n − k + 1 storages are selected uniformly
and independently at random per fragment. Thus, the
source file is distributed across n storages, and each
fragment is archived at exactly n − k + 1 different stora-
ges. The simple image of URDA is shown in Figure 1.

To be specific, URDA consists of a smartcard and a
host (e.g. client/server software), and they communicate
with each other through a standardized interface like IC
card interface [17], Near Field Communication [18] and
Infrared Link Access Protocol [19]. The role of the smar-
tcard is to generate random distribution keys taking ad-
vantage of the key generator RNGK receiving seeds from
the seed generator RNGS, both RNGK and RNGS are in-
stalled inside the smartcard, whereas the host fragments
the source file, duplicates the fragments, and distributing
the copies generated across multiple storages, following
the indication by the random distribution keys. In the
following, we give a brief description of the archival and
retrieval phases of URDA. The flow chart of the algo-
rithm is shown in Figure 2.

Despite their values, widespread utilities, and reliabi-
lities due to the capabilities of meeting the various needs
for disaster recoveries, they all have drawbacks in terms
of heavy cost and complex computational procedures.
Because they use matrices, cryptography and heavy ma-
thematical calculation etc. for producing redundancy, and
applying them to large amount of data is very expensive,
due to extremely time-consuming computational re-
quirements, and even they are relatively inflexible, due to
the complexity and difficulty of meeting various levels of
desired security requirements as needed. What is more,
dealing with cloud computing environment, for example
for the purpose of backup of datacenter, is not easy with
these schemes, due to lack of utilization of cost-effect
readiness to use available storages provided. Thus, the
currently heavy set-up cost and computational complex-
ity cause significant hardship to utilize currently avai-
lable storage services in order to realize secure backup
services.

(1) Archival phase: The role of the smart card in the
archival phase is to generate a series of distribution keys
and to transmit them to the host. The algorithm of the
smart card in the archival phase is as follows;

1) Receive the START_ARCHIVAL signal accompa-
nying the identifier of the source file through the card-
host interface. The identifier is denoted by crr_fid.

2.2. URDA-Uniformly Random Distributed
Archive Scheme

2) Generate a random seed taking advantage of RNGS.
The seed is denoted by crr_seed.

3) Store the pair of crr_fid and crr_seed in the internal In order to address aforementioned issues of current

Figure 1.The simple image of URDA (n = 5, k = 3).

A. TALLAT ET AL. 46

Figure 2. The flow chart of URDA.

database. The pair will be used in the retrieval phase.

4) Input crr_seed into RNGK.
5) Let RNGK generate a random number, which is an

index to determine the (n; k)-distribution key to be used
by the host. The smart card outputs the random number
to the host program.

6) Repeat Step 5 until it receives the END_OF_FILE
signal from the host program.

On the other hand, the role of the host program in the
archival phase is to distribute the contents of the source
file over n destination files.

1) Fragment the source file into the b-bit long frag-
ments of fgmnt1,···,fgmntlast, and create a pointer p to
indicate the current fragment fgmntp. The initial value of
p is 1.

2) Send the START_ARCHIVAL signal to the smart
card.

3) Receive an index ip from the smart card.
4) Identify the distribution with index ip. The distribu-

tion key determines the set of n − k + 1 destination files
to which the current fragment fgmntp is to be appended.

5) Take away the current fragment fgmntp from the
source file, and increment the pointer p by 1.

6) Append the fragment fgmntp to the destination files
determined in Step 4.

7) Repeat the steps from 3 to 6 until all the fragments
are taken away from the source file.

8) Send the END_OF_File signal to the smart card.
9) The host program sends the resultant n destination

files to n storages via networks.
(2) Retrieval phase: The algorithm of the smartcard in

the retrieval phase is as follows:

1) Receive the START_RETRIEVAL signal accom-
panying the identifier crr_fid of the target file from the
host program.

2) Look up crr_fid in the internal database, and re-
trieve the seed crr_seed paired with crr_fid.

3) Input crr seed into RNGK.
4) Output the random numbers ip that RNGK gener-

ates to the host program.
5) Repeat Step 4 until the END_OF_FILE signal is

received.
On the other hand, algorithm of the host is described

as follows.
1) Fragment the destination files into b-bit length frag-

ments, create a pointer for each destination file. Initially,
each pointer is set so that it indicates the first fragment.

