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ABSTRACT 

This paper investigates the security features of the distributed archive scheme named Uniformly Random Distributed 
Archive (URDA). It is a simple, fast and practically secure algorithm that meets the needs of confidentiality and avai- 
lability requirements of data. URDA cuts a file archived into fragments, and distributes each fragment into randomly 
selected n − k + 1 storages out of n storages. As the result, users only need to access at least k storages to recover origi-
nal file, whereas stolen data from k − 1 storages cannot cover original file. Thus, archived files are nothing but se-
quences of a large number of fixed length fragments. URDA is proved of disappearing both characters and biased bits 
of original data in archived files, indicating the probabilities of both a fragment and a bit appearing at particular position 
are uniformly constant respectively. Yet, through running experiments, we found out the risk of likelihood that URDA 
might be vulnerable to bit pattern attack due to the different ratios of characters appearing in real world files. However, 
we solved the problem by modifying URDA with variable fragment lengths, which results in that all the bits in revealed 
sequences are distributed uniformly and independently at random. 
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1. Introduction 

Cloud computing is attracting attentions of people of a 
wide variety of fields including users, service providers 
and facility manufacturers. From the users’ point of view, 
the most attractive advantages of cloud computing must 
be the ubiquity and affordability of services that cloud 
computing can realize. Since cloud computing is con- 
structed on top of the Internet, users can take advantage 
of services anytime and anywhere. The recent rapid sp- 
read of mobile computing certainly enhances the de- 
mands for the ubiquity of service provision. On the other 
hand, the affordability of cloud computing is based on 
exploitation of public infrastructures. The Internet itself 
is apparently public good, and cloud computing is enlar- 
geing its scope to computational powers and storages that 
are available in the Internet. For example, the data back- 
up services provided by data center companies are very 
expensive, and small and middle-sized enterprises cannot 
afford them. In contrast, the same services are now being 
provided at significantly lower prices based on cloud 
computing. 

Thus, the advantages of cloud computing are due to 
the fundamental idea of exploiting the Internet and public 
goods existing in the Internet. This, however, can pro- 
duce disadvantages as well. In particular, in terms of se-  

curity, the Internet has serious problems. ISO 17799 [1] 
determines that confidentiality, integrity and availability 
(CIA) are the three important factors in considering se- 
curity issues, and the Internet has vulnerability in all of 
them: Communication over the Internet is in principle 
subject to eavesdropping and tampering; Nobody con- 
trols the overall the services of the Internet, and cutoff 
and delay of communication can happen anytime. Fur- 
thermore, we cannot deny the possibility that the provid- 
ers of services are malicious. Although cryptographic 
technology will provide us with strong countermeasures 
with respect to confidentiality and integrity, we need 
different technologies to solve the issue of availability. 

Let’s consider a data backup service based on cloud 
computing. A user uploads his or her data to the Internet 
for the backup purpose, and the data are distributed 
across many inexpensive storages unknown to the user. 
Different storage providers operate different storages 
under different policies. Even their connectivity may 
vary. Thus, the user can have a problem when he or she 
needs to restore the data. In the worst case scenario, it is 
still possible that some of storage providers have ceased 
their services without notification, and therefore, a part 
of the backup data has been lost forever.  

To solve this problem of availability, storing data with 
redundancy is probably the only solution, and we have  

Copyright © 2013 SciRes.                                                                                   JIS 



A. TALLAT  ET  AL. 43

already had technologies to realize availability by re- 
dundant storing. 

RAID [2] (Redundant Array of Inexpensive Disks) is 
daily use technology, and combines more than one 
physical hard disks into a single logical unit by distribut- 
ing the whole data mostly with redundancy across multi- 
ple disks, which is necessary in case of data lost; A failed 
disk is replaced by a new one, and the lost data will be 
built from the remaining data and the redundancy such as 
parity data. This technology enables computer users to 
achieve high level storage reliability from PC-class com- 
ponents. 

Although RAID is appropriate to apply to “home” 
servers, it has evidently issues in its scalability. In par- 
ticular, RAID can accept failures of only one (RAID 3 
and 5) or two disks, and will not be able to apply to the 
Internet, where users may lose access to more than two 
storages.  

The technology known as “secret sharing” also pro- 
vide a method to distribute secret information with re- 
dundancy: For , n members have their shares 
derived from a secret, and the secret will be completely 
reconstructed when k members exhibit their own shares; 
By contrast, collusion of (k − 1) members will reveal 
none or only a few bits of the secret. This property of 
secret sharing is referred to as k-out-of-n threshold se-
crecy. The initial (k, n) threshold secret sharing scheme 
(SSS) known in the literature were independently in-
vented by Adi Shamir [3] and George Blackley [4] in 
1979, and since then the scheme has been widely studied 
and applied on a variety of fields. (for example, Rabin 
[5], Bai [6,7], Blundo [8], He [9], Wang [10]). 

