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ABSTRACT 

Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or 
multistate world. Seldom does a single system exist that performs best for all plausible scenarios. A robust solution, one 
that performs relatively well over a wide range of scenarios, is often the preferred choice for reduced risk at an accept- 
able cost. The alternative with the maximum expected utility may possess vulnerabilities that could be exploited. The 
best strategy is likely to be a hybrid solution. The von Neumann-Morgenstern Expected Utility Theory (EUT) would 
never select such a solution because, given its linear functional form, the expected utility of a hybrid solution cannot be 
greater than that of every constituent alternative. The continuity axiom and the independence axiom are assessed to be 
unrealistic for the problem of interest. Several well-known decision models are analyzed and demonstrated to be poten- 
tially misleading. The linear disappointment model modifies EUT by adding a term proportional to downside risk; 
however, it does not provide a mathematical basis for determining preferred hybrid solutions. The paper proposes a 
portfolio allocation model with stochastic optimization as a flexible and transparent method for defining choice prob- 
lems and determining hybrid solutions for critical systems with desirable properties such as diversification and robust- 
ness. 
 
Keywords: Critical System; Robustness; Risk; Multistate World; Diversification; Hybrid Solution; Portfolio Allocation; 
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1. Introduction 

Broadly speaking, critical systems are systems necessary 
for mission success and whose failure poses a significant 
danger to life and property. They are typically complex 
systems required to perform reliably over a wide range of 
scenarios. For example, critical infrastructures are char- 
acterized as follows [1, p. 30]: 

“Our critical infrastructures are particularly important 
because of the functions or services they provide to our 
country. Our critical infrastructures are also particularly 
important because they are complex systems: the effects 
of a terrorist attack can spread far beyond the direct tar- 
get, and reverberate long after the immediate damage.” 

Seldom does a homogeneous system exist that per- 
forms best for all scenarios of interest. The focus of the 
paper is on choosing the “preferred” solution given a set 
of alternatives for scenarios with probabilities and conse- 
quences that have been assessed either objectively or 
subjectively. Following the risk-uncertainty classification 
of Luce and Raiffa [2], this is a problem of “decision 
making under risk”.  

Von Neumann and Morgenstern (vNM) [3] proved 
that the maximization of expected utility principle pro- 

posed by Daniel Bernoulli 200 years earlier is derivable 
from a set of axioms that appear to be reasonable. Savage 
[4] developed an axiomatic subjective expected utility 
theory with a focus on general decision problems rather 
than simply monetary lotteries. These seminal works re- 
sulted in the wide acceptance of what is referred to as 
Expected Utility Theory (EUT). The EUT is a normative 
theory that prescribes how the “Rational Individual”1 
should make decisions under risk for any type of out- 
come2, money being a special case. But there is now a 
large body of evidence, mostly based on testing in the 
context of lotteries with monetary prizes, that the “ra- 
tional individual”3 often systematically violate the EUT 
axioms. These deviations have been labeled “paradoxes”. 
There are two plausible explanations for them: 1) they 

1In the paper, the term “Rational Individual” with upper cases “R” and 
“I” is used to refer to the person who makes all decisions in accordance 
with the EUT. 
2The terms “outcome”, “consequence”, and “performance” are used in-
terchangeably throughout the paper. 
3In the paper, the term “rational individual” with lower cases “r” and 
“i” is used to refer to the person who uses reason and emotions to make 
decisions in a systematic and logical manner with due consideration to 
the personal and social context. 
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are caused by errors of reasoning, or 2) the EUT axioms, 
like all theories and models, have limitations as descrip- 
tive models of rational human behavior because the ra- 
tional individual follows a different type of reasoning 
than the Rational Individual. The evidence and strength 
of the arguments are mounting in favor of the latter ex- 
planation. Fishburn [5, p. 86] writes: 

“There are certain patterns of preference held by rea- 
sonable people for good reasons that simply do not agree 
with the axioms of expected utility theory and which 
suggest the need for serious reappraisal of the normative 
foundations of decision making under risk.” 