2) Send the START_RETRIEVAL signal to the smart
card.

3) Receive an index ip from the smart card. The initial
value of p shall be 1.

4) Determine the set of n − k + 1 destination files in
which the current fragment fgmntp are included.

5) For each of the destination files determined in Step
4, take away the fragment indicated by the pointer asso-
ciated with the destination file, and change the pointer so
that it points the next fragment.

6) Append fgmntp to the source file, and increment p
by 1.

7) Repeat the steps of 3 to 6 until all of the destination
files are empty.

The size of the resultant destination files is exactly
 1n k  times as great as the original size of the

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 47

source file and the expected size of each destination file
is  1n k n  times smaller than the size of the source
file, and thus it supports  robustness and ,k n  ,k n
security, which means that downloading from k storages
is enough to recover original file and that even  1k 
storages are attacked, the stolen data cannot cover total
amount of the file.

2.3. Security Features of URDA

In this clause, we summarize the security features of
URDA that are presented in our previous work.

The probability that a specific fragment is not included
in any of specific r storages is

1

1 1

n k n k n k r

n n n r

    
  

 




Thus, if r storages are compromised, the probability that
all of the fragments are revealed is

1

1
1

Nr

i

n k i

n i

     
 

 (2)

N is the total number of the fragments. When ,
the Equation (2) is 1, whereas, when r < k, it approaches
0, as N increases. This implies the k-out-of-n threshold
secrecy: Even if k − 1 storages are compromised, the
entire original contents will not be revealed.

r k

Definition 1. Let N and m denote the number of frag-
ments in a source file and a revealed sequence, and a and
j denote the positions of a fragment in both the source
file and the revealed sequence  
respectively. Then we define that
denotes the probability that a fragment at the position of
a in the source file appears at the position of j in the re-
vealed sequence.

1, 1N a m j   
 , ; ,a j N mMatch

When a is fixed and j moves, following holds for the
maximum value of .  , ; ,a j N mMatch

 
 

1, ,
, ; , , 1

1 1j m

am am
a j N m

N N

              
argmaxMatch



Thus, the maximum of when a is
fixed and j moves, is given by the following formula.

 , ; ,a j N mMatch 

  

1 4
1

, ; ,
1 1π

am m N
a N m

N aN

            
Match

N a
 (3)

The minimum value of the equation can be reached at
1

2

N
a


 , and Figure 3 is its simulation result for the

value of N = 103,104, 105, 106 and 3

4

m

N
 .

Thus, we can conclude that the security against identi-
fying the position of a fragment is uniformly small ex-
cept the fragments located in heads and tails. Further-
more, obtaining further safety can be possible by adding
dummy data at the heads and tails.

Next, we run a thought experiment. In the experiment,
we see that the certain significant pattern of the bit dis-
tribution of ASCII text files disappears in archived
backup files. For the ASCII text files to use in the ex-
periment, we assume that ASCII characters in the files
are selected uniformly and independently at random per
character from the entire possible values. Therefore, the
bit distribution of the files is as follows: The most sig-
nificant bit (MSB) of every byte is always 0, whereas the
remaining bits are distributed uniformly and indepen-
dently at random. Then, we define

  
mod8

, ,
a

q j a j N m





 ; , Match

to represent the probability that mod8a  holds
when fgmnt j is a copy of . Then, the probabi-
lity that the ρ-th bit

fgmnta

 ,71,  of fgmnt j is 0 turns
out to be

Figure 3. Simulation result

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 48

    7

1
Pr 0 , 1 ,

2jb q j q j         (4)

A remarkable fact is that   1
,

8
q j   holds except

fo and r narrow neighborhoods of j m . Hence, 1j 
hwhen t is not close to 1 or m, we ave the f wing ap-

proximation.



ollo

 1 4

1 1 7
0

8 2 2 2t t l l l l

l l l 9
b   

        
 

Through the same computation as above, we have the
fo

P b 

llowing.
Corollary 1. When t is not close to 1 or m,
 Pr , ,t t t l t lb b    is approximately constant.
Corollary 2. When t is not close to 1 or m,
 Pr
Corollary 1 and 2 impl

, ,t t t l t lb b    is approximately constant.
y that most of the bits in the re-

ve

dentifying the problem,

g that source files include

aled contents look almost the same in the attacker’s
eye.