0n k 

Although these schemes support the severe require- 
ment of k-out-of-n threshold secrecy, their computational 
complexity is extremely high, and it cannot show practi- 
cal performance when applied to archive of bulky data: 
data should be fragmented into a number of fragments so 
that they are short enough to be dealt with by the secret 
sharing algorithms, and the algorithms need heavy com- 
putation such as modular exponentiation and matrix ma- 
nipulation in calculating shares from each fragment. 

The recent technology of P2P also provides the func- 
tion of storing data with redundancy. P2P aims at sharing 
decentralized resources (CPU, storage, bandwidth and 
contents) of each participant, while eliminating conven- 
tional centralized unit to provide browsing and down- 
loading, and thus the participants are both consumer and 
provider of the resources in distributed networks. The 
principle is simply uploading and downloading simulta- 
neously and continuously, and the acceleration of data 
transferring can be improved significantly by download- 
ing desired pieces simultaneously with random order 
from multiple providers that treat distributed contents as  

sequence of pieces through fragmenting them into se- 
quences. We already have several P2P based global sto- 
rage products (for example, OceanStore [11] and PAST 
[12]). 

The most important problem of the P2P technology 
when applying to our purpose should be its extremely 
low efficiency in storage spaces and bandwidth. The ini- 
tial aim of P2P is to realize sharing data among an un- 
specified number of people, and hence, data are ex- 
changed and stored with very high redundancy exceeding 
the necessity for the backup purpose.  

In our previous work [13], we investigated a simple 
scheme, called the uniformly random distributed archive 
scheme (URDA). The algorithm of URDA is extremely 
simple and easy: The original data is fragmented into a 
number of tiny fragments (several bits long), and each 
fragment is distributed across n − k + 1 storages out of n 
storages: The most important feature of URDA consists 
in that the selection of the n − k + 1 storages is domi-
nated by a completely random process: Storages are se-
lected uniformly and independently at random per frag-
ment. By this, URDA meets the condition of k-out-of-n 
threshold robustness: that is, even if the owner of the data 
loses access to k − 1 storages of the entire n storages, the 
user can restore the original data from the data fragments 
retrieved from the remaining k storages. 

In terms of confidentiality, it has been revealed in pre- 
vious work that URDA has a couple of remarkable prop- 
erties.  

1) Except for bits existing in the very narrow neigh- 
borhood of the start and the end of the original file, the 
probability that a guess on the position where a particular 
fragment of the original file appears in a distributed 
backup file is very small, and almost constant. 

2) When assuming that the original data consists of 
ASCII characters selected at random from the entire pos-
sible values, the probability that a particular bit pattern 
appears at a particular position in a distri- buted backup 
file is independent of the position. To be precise, we can 
theoretically derive the following formula. 

  1

1 1 7 9
Pr 0

8 2 2 2t t l l l l

l l l
b b   

         
 

 4
   (1) 

The symbol bt represents the t-th bit from the head of 
the backup data, and the formula holds unless the bit falls 
into narrow neighborhoods of the head and the tail of the 
distributed backup file. 

The first property implies that, if attackers do not take 
advantage of biases of bit patterns in the original data, 
they cannot guess the contents of the original data from 
the distributed backup data. On the other hand, in the 
second property, we take ASCII data as an instance, and 
show that the evident bias of bit patterns, that is, 0 ap-  
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pears every eight bits, disappears in distributed backup 
files. Thus, these properties indicate the possibility that 
URDA can provide confidentiality of a certain degree, 
without relying on cryptographic techniques. This would 
be an important advantage of URDA in terms of time- 
efficiency of the scheme. 

In this paper, we further investigate the second prop- 
erty. In the real world, any text files have particular bi- 
ases in the distributions of bit patterns, and the theoretic- 
cal conclusion of URDA might not hold true for data in 
the real world. We struggle with this problem through 
experiments.  

In the experiments, we downloaded 200 ASCII files 
from the Internet, applied URDA to these files to gene- 
rate 1000 backup files, and looked into the statistical 
features of the backup files. First, we found that the 
Equation (1) still holds true for the backup files we in- 
vestigated in our experiments. This was verified by per- 
forming the one-sample t-test: It has turned out that the 
“null” hypothesis that the Equation (1) does hold cannot 
be rejected even with a large significance level. Secondly, 
we synthetically generated 200 random ASCII files and 
1000 backup files in the same way as for the downloaded 
ASCII files. Then, we compared between the synthetic 
and the real backup files in terms of the variance of the 
distributions of the particular bit pattern. The result this 
time showed that the null hypothesis can be rejected with 
the significance level 0.05 by the F-test. This means that 
the distributions of bit patterns between the real and syn- 
thetic backup files are different, and therefore, we cannot 
deny the possibility that a clever attacker can invent an 
effective pattern analysis to guess the original contents 
from the contents of the backup files. 