In recent years, several alternative theories of decision 
making under risk have been proposed to explain behav- 
ioral departures from EUT. The original prospect theory 
[6] and the newer cumulative prospect theory [7]  have 
become the prominent descriptive theories of decision 
making under risk. They focus on biases in the human 
perception of probabilities and outcomes. Regret Theory 
(RT) [8-9] incorporates the concepts of regret and its 
counterpart, rejoicing, by adding a contribution to the 
EUT that accounts for these psychological influences. 
Disappointment Theory (DT) [10-11] models disappoint- 
ment and its counterpart, elation, as complementary to 
both EUT and RT. There has also been much work to 
develop Generalized Expected Utility Theories (GEUT) 
by modifying the EUT axioms to account for preference 
patterns of rational individuals [12] and their perception 
catastrophic risks [13]. 

From the perspective of complex systems and Analysis 
of Alternatives (AoA), a key limitation of EUT is that it 
is a compensatory model. The poor performance of a 
system or bad outcome of a decision for one scenario can 
be mathematically compensated for by the other scenar- 
ios. Consequently, an alternative with the Maximum Ex- 
pected Utility (MEU) may possess vulnerabilities for 
some scenarios that competitors in the commercial world 
and adversaries in the military world could exploit [14]. 
Depending on the context, a DM may prefer a robust 
solution, one that performs relatively well over a wide 
range of scenarios. The preferred choice for success and 
reduced risk often depends on FARness (Flexibility, Adap- 
tiveness, and Robustness) rather than MEU [15]. Given 
its use of averages as decision criteria, EUT is suscepti- 
ble to the “Flaw of Averages” [16] including insensitivity 
to low-probability catastrophic events. This limits its use- 
fulness as a normative model for choosing critical sys- 
tems [17].   

Markowitz [18, p. 207] makes an interesting and con- 
vincing argument against maximizing the expected return 
from the field of investment portfolio theory: 

“An investor who sought only to maximize the ex- 
pected return would never prefer a diversified portfolio. 
If one security had greater return than any other, the in- 
vestor would place all of his funds in this security.” 

The above argument readily generalizes to the selec- 
tion of critical systems. Given a set of alternatives, the 
best strategy for FARness in a multistate world is likely 
to be a hybrid solution, or diversified portfolio. However, 
a Decision Maker (DM) who is an Expected Utility (EU) 
maximizer would never select a diversified portfolio; 
s(he) would select the MEU alternative.  

This paper has three objectives:  
1) Identify the differences between the EUT axioms 

and robust critical system requirements.  
2) Investigate the validity of several well-known deci- 

sion models as decision aids for choosing robust critical 
systems.  

3) Develop a realistic and mathematically valid meth- 
od for defining and selecting robust critical systems.  

The remainder of the paper is structured as follows. 
Section 2 reviews the classical paradigm for AoA in a 
multistate world. A simple sensor selection problem is 
used to illustrate the limitations of EUT for critical sys- 
tems. Section 3 critically analyzes the EUT axioms with 
a focus on the continuity and independence axioms. Sec- 
tion 4 presents a paradox for the selection hybrid systems. 
Section 5 discusses different notions of robustness. The 
minimax regret and the maximin criteria are shown to be 
potentially misleading criteria for robustness. Section 6 
briefly reviews DT. The linear disappointment model is 
shown to provide a credible risk-based robustness metric. 
Section 7 proposes an approach based on portfolio allo- 
cation with stochastic optimization as a flexible and 
transparent method for defining choice problems and de- 
termining hybrid solutions with desirable properties such 
as diversification and robustness. Section 8 provides 
some concluding remarks.  

2. Analysis of Alternatives 

2.1. Classical Paradigm 

The AoA problem is modeled with a decision matrix, 
Table 1. The m columns represent a set of m mutually 
exclusive scenarios  , , ,S S 1 2 mS S  with probabili- 
ties  , , ,p p p

 , , ,

1 2 m  that sum to 1. The scenarios may 
be chance events or willful acts by adversaries. The n 
rows represent a set of n alternatives 1 2 nA A A A 

 ,u A S u

O iq

 
with the performance across each scenario specified in 
terms of the associated outcomes, ,i j i j . Each 
alternative may then be thought of as a lottery; EUT is 
used to choose the preferred one. The AoA proceeds as 
follows: 

1) The utility of a set of r mutually exclusive outcomes 

i  with probabilities  is characterized by a vNM EU 
function4, 

4There is homomorphism between the vNM EU function and the linear 
additive assumption of Multicriteria Decision Analysis (MCDA); e.g. 
the weights in MCDA and the probabilities in EUT. 
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Table 1. Generic decision matrix. 