3. Problem and Solution

In following sections, through i
we provide particular solutions to address it. To proceed,
we investigate experimentally on ASCII characters to see
if bit patterns of source files can be disappeared in ar-
chived files, and further demonstrate that practical secu-
rity of plain text archiving can be obtain by varying
fragment length in bit distribution.

3.1. Identified Problems

Our previous work, assumin
only ASCII characters selected uniformly and independ-
ently at random, we mathematically proved that an ar-
chived file consisting of seven-bit-long fragments shows
uniformly constant distributions with respect to the
probabilities that particular bit patterns appear in it. To
be precise, we let 1 LC C be the byte contents of a file,
where ic is an A haracter selected uniformly at
random om the entire space of ASCII characters. Then,
we apply URDA to this file by setting the fragment
length to be seven bits, and hence, the file content is
fragmented into seven-bit-long fragments. The resulting
archived files are collections of these fragments. Focus-
ing on one of the archived files, we proved that the
probability 

SCII c
 fr

1 1 0Pr , , ,t l t l tb b b            is
approximately f t,
unless t is too small or too large. tb denotes the bit at
the position t in the archived file, an 1 0, ,

co regardless of the choice o

d

nstant

       is
an arbitrary bit pattern with  0,1i  hat
we can view the archived file gainst bit pattern
analysis, since the source file does not include any bit

On the other hand, text files found in the real world,
even when they consist of ASCII characters, cannot help

s. Thus,

. This means t
as secure a

pattern except that the bit 0 appears every 8 bits, and this

pattern proves to disappear in the archived file.

s with a large
e internet.

II files from diverse

ven as fol-

1) ternet, and download
them.

including biases in the distribution of character
the hypothesis of the aforementioned investigation does
not necessarily hold, and hence, it is not certain that the
conclusion of the investigation holds true for the real
files.

The problem that we solve in this paper is first to in-
vestigate whether the property that we proved in our pre-
vious work also holds true for real files that include bi-
ases in the distributions of characters. Then, we will an-
swer the question whether URDA is secure against bit
pattern analysis when applied to real files.

3.2. How to Solve the Problem

To solve this problem, we run experiment
number of files that we obtain from th

To be specific, we download ASC
sites to apply URDA to these files, and then investigate
the distributions of bit patterns that appear in the result-
ing archived files. We first examine whether the mean of
the probabilities that particular bit patterns (in the ex-
periments, we focus on four bit patterns that are se-
quences of 0) is identical to what was theoretically de-
rived in Equation (1).

When we naturally assume that the probabilities ob-
served follow Gaussian distributions, it is not sufficient
to investigate only the means. We have to investigate the
variances as well. For this purpose, in addition to the
files obtained from the Internet, we generate synthetic
ASCII files based on the uniformly random process: For
each position in a file, an ASCII character is selected
uniformly and independently at random. Then we com-
pare the distributions of the probabilities of the same bit
patterns between the archived files generated from the
downloaded files and those derived from the synthetic
files. The comparison will be made in terms of the means
and the variances, since we assume that the distributions
follow Gaussian distribution. Since the synthetic files are
generated based on the same probabilistic model as what
Equation (1) was based on, and since we concluded that
such files are secure against bit pattern analysis, this
comparison shows an answer to the question whether the
same conclusion with respect to confidentiality holds true
for real ASCII files.

3.3. URDA with the Setting of the
Fragment Length = 7 bits

The procedures to run the experiment are gi
lows.

 Find 200 ASCII files in the In

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 49

2) Apply URDA to the downloaded files with n = 5
and k = 3, and hence, obtain 1000 archived files, each of
w

ngth to be seven bits as specified in Section 2.2.
hich is at least 100 KB length. Here, we set the frag-

ment le
3) For t = 1 to 400,000, count the number tn of oc-

currence of 0t tb b    for 0,1,2,3 over the
1,000 archived files, and calculate  Pr 0t tb b   

by
1000

. Thus, we have 400,000 scores of



tn

Pr 0t tb b    for each respect-
tively.