Based on the result of this experiment, we modified 
the algorithm of URDA so that the length of fragments 
are to be determined at random per fragment, and per- 
formed the same experiment using this modified URDA. 
The result was surprising. The two groups of distribu- 
tions, one for the real backup files generated by the 
modified URDA and the other for the synthetic backup 
files, are concluded to be the same. To be precise, even 
with a large significance level, we could not reject the 
null hypotheses that claim that the distributions are the 
same as Gaussian distributions. This consequence is sig- 
nificant: The backup files of real ASCII files generated 
by the modified URDA are indistinguishable from the 
synthetic backup files. By definition, the synthetic 
backup files show the uniform randomness in terms of bit 
pattern distributions, and hence, we can conclude backup 
files generated by the modified URDA are secure against 
bit pattern analysis. 

Following Section 2 describes some related studies 
followed by URDA scheme proposed in previous paper 
for the consistency of the paper, and it also includes 

analyses of security feature of URDA. Section 3 clarifies 
problem that the paper is tackling, and provides solution 
by running experiments and applying statistical methods. 
We conclude the paper with future work in section 4. 

2. Distributed Archive Schemes 

In this section, we provide a brief review over the data 
storage techniques of redundancy known in the literature, 
and then describe URDA proposed in our previous work. 

2.1. Distributed Schemes in Storage Pools 

Digital high density recording technologies have made a 
variety of data recorded in storage medium. As a result, 
the form of utilizing storage devices has been greatly 
changed, and a variety of home appliances, computers/ 
servers, and even micro device in mobiles have become 
to have their own storages and to utilize them at a higher 
level. 

However, with the advent of the Internet the need of 
sharing information made rapid increase of data in terms 
of variability and amount, which in turn led to creation of 
high technical processing power of computers and also 
posed strong demand to the scale of flexibility of stor- 
ages for these ever-increasing data. Since there are limits 
of computational power and capacity within conventional 
devices having attached to individual storages inside, 
they are no longer able to meet the need the way of data 
being accessed, stored and shared. Furthermore, tracking 
and backing up files distributed into a variety of storages 
constitute significant hardship. Some storage techniques 
[14] try to address these problems by allowing all the 
files to be stored in a single, secure storage that can be 
accessed by other clients and servers regardless of the 
operating systems from anywhere within the same do- 
main. 

However, independency of storages and servers is 
costly in terms of updating, managing and running. Thus, 
the conception of “storage pool” [15] aims at providing 
the scale of flexibility to solve the problems by allowing 
servers to utilize storage capacity from the pool so that 
virtual hard disk drives can be dedicated to servers based 
on their needs without buying extra storage to each of 
them individually. The storage pool is also known as a 
dedicated storage network, because it is separated and 
independent from servers, allowing several servers to 
connect one drive and vise verse. Same as the independ- 
ent storage, drive enclosure in the storage pool can hold 
any number of drives with a variety of types and expand 
on demand. Mostly the variety of drives has a central 
control unit to manage all the Input/output and they are 
equipped with some technical schemes for providing 
security and recoverability in case of disaster or system 
failure. 
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However, to guarantee the availability, integrity and 
confidentiality of the data stored in storage medium is 
not easy task. Because every system is vulnerable to cer- 
tain damages caused by natural, physical and technical 
attacks, and thus these data can be lost, delayed or even 
stolen. Redundancy probably is the only feasible solution 
to address the issues. The fastest method to realize re- 
dundancy is replication [16], which distributes redun- 
dantly copied fragments of data across infrastructure, but 
it is space inefficient, and p2p is a typical example of the 
replication-based systems. Another resilient method is 
erasure coding that splits data into n fragments, which 
are then further redundantly encoded into k additional 
fragments using parity, matrix, polynomial etc. Thus, k 
specifies the level of resiliency or Maximum Distance 
Separable (MDS), where k = MDS. 

techniques when applying them to cloud computing in 
the context of robustness and security, and to provide 
affordable backup techniques, we have introduced URDA 
in our previous work. 

The outline of the algorithm of URDA is as follows: 
URDA first fragment the source file to archive into mul- 
tiple tiny fragments, and then distributes each fragment 
to n − k + 1 destination storages selected out of the entire 
n storages. The n − k + 1 storages are selected uniformly 
and independently at random per fragment. Thus, the 
source file is distributed across n storages, and each 
fragment is archived at exactly n − k + 1 different stora- 
ges. The simple image of URDA is shown in Figure 1.  

To be specific, URDA consists of a smartcard and a 
host (e.g. client/server software), and they communicate 
with each other through a standardized interface like IC 
card interface [17], Near Field Communication [18] and 
Infrared Link Access Protocol [19]. The role of the smar- 
tcard is to generate random distribution keys taking ad- 
vantage of the key generator RNGK receiving seeds from 
the seed generator RNGS, both RNGK and RNGS are in- 
stalled inside the smartcard, whereas the host fragments 
the source file, duplicates the fragments, and distributing 
the copies generated across multiple storages, following 
the indication by the random distribution keys. In the 
following, we give a brief description of the archival and 
retrieval phases of URDA. The flow chart of the algo- 
rithm is shown in Figure 2. 