0,1, 2,3

W t these scores in the graphs of Figuree plo 4.
Yet we are still unable to estimate whether the mathe-

matical formula can a the real wor
files with fixed fragment length, without evaluat-

in

rastically when
s close to the head of the files),

 to Equation (1).

lso apply to ld biased
ASCII

g dispersion of the scores from means.

3.4. Statistical Tests

According to the mathematical evaluation given in
URDA in previous work, the scores vary d
t is small (the position i
but they quickly converge

In fact, when looking at Figure 4, the scores observed
in this experiment seem to follow this rule: The values of

4

9

2l

l



 are 0.5625, 0.3125, 0.1719 and 0.0938 respec-

low t
ved in previous work.

tively for l = 0,1,2,3. In the following, we will investi-
gate this, that is, whether the scores observed in fact fol-

he statistically calculated mathematical formula pro-

3.4.1. Examining the Means
By the one-sample t-test, we investigate whether the

population means underlying the observed scores are
identical to the test means calculated by Equation (1).

The null hypothesis here is of course that the popula-
tion means are identical to the test means. Table 1 shows
the results of one-sample t-test.

The t statistics are calculated from the equation
x

t
s

n


 , where x , , andn s stand for the sample 

mean, test mean, sample size and standard deviation of
the sample respectively. From Table 1, we see that we
cannot reject the null hypothesis even with very large
significance level, say 0.2: Typically, we use the signify-
cance level 0.05 or 0.01. Hence, we can reasonably guess
that the null hypothesis is right, that is, the population
means are identical to the theoretical value calculated by
Equation (1).

3.4.2. Examining the Variances
In the previous clause, we see that the population means
are identical to the theoretical means calculated from
Equation (1). This result alone, however, is insufficient,
since this result tells nothing about how the scores vary
around the means. Thus, we have to investigate whether
the population variances are sufficiently small. The prob-
lem here is that, unlike the calculation of means, we do
not have a formula to give the theoretical expectation for
the variances. As an alternative method, we generate
synthetic files that are generated based on the same
probability model as the mathematical model that under-
lies Equation (1), and compare the scores obtained from
the experiment and the scores derived from these syn-
thetic files.

1

57
14

4

11
42

87

17
14

30

22
85

73

28
57

16

34
28

59
 1

57
14

4

11
42

87

17
14

30

22
85

73

28
57

16

34
28

59

1

57
14

4

11
42

87

17
14

30

22
85

73

28
57

16

34
28

59
 1

57
14

4

11
42

87

17
14

30

22
85

73

28
57

16

34
28

59

1

0.5

0

0.4

0.2

0

0.2

0

0.4

0.2

0

Figure 4. Fixed-fragment-length Pr[bt = ··· = bt−l = 0] (l = 0,1,2,3, t = 1, ··· , 400,000).

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 50

Table 1. Comparing of observed scores and test means.

  Pr 0tb   1Pr , 0t tb b    2Pr , , 0t tb b    3Pr , , 0t tb b  

0.5707fx  0.3082fx  0.1718fx  0.0948fx  Sample Mean

0.5625fx  0.3125fx  0.1719fx  0.0938fx  Test Mean

T-Statistics

TINV

0.706fT   0.4928fT  0.0107fT  0.167fT  

1.66T  1.66T  1.66T  1.

P-Value

66T 

tail 0.482T  tail 0.623T  tail 0.992T  tail 0.868T 

To be specific, we generate 200 files that include only

ASCII characters selected uniformly and independently
at random regardless of the position of the characters.
Then, we apply Step 2 and 3 of Section 3.3 to obtain
400,000 scores for each of We call these
scores test scores to distinguish them from the sample
scores generated in

To verify this statistically, we
to the sample scores and the test scores. Consequently,
the null h pothesis to use should be that the population
vari ying the sample sco entical to
those underlying the test scores.

Ta ws the result of the test, where

0,1,2,3 .

Section 3.3.
apply two-sample F-test

y
ances underl res are id

ble 2 sho 2
f and

2 , andt f tx x are the variances and the he
sample scores and the test scores, resp
ing to T 2, we see that the va

means of t
ectively. Accord-

able riance 2
f is greater

than 2
t , while the means andf tx x

ng the P-v
ce level 0.05,

are o
each en investigati alue ted in

e t with the significan
nu

l model t

DA with the aforemen-
tio

 the Fragment

variable.
In the same way as Section 3.3, we obtain 400,000

sample scores for each of , and plot them in
Figure 5.

At a glance, the means of the sample scores are iden-
tical to their theoretically expected values o

 ve
s prese

ry close t
n

we see that the
 ot
able

her. Wh
th

ll hypothesis should be rejected for all cases of
0,1, 2,3 . Thus, when we apply URDA to ASCII files

downloaded from the Internet with the fixed fragment
length seven bits, the resulting archived files will not be
explained by the mathematica hat is a basis of
Equation (1). In other words, we cannot prove that the
archived files generated by UR

ned setting are secure against the bit pattern analysis,
and we cannot recommend use of URDA with this set-
ting.

3.5. URDA with the Setting of
Length = Variable

As seen in the above, using URDA with the fixed frag-
ment length cannot be recommended from the security
point of view. In this clause, we investigate the security
of URDA with a different setting, that is, we assume that
the fragment length is variable, and is selected at random
per fragment in the range of 1 to 32 bits.

For the experiment, we use the same ASCII files stated
in Section 3.3. The difference consists in Step 2, and we
run URDA with the setting of the fragment length =

0,1,2,3

f

  4

9
Pr 0

2
t t

l
b b 


l    , and the variances have be-

come smaller compared with the case of the fixed g-
ment length. In the following, we verify these observa-

ons by means of statistics.

5.1. Examining the M
 the same way as the previous subsection, we apply the

one-sample t-test to verify that the population means of
the sample scores are identical to the theoretical expecta-

on.
Table 3 shows that the P-values obtained are large

 fra

ti

3. eans
In

ti

(the minimum is 0.188), and we cannot reject the null hy-
potheses with a small significance level, for example,
0.05. Hence the population means of the target probabili-

ties are identical to the values given by
4

9

2l

l



 for

0,1,2,3 .

3.5.2. Examining the Variances
ores
ores

gene ing the synthetic ASCII files.

ained are large
(th

nsequence, we can conclude that the population
va

her.

As shown in Table 4, the variances of the sample sc
are close to those of the test scores, which are the sc

rated in Section 3.3 us
If this is true, this will be a clear contrast with the former
case where we ran URDA with the fixed fragment length.
In the following, we verify that the population variances
of the sample scores and the test scores are identical to
each other by means of the two-sample F-test.

Table 4 shows that the P-values obt
e smallest is 0.1704), and we cannot reject the null

hypotheses with a small significance level, for example,
0.05.

As a co
riances that underlie the sample scores and the test

scores are identical to each ot

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 51

1

57
14

4

11
42

87

17
14

30

22
85

73

28
57

16

34
28

59

1 0.5

0.5

0 0

0.2

0

0.4

0.2

1

57
14

4

11
42

87

17
14

30

22
85

73

28
57

16

34
28

59

1

57
14

4 87

30

73

16

59

11
42

17
14

22
85

28
57

34
28

0

1

14
4

28
7 30

73

16

59

57 11 1 2 2 3

 = bt−l = 0] (l = 0,1,2,3, t = 1, ··· , 400,000).

4 71
4

28
5

85
7

42
8

Figure 5. Variable-fragment-length Pr[bt = ···

Table 2. Comparing of fixed variances and test variances.

  Pr 0tb   1Pr , 0t tb b    2Pr , , 0t tb b    3Pr , , 0t tb b  

2 0.0135f  2 0.0078f  2 0.0078f  2 0.0036f  Sample Variance

2 0.0036f  2 0.0045t  2 0.0019t  2 0.0014t 

0.5707fx  0.3082fx  0.1718fx  0.0948fx 

Test Variance

Sample Mean

Test Mean 0.5617tx  0.3103tx  0.1721tx  0.0923tx 

F-Value 1.53 1.72 2.64 2.61

Critical Value

P-Value

tail 1.39O  tail 1.39O  tail 1.39O  tail 1.39O 

tail 1.49T  tail 1.49T  tail 1.49T  tail 1.49T 

tail tail tail0.036T  0.007T  0.000002T  tail 0. 0004T  00

Table 3. Comparing of variable means and test means.