Despite their values, widespread utilities, and reliabi- 
lities due to the capabilities of meeting the various needs 
for disaster recoveries, they all have drawbacks in terms 
of heavy cost and complex computational procedures. 
Because they use matrices, cryptography and heavy ma- 
thematical calculation etc. for producing redundancy, and 
applying them to large amount of data is very expensive, 
due to extremely time-consuming computational re- 
quirements, and even they are relatively inflexible, due to 
the complexity and difficulty of meeting various levels of 
desired security requirements as needed. What is more, 
dealing with cloud computing environment, for example 
for the purpose of backup of datacenter, is not easy with 
these schemes, due to lack of utilization of cost-effect 
readiness to use available storages provided. Thus, the 
currently heavy set-up cost and computational complex- 
ity cause significant hardship to utilize currently avai- 
lable storage services in order to realize secure backup 
services. 

(1) Archival phase: The role of the smart card in the 
archival phase is to generate a series of distribution keys 
and to transmit them to the host. The algorithm of the 
smart card in the archival phase is as follows; 

1) Receive the START_ARCHIVAL signal accompa- 
nying the identifier of the source file through the card- 
host interface. The identifier is denoted by crr_fid. 

2.2. URDA-Uniformly Random Distributed  
Archive Scheme 

2) Generate a random seed taking advantage of RNGS. 
The seed is denoted by crr_seed. 

3) Store the pair of crr_fid and crr_seed in the internal In order to address aforementioned issues of current  
 

 

Figure 1.The simple image of URDA (n = 5, k = 3). 
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Figure 2. The flow chart of URDA. 
 
database. The pair will be used in the retrieval phase. 

4) Input crr_seed into RNGK. 
5) Let RNGK generate a random number, which is an 

index to determine the (n; k)-distribution key to be used 
by the host. The smart card outputs the random number 
to the host program. 

6) Repeat Step 5 until it receives the END_OF_FILE 
signal from the host program. 

On the other hand, the role of the host program in the 
archival phase is to distribute the contents of the source 
file over n destination files. 

1) Fragment the source file into the b-bit long frag- 
ments of fgmnt1,···,fgmntlast, and create a pointer p to 
indicate the current fragment fgmntp. The initial value of 
p is 1. 

2) Send the START_ARCHIVAL signal to the smart 
card. 

3) Receive an index ip from the smart card. 
4) Identify the distribution with index ip. The distribu- 

tion key determines the set of n − k + 1 destination files 
to which the current fragment fgmntp is to be appended. 

5) Take away the current fragment fgmntp from the 
source file, and increment the pointer p by 1. 

6) Append the fragment fgmntp to the destination files 
determined in Step 4. 

7) Repeat the steps from 3 to 6 until all the fragments 
are taken away from the source file. 

8) Send the END_OF_File signal to the smart card. 
9) The host program sends the resultant n destination 

files to n storages via networks.  
(2) Retrieval phase: The algorithm of the smartcard in 

the retrieval phase is as follows: 

1) Receive the START_RETRIEVAL signal accom- 
panying the identifier crr_fid of the target file from the 
host program. 

2) Look up crr_fid in the internal database, and re- 
trieve the seed crr_seed paired with crr_fid. 

3) Input crr seed into RNGK. 
4) Output the random numbers ip that RNGK gener- 

ates to the host program. 
5) Repeat Step 4 until the END_OF_FILE signal is 

received. 
On the other hand, algorithm of the host is described 

as follows. 
1) Fragment the destination files into b-bit length frag- 

ments, create a pointer for each destination file. Initially, 
each pointer is set so that it indicates the first fragment. 

2) Send the START_RETRIEVAL signal to the smart 
card. 

3) Receive an index ip from the smart card. The initial 
value of p shall be 1. 

4) Determine the set of n − k + 1 destination files in 
which the current fragment fgmntp are included. 

5) For each of the destination files determined in Step 
4, take away the fragment indicated by the pointer asso-
ciated with the destination file, and change the pointer so 
that it points the next fragment. 

6) Append fgmntp to the source file, and increment p 
by 1. 

7) Repeat the steps of 3 to 6 until all of the destination 
files are empty. 

The size of the resultant destination files is exactly 
 1n k   times as great as the original size of the  
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source file and the expected size of each destination file 
is  1n k n   times smaller than the size of the source 
file, and thus it supports   robustness and ,k n  ,k n  
security, which means that downloading from k storages 
is enough to recover original file and that even  1k   
storages are attacked, the stolen data cannot cover total 
amount of the file. 

2.3. Security Features of URDA 

In this clause, we summarize the security features of 
URDA that are presented in our previous work. 

The probability that a specific fragment is not included 
in any of specific r storages is  

1

1 1

n k n k n k r

n n n r

    
  

 



 

Thus, if r storages are compromised, the probability that 
all of the fragments are revealed is  

1

1
1

Nr

i

n k i

n i

     
 

              (2) 

N is the total number of the fragments. When , 
the Equation (2) is 1, whereas, when r < k, it approaches 
0, as N increases. This implies the k-out-of-n threshold 
secrecy: Even if k − 1 storages are compromised, the 
entire original contents will not be revealed. 

r k

Definition 1. Let N and m denote the number of frag- 
ments in a source file and a revealed sequence, and a and 
j denote the positions of a fragment in both the source 
file and the revealed sequence    
respectively. Then we define that  
denotes the probability that a fragment at the position of 
a in the source file appears at the position of j in the re- 
vealed sequence. 