  Pr 0tb   1Pr , 0t tb b    2Pr , , 0t tb b    3Pr , , 0t tb b  

Test Mean 0.5625tx  0.3125tx  0.1719tx  0.0938tx 

Sample Mean 0.5511rx  0.3031rx  0.1712rx  0.0938rx 

TINV 1.66T  1.66T  1.66T  1.66T 

T

P-Value

-Statistics 1.067rT  1.3261rT  0.1437rT  0.021rT  

tail 0.288T  tail 0.188T  tail 0.886T  tail 0.983T 

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 52

Table 4. Comparing of variable variances and test variances.

  Pr 0tb   1Pr , 0t tb b    2Pr , , 0t tb b    3Pr , , 0t tb b  

Sample Varianc 2 0.0115r  2 0.0051r  2 0.0025r  2 0.0015r  es

2 0.0088t  2 0.0045t  2 0.0019t  2 0.0014t  Test Variances

ean Sample M 0.5511rx  0.3031rx  0.1712rx  0.0938rx 

Test Mean 0px  .5617 0.3103px  0.1721px  0.0923px 

F alue 0.7694 0. 0.7583 0.9458

P-Value

-V 89

tail 1.39O  tail 1.39O  tail 1.39O  tail 1.39O 
Critical Value

tail 1.49T  tail 1.49T  tail 1.49T  tail 1.49T 

tail 0.194T  tail 0.549T  tail 0.1704T  tail 0.7823T 

3.6. Summary of This Experiments

In our previous work, assuming that source files include
ASCI ters selected uniformly and independentl
at random per character, we h
that an archived file consisting
ments shows uniformly constant distributions with re-
spect to the probabilities that particular bit patterns ap-
pear s, we can view th archived file as
secure against the bit pattern analysis. On the other hand,
the distributions of characters that appear in files of the
real w ainly biased, and hence, it was not cer-
tain that the same conclusion holds true when applying
URDA the real world with th same setting. To
investigate this problem, we first compared the following
two sce terms of the m nd variances of t
probability distribution of some particular bit patterns.
- A to files taken from the Internet with the

setting of seven-bit-long fragments.
- Apply URDA to synthetic files generated so that

ever character appears with the same prob-
ability regardless of the position in the files.

bility are iden-

I charac y
ave mathematically proved

of seven-bit-long frag-

. In other word e

orld are cert

 to files of e

narios in eans a he

pply URDA

y ASCII

As we expected, the means of the proba

tical to their theoretical expectation of
4

9

2l

l



 for

0,1, 2,3 , but the variances for the first scenario are
significantly larger than those for the second scenario.
Therefore, we cannot deny the possibility that there exist
some clever attacks that take advantage of this difference
in the variance.

Hence, we ran the same experiments after modifying
the first scenario. In the new scenario, the length of each
fragment is not fixed, but is determined at random be-
tween 1 bit to 32 bits per fragment. The results of the
comparison is surprising, we cannot detect statistically

significant differences in either the means or the vari-

ances between the scores for the downloaded and ran-
domly fragmented ASCII files and those for the ynthetic
ASCII files. In oth ords, we cannot statistically dis-
tinguish between the archived files generated from the

nthetic files.
Thus, we cannot conclu hat use of URDA with the

d fragment length is secure, while use of URDA
e randomly variable fragment length is secure gainst

4. Conclusion and Future Work

We investigated whether the formula

s
er w

downloaded files and the sy
de t

fixe with
th
bit pattern analysis.

 a

  4

9
0

2
t t l l

l
P b b  


   

applies to real ASCII te s that include biases in the
distributions of characters. Applying URDA to down-

d text files by fra menting the files into seven bit
long, we found that the resulting archived files might be
ulnerable to bit patter nalysis attacks. Thus, in the

same way as the previous experiment, we ran another

ch
w

n in
ages and how it affects security issues in plain text ar-
chiving. Co

xt file

loade g

v n a

experiment by modifying URDA in the way how to se-
lect fragment lengths, that is, the length of each fragment
is determined at random per fragment between 1 bit to 32

tbi s, and showed this modified URDA with the randomly
variable fragment length is secure against the bit pattern
analysis.

As the next step, we will investigate the security of
URDA when applied to text files that include a variety of

aracter sets and their corresponding code units. We
ill specify the significance of biased bits in these code

units, which includes their actual representatio stor-

nsequently we need to testify, by stochastic-
cally determining the size b per fragment, whether we
can obtain similar conclusion for various kinds of source

Copyright © 2013 SciRes. JIS

A. TALLAT ET AL. 53

files with various bit distributions. In addition, we also
investigate some sorts of file existed in the real world
th

. 313.

ormation for Se-
ance,” Journal of

35-348.

at are said close to random files like video, image and

compressed files etc.