1, 1N a m j   
 , ; ,a j N mMatch

When a is fixed and j moves, following holds for the 
maximum value of .  , ; ,a j N mMatch

 
 

1, ,
, ; , , 1

1 1j m

am am
a j N m

N N

              
argmaxMatch


 

Thus, the maximum of  when a is 
fixed and j moves, is given by the following formula. 

 , ; ,a j N mMatch 

  

1 4
1

, ; ,
1 1π

am m N
a N m

N aN

            
Match

N a
 (3) 

The minimum value of the equation can be reached at  
1

2

N
a


 , and Figure 3 is its simulation result for the  

value of N = 103,104, 105, 106 and 3

4

m

N
 .  

Thus, we can conclude that the security against identi- 
fying the position of a fragment is uniformly small ex- 
cept the fragments located in heads and tails. Further- 
more, obtaining further safety can be possible by adding 
dummy data at the heads and tails. 

Next, we run a thought experiment. In the experiment, 
we see that the certain significant pattern of the bit dis- 
tribution of ASCII text files disappears in archived 
backup files. For the ASCII text files to use in the ex- 
periment, we assume that ASCII characters in the files 
are selected uniformly and independently at random per 
character from the entire possible values. Therefore, the 
bit distribution of the files is as follows: The most sig- 
nificant bit (MSB) of every byte is always 0, whereas the 
remaining bits are distributed uniformly and indepen- 
dently at random. Then, we define 

  
mod8

, ,
a

q j a j N m





 ; , Match  

to represent the probability that mod8a   holds 
when fgmnt j  is a copy of . Then, the probabi- 
lity that the ρ-th bit 

fgmnta

 ,71,   of fgmnt j  is 0 turns 
out to be  

 

 

Figure 3. Simulation result  
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    7

1
Pr 0 , 1 ,

2jb q j q j             (4) 

A remarkable fact is that   1
,

8
q j    holds except  

fo  and r narrow neighborhoods of j m . Hence, 1j 
hwhen t is not close to 1 or m, we ave the f wing ap- 

proximation. 



ollo

 1 4

1 1 7
0

8 2 2 2t t l l l l

l l l 9
b   

        
 

 

Through the same computation as above, we have the 
fo

P b 

llowing. 
Corollary 1. When t is not close to 1 or m,  
 Pr , ,t t t l t lb b     is approximately constant. 
Corollary 2. When t is not close to 1 or m,  
 Pr
Corollary 1 and 2 impl

, ,t t t l t lb b     is approximately constant. 
y that most of the bits in the re- 

ve

dentifying the problem, 

g that source files include 

aled contents look almost the same in the attacker’s 
eye. 

3. Problem and Solution 

In following sections, through i
we provide particular solutions to address it. To proceed, 
we investigate experimentally on ASCII characters to see 
if bit patterns of source files can be disappeared in ar- 
chived files, and further demonstrate that practical secu- 
rity of plain text archiving can be obtain by varying 
fragment length in bit distribution.  

3.1. Identified Problems 

Our previous work, assumin
only ASCII characters selected uniformly and independ- 
ently at random, we mathematically proved that an ar- 
chived file consisting of seven-bit-long fragments shows 
uniformly constant distributions with respect to the 
probabilities that particular bit patterns appear in it. To 
be precise, we let 1 LC C  be the byte contents of a file, 
where ic  is an A haracter selected uniformly at 
random om the entire space of ASCII characters. Then, 
we apply URDA to this file by setting the fragment 
length to be seven bits, and hence, the file content is 
fragmented into seven-bit-long fragments. The resulting 
archived files are collections of these fragments. Focus- 
ing on one of the archived files, we proved that the 
probability 

SCII c
 fr

1 1 0Pr , , ,t l t l tb b b             is 
approximately f t, 
unless t is too small or too large. tb  denotes the bit at 
the position t in the archived file, an 1 0, ,

co  regardless of the choice o

d 

nstant

        is 
an arbitrary bit pattern with  0,1i  hat 
we can view the archived file gainst bit pattern 
analysis, since the source file does not include any bit 

On the other hand, text files found in the real world, 
even when they consist of ASCII characters, cannot help 

s. Thus, 

. This means t
as secure a

pattern except that the bit 0 appears every 8 bits, and this  

pattern proves to disappear in the archived file.  

s with a large 
e internet.  

II files from diverse 

ven as fol- 

1) ternet, and download 
them. 

including biases in the distribution of character
the hypothesis of the aforementioned investigation does 
not necessarily hold, and hence, it is not certain that the 
conclusion of the investigation holds true for the real 
files. 

The problem that we solve in this paper is first to in- 
vestigate whether the property that we proved in our pre- 
vious work also holds true for real files that include bi- 
ases in the distributions of characters. Then, we will an- 
swer the question whether URDA is secure against bit 
pattern analysis when applied to real files. 

3.2. How to Solve the Problem 

To solve this problem, we run experiment
number of files that we obtain from th

To be specific, we download ASC
sites to apply URDA to these files, and then investigate 
the distributions of bit patterns that appear in the result- 
ing archived files. We first examine whether the mean of 
the probabilities that particular bit patterns (in the ex- 
periments, we focus on four bit patterns that are se- 
quences of 0) is identical to what was theoretically de- 
rived in Equation (1).  

When we naturally assume that the probabilities ob- 
served follow Gaussian distributions, it is not sufficient 
to investigate only the means. We have to investigate the 
variances as well. For this purpose, in addition to the 
files obtained from the Internet, we generate synthetic 
ASCII files based on the uniformly random process: For 
each position in a file, an ASCII character is selected 
uniformly and independently at random. Then we com- 
pare the distributions of the probabilities of the same bit 
patterns between the archived files generated from the 
downloaded files and those derived from the synthetic 
files. The comparison will be made in terms of the means 
and the variances, since we assume that the distributions 
follow Gaussian distribution. Since the synthetic files are 
generated based on the same probabilistic model as what 
Equation (1) was based on, and since we concluded that 
such files are secure against bit pattern analysis, this 
comparison shows an answer to the question whether the 
same conclusion with respect to confidentiality holds true 
for real ASCII files. 

3.3. URDA with the Setting of the  
Fragment Length = 7 bits 

The procedures to run the experiment are gi
lows. 

 Find 200 ASCII files in the In
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2) Apply URDA to the downloaded files with n = 5 
and k = 3, and hence, obtain 1000 archived files, each of 
w

ngth to be seven bits as specified in Section 2.2. 
hich is at least 100 KB length. Here, we set the frag- 

ment le
3) For t = 1 to 400,000, count the number tn  of oc- 

currence of 0t tb b     for 0,1,2,3  over the 
1,000 archived files, and calculate  Pr 0t tb b      

by 
1000

. Thus, we have 400,000 scores of  



tn

Pr 0t tb b     for each  respect- 
tively. 

0,1, 2,3

W t these scores in the graphs of Figuree plo  4.  
Yet we are still unable to estimate whether the mathe- 

matical formula can a the real wor
files with fixed fragment length, without evaluat- 

in

rastically when 
s close to the head of the files), 

 to Equation (1). 

 

lso apply to ld biased 
ASCII 

g dispersion of the scores from means. 

3.4. Statistical Tests 

According to the mathematical evaluation given in 
URDA in previous work, the scores vary d
t is small (the position i
but they quickly converge

In fact, when looking at Figure 4, the scores observed 
in this experiment seem to follow this rule: The values of 

4

9

2l

l



 are 0.5625, 0.3125, 0.1719 and 0.0938 respec-  

low t
ved in previous work. 

 

tively for l = 0,1,2,3. In the following, we will investi- 
gate this, that is, whether the scores observed in fact fol- 

he statistically calculated mathematical formula pro- 

3.4.1. Examining the Means 
By the one-sample t-test, we investigate whether the 

population means underlying the observed scores are 
identical to the test means calculated by Equation (1). 

The null hypothesis here is of course that the popula- 
tion means are identical to the test means. Table 1 shows 
the results of one-sample t-test.  

The t statistics are calculated from the equation 
x

t
s

n


 , where x , , andn s  stand for the sample  

mean, test mean, sample size and standard deviation of 
the sample respectively. From Table 1, we see that we 
cannot reject the null hypothesis even with very large 
significance level, say 0.2: Typically, we use the signify- 
cance level 0.05 or 0.01. Hence, we can reasonably guess 
that the null hypothesis is right, that is, the population 
means are identical to the theoretical value calculated by 
Equation (1). 

3.4.2. Examining the Variances 
In the previous clause, we see that the population means 
are identical to the theoretical means calculated from 
Equation (1). This result alone, however, is insufficient, 
since this result tells nothing about how the scores vary 
around the means. Thus, we have to investigate whether 
the population variances are sufficiently small. The prob- 
lem here is that, unlike the calculation of means, we do 
not have a formula to give the theoretical expectation for 
the variances. As an alternative method, we generate 
synthetic files that are generated based on the same 
probability model as the mathematical model that under- 
lies Equation (1), and compare the scores obtained from 
the experiment and the scores derived from these syn- 
thetic files. 
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Figure 4. Fixed-fragment-length Pr[bt = ··· = bt−l  = 0] (l = 0,1,2,3, t = 1, ··· , 400,000). 
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Table 1. Comparing of observed scores and test means. 

  Pr 0tb    1Pr , 0t tb b     2Pr , , 0t tb b     3Pr , , 0t tb b    

0.5707fx   0.3082fx   0.1718fx   0.0948fx   Sample Mean 

0.5625fx   0.3125fx   0.1719fx   0.0938fx   Test Mean 

T-Statistics 

TINV 

0.706fT    0.4928fT   0.0107fT   0.167fT    

1.66T   1.66T   1.66T   1.