REFERENCES
[1] http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalog

ue_detail.htm?csnumber=39612

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D.
A. Patterson, “Aid: High-performance, Reliable Secon-
dary Storage,” ACM Computing Surveys, Vol. 26, No. 2,
1994, pp. 145-185.

[3] A. Shamir, “How to Share a Secret,” Communication of
ACM, Vol. 22, No. 11, 1979, pp. 612-613.

[4] G. Blakley, “Safeguarding Cryptographic Keys,” 1979
Proceedings of the National Computer Conference, New
York, 4-7 July 1979, p

[5] M. O. Rabin, “Efficient Dispersal of Inf
curity, Load Balancing, and Fault Toler

the ACM, Vol. 36, No. 2, 1989, pp. 3
doi:10.1145/62044.62050

[6] L. Bai, “A Strong Ramp Secret Sharing Scheme Us
Matrix Projection,” Proceedings of the 2006 International

ing

Symposium on a World of Wireless, Mobile and Multime-
dia Networks, New York, 26-29 July 2006, pp. 652-656.

[7] L. Bai and X. K. Zou, “A Proactive Secret Sharing Sche-
me in Matrix Projection Method,” International Journal
of Security and Networks, Vol. 4, No. 4, 2009, pp. 201-
209.

[8] C. Blundo, “Alfredo de Santis and Ugo Vaccaro, Efficient
Sharing of Many Secrets,” Springer Verlag, Berlin, 1993.

[9] J. M. He and E. Dawson, “Multistage Secret Sharing Ba-
sed on One-Way Function,” Electronic Letters, Vol. 30,
No. 19, 1994, pp. 1591-1592. doi:10.1049/el:19941076

[10] K. Wang, X. K. Zou and Y. Sui, “A Multiple Secret Shar-
ing Scheme Based on Matrix Projection,” Proceedings of

 Eaton, D. Geels, B. Zhao, H. Weathe-

5, No. 5, 2001,

the 33rd Annual IEEE International Computer Software
and Applications Conference, Seattle, 20-24 July 2009,
pp. 400-405.

[11] S. Rhea, C. Wells, P.
rspoon and J. Kubiatowicz, “Maintenance-Free Global Da-
ta Storage,” IEEE Internet Computing, Vol.
pp. 40-49. doi:10.1109/4236.957894

[12] A. Rowstron and P. Druschel, “Storage Management and
Caching in PAST, a Large-Scale, Persistent Peer-to-Peer

and H. Yasuda, “Some Remar-

C

rmation Technology-Telecomunications and

sociation: Serial in-

Storage Utility,” Proceeding SOSP’01 Proceedings of the
Eighteenth ACM Symposium on Operating Systems Prin-
ciples, Banff, 21-24 October 2001, pp. 188-201.

[13] A. Tallat, K. Shin, H. Lee
kable Property of the Uniformly Random Distributed Ar-
chive Scheme,” Advances in Information Sciences and
Service Sciences, Vol. 4, No. 11, 2012, pp. 114-124.

[14] Cisco System, “Storage Networking 101,” Cisco System,
San Jose, 2001.

[15] International Business Machines Corporation, “Introduc-
tion to Storage Area Networks,” 2012.
http://www.redbooks.ibm.com/

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Shenker, “A scalable Content-Addressable Network”,
SIGCOMM ‘01 Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2001, pp. 161-172.

[17] International Organization for Standardization, “ISO/IE
7816 Series: Identification Cards-Integrated Circuits(s)
Cards with Contacts,” International Organization for Stan-
dardization, Geneva, 1999.

[18] International Organization for Standardization, “ISO/IEC
18092-3: Info
Information Exchange between Systems-Near Field Com-
munication-Interface and Protocol (NFCIP-1),” Interna-
tional Organization for Standardization, Geneva, 2004.

[19] IBM Corporation, “Infrared Data As
frared Link Access Protocol (IrLAP) Version.1.1,” IBM
Corporation, New York, 1996.

Copyright © 2013 SciRes. JIS