P-Value 

66T   

tail 0.482T   tail 0.623T   tail 0.992T   tail 0.868T   

 
To be specific, we generate 200 files that include only 

ASCII characters selected uniformly and independently 
at random regardless of the position of the characters. 
Then, we apply Step 2 and 3 of Section 3.3 to obtain 
400,000 scores for each of We call these 
scores test scores to distinguish them from the sample 
scores generated in 

To verify this statistically, we 
to the sample scores and the test scores. Consequently, 
the null h pothesis to use should be that the population 
vari ying the sample sco entical to 
those underlying the test scores.  

Ta ws the result of the test, where 

0,1,2,3 . 

Section 3.3. 
apply two-sample F-test 

y
ances underl res are id

ble 2 sho 2
f  and 

2 , andt f tx x  are  the variances and the he 
sample scores and the test scores, resp
ing to T 2, we see that the va  

means of t
ectively. Accord- 

able riance 2
f  is greater 

than 2
t , while the means andf tx x  

ng the P-v
ce level 0.05, 

are o 
each en investigati alue ted in 

e t with the significan
nu

l model t

DA with the aforemen- 
tio

 the Fragment 

variable. 
In the same way as Section 3.3, we obtain 400,000 

sample scores for each of , and plot them in 
Figure 5.  

At a glance, the means of the sample scores are iden- 
tical to their theoretically expected values o  

 ve
s prese

ry close t
n

we see that the 
 ot
able 

her. Wh
th

ll hypothesis should be rejected for all cases of 
0,1, 2,3 . Thus, when we apply URDA to ASCII files 

downloaded from the Internet with the fixed fragment 
length seven bits, the resulting archived files will not be 
explained by the mathematica hat is a basis of 
Equation (1). In other words, we cannot prove that the 
archived files generated by UR

ned setting are secure against the bit pattern analysis, 
and we cannot recommend use of URDA with this set- 
ting.  

3.5. URDA with the Setting of
Length = Variable 

As seen in the above, using URDA with the fixed frag-
ment length cannot be recommended from the security 
point of view. In this clause, we investigate the security 
of URDA with a different setting, that is, we assume that 
the fragment length is variable, and is selected at random 
per fragment in the range of 1 to 32 bits. 

For the experiment, we use the same ASCII files stated 
in Section 3.3. The difference consists in Step 2, and we 
run URDA with the setting of the fragment length = 

0,1,2,3

f 

  4

9
Pr 0

2
t t

l
b b 


l    , and the variances have be-  

come smaller compared with the case of the fixed g- 
ment length. In the following, we verify these observa- 

ons by means of statistics. 

5.1. Examining the M  
 the same way as the previous subsection, we apply the 

one-sample t-test to verify that the population means of 
the sample scores are identical to the theoretical expecta- 

on. 
Table 3 shows that the P-values obtained are large 

 fra

ti

3. eans
In

ti

(the minimum is 0.188), and we cannot reject the null hy- 
potheses with a small significance level, for example, 
0.05. Hence the population means of the target probabili-  

ties are identical to the values given by 
4

9

2l

l



 for  

0,1,2,3 . 

3.5.2. Examining the Variances 
ores 
ores 

gene ing the synthetic ASCII files. 

ained are large 
(th

nsequence, we can conclude that the population 
va

her. 

As shown in Table 4, the variances of the sample sc
are close to those of the test scores, which are the sc

rated in Section 3.3 us
If this is true, this will be a clear contrast with the former 
case where we ran URDA with the fixed fragment length. 
In the following, we verify that the population variances 
of the sample scores and the test scores are identical to 
each other by means of the two-sample F-test. 

Table 4 shows that the P-values obt
e smallest is 0.1704), and we cannot reject the null 

hypotheses with a small significance level, for example, 
0.05.  

As a co
riances that underlie the sample scores and the test 

scores are identical to each ot
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4 71
4

28
5

85
7

42
8

Figure 5. Variable-fragment-length Pr[bt = ···
 

Table 2. Comparing of fixed variances and test variances. 

  Pr 0tb    1Pr , 0t tb b     2Pr , , 0t tb b     3Pr , , 0t tb b    

2 0.0135f   2 0.0078f   2 0.0078f   2 0.0036f   Sample Variance 

2 0.0036f   2 0.0045t   2 0.0019t   2 0.0014t   

0.5707fx   0.3082fx   0.1718fx   0.0948fx   

Test Variance 

Sample Mean 

Test Mean 0.5617tx   0.3103tx   0.1721tx   0.0923tx   

F-Value 1.53 1.72 2.64 2.61 

Critical Value 

 

P-Value 

tail 1.39O   tail 1.39O   tail 1.39O   tail 1.39O   

tail 1.49T  tail 1.49T   tail 1.49T   tail 1.49T   

tail tail tail0.036T   0.007T   0.000002T   tail 0. 0004T   00

 
Table 3. Comparing of variable means and test means. 

  Pr 0tb    1Pr , 0t tb b     2Pr , , 0t tb b     3Pr , , 0t tb b    

Test Mean 0.5625tx   0.3125tx   0.1719tx   0.0938tx   

Sample Mean 0.5511rx   0.3031rx   0.1712rx   0.0938rx   

TINV 1.66T   1.66T   1.66T   1.66T   

T  

P-Value 

-Statistics 1.067rT   1.3261rT   0.1437rT  0.021rT    

tail 0.288T   tail 0.188T   tail 0.886T   tail 0.983T   
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Table 4. Comparing of variable variances and test variances. 

  Pr 0tb    1Pr , 0t tb b     2Pr , , 0t tb b     3Pr , , 0t tb b    

Sample Varianc 2 0.0115r   2 0.0051r   2 0.0025r   2 0.0015r   es 

2 0.0088t   2 0.0045t   2 0.0019t   2 0.0014t   Test Variances 

ean Sample M 0.5511rx   0.3031rx   0.1712rx   0.0938rx   

Test Mean 0px  .5617  0.3103px   0.1721px  0.0923px    

F alue 0.7694 0.  0.7583 0.9458 

 

P-Value 

-V 89

tail 1.39O   tail 1.39O   tail 1.39O   tail 1.39O   
Critical Value 

tail 1.49T  tail 1.49T   tail 1.49T   tail 1.49T   

tail 0.194T   tail 0.549T   tail 0.1704T   tail 0.7823T   

 
3.6. Summary of This Experiments 

In our previous work, assuming that source files include 
ASCI ters selected uniformly and independentl
at random per character, we h
that an archived file consisting 
ments shows uniformly constant distributions with re- 
spect to the probabilities that particular bit patterns ap- 
pear s, we can view th  archived file as 
secure against the bit pattern analysis. On the other hand, 
the distributions of characters that appear in files of the 
real w ainly biased, and hence, it was not cer- 
tain that the same conclusion holds true when applying 
URDA  the real world with th  same setting. To 
investigate this problem, we first compared the following 
two sce  terms of the m nd variances of t
probability distribution of some particular bit patterns. 
- A to files taken from the Internet with the 

setting of seven-bit-long fragments. 
- Apply URDA to synthetic files generated so that 

ever  character appears with the same prob- 
ability regardless of the position in the files. 

bility are iden-  

I charac y 
ave mathematically proved 

of seven-bit-long frag- 

. In other word e

orld are cert

 to files of e

narios in eans a he 

pply URDA 

y ASCII

As we expected, the means of the proba

tical to their theoretical expectation of 
4

9

2l

l



 for 

0,1, 2,3 , but the variances for the first scenario are 
significantly larger than those for the second scenario. 
Therefore, we cannot deny the possibility that there exist 
some clever attacks that take advantage of this difference 
in the variance. 

Hence, we ran the same experiments after modifying 
the first scenario. In the new scenario, the length of each 
fragment is not fixed, but is determined at random be- 
tween 1 bit to 32 bits per fragment. The results of the 
comparison is surprising, we cannot detect statistically 

 

significant differences in either the means or the vari- 

ances between the scores for the downloaded and ran- 
domly fragmented ASCII files and those for the ynthetic 
ASCII files. In oth ords, we cannot statistically dis- 
tinguish between the archived files generated from the 

nthetic files. 
Thus, we cannot conclu hat use of URDA with the 

d fragment length is secure, while use of URDA  
e randomly variable fragment length is secure gainst 

4. Conclusion and Future Work 

We investigated whether the formula 

s
er w

downloaded files and the sy
de t

fixe  with
th
bit pattern analysis. 

 a

  4

9
0

2
t t l l

l
P b b  


     

applies to real ASCII te s that include biases in the 
distributions of characters. Applying URDA to down- 

d text files by fra menting the files into seven bit 
long, we found that the resulting archived files might be 
ulnerable to bit patter nalysis attacks. Thus, in the 

same way as the previous experiment, we ran another 

ch
w

n in 
ages and how it affects security issues in plain text ar- 
chiving. Co

xt file
 

loade g

v n a

experiment by modifying URDA in the way how to se- 
lect fragment lengths, that is, the length of each fragment 
is determined at random per fragment between 1 bit to 32 

tbi s, and showed this modified URDA with the randomly 
variable fragment length is secure against the bit pattern 
analysis.  

As the next step, we will investigate the security of 
URDA when applied to text files that include a variety of 

aracter sets and their corresponding code units. We 
ill specify the significance of biased bits in these code 

units, which includes their actual representatio stor- 

nsequently we need to testify, by stochastic- 
cally determining the size b per fragment, whether we 
can obtain similar conclusion for various kinds of source 
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files with various bit distributions. In addition, we also 
investigate some sorts of file existed in the real world
th

. 313. 

ormation for Se-
ance,” Journal of 

35-348.  

 
at are said close to random files like video, image and 

compressed files etc. 
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