   Scenarios  

 S1 -------- Sj -------- Sm 

Alternatives p1 -------- pj -------- pm 

A1 u1,1 -------- u1,j -------- u1,m 

----------- -------- -------- -------- -------- --------

Ai ui,1 -------- ui,1 -------- ui,m 

----------- -------- -------- -------- -------- --------

An un,1 -------- un,j -------- un,m 

 

 
1

, 1
r

k k
k

u O q


 

,
1 1

, 1
m m

i j k
j k

u p
 

  

, ,
1 1

.
m m

k k j k
k

p u
 

  

 , , ,

vNM

1 1

r r

k k k
k k

U q O q
 

 
 
 
  .        (1) 

2) The preference for each alternative Ai is represented 
by its EU,  

 vNM EU i jA p .         (2) 

3) The Rational Individual should choose the alterna- 
tive with the MEU, 

k i
k

ji p uA A           (3) 

The validity of the above equations requires additive 
independence. This is unlikely to be a realistic assump- 
tion for complex systems and Systems of Systems (SoS) 
because there are significant interactions among attrib- 
utes with the result that the whole is greater the sum of 
the parts. The use of simulation is preferred for realism, 
especially for complex systems such as SoS [19].  

The outlined process, as further discussed in the sub- 
sequent sections, may also mislead practitioners to over- 
look hybrid solutions with desirable properties such as 
FARness. 

2.2. Single-Sensor Selection Example 

As an example, consider a modified version of the deci- 
sion problem in [20, p. 36]. To make it more concrete, it 
is assumed that the alternatives are 4 hypothetical sensors 

1 2 3 4A A A A  for a border surveillance system. For the 
purpose of the paper, each sensor is approximated by a 
cookie-cutter model [21] with detection range R0 and 
probability of detection PoD  ,i jA S

, ,S S S
 that depends on 

three states of nature,  1 2 3 . The cookie-cutter 
data are specified in Table 2 columns 1-45. It is assumed 
that potential intruders have no intelligence of the sensor 
performance; they try to infiltrate the border at random 

times and random locations.  
The Rational Individual who equates PoD with utility 

is considered to be “risk neutral”. S(he) would use Equa- 
tion (1) with the values in Table 2 columns 1-4 to com- 
pute each sensor EU. Based on the values in Table 2 
column 5, s(he) would select A3. The Rational Individual 
who is either risk-averse or risk-seeking would argue that 
utility rather than PoD is the appropriate measure of 
sensor usefulness. In accordance with EUT, s(he) would 
base his/her preferences on the MEU. 

Utility is associated with the performance of an alter- 
native or the consequences of an act. The evaluation of a 
person’s utility is a highly challenging task and for great- 
er realism it should be experimentally solicited without 
invoking analytical mathematical functions [23]. The pro- 
cess is illustrated for a Table 2 sensor. 

1) PoD = 0.5 is identified as the reference level with 
u(0.5) = 0. Other values are assessed relative to it. 

2) Outcomes associated with PoD > 0.5 are considered 
gains. The corresponding utilities have a diminishing cha- 
racteristic of gain satiation. For ease of perception, a 
scale is established with u(1.0) = 10. 

3) Outcomes associated with PoD < 0.5 are considered 
losses. In accordance with loss aversion, the shape of the 
utility function is steeper than for PoD > 0.5. A lower 
PoD threshold may be specified to screen out unaccept- 
able alternatives. It is assumed that u(0) = –30. 

4) The utilities of a few intermediate PoD values are 
determined by probing the DM about his/her indifference 
or willingness to bet a PoDi sensor for a 50-50 gamble 
between a sensor with PoDh > PoDi and a sensor with 
PoDl < PoDi. For example, consider a DM indifferent 
between a PoD = 0.06 sensor and a 50-50 gamble of a 
PoD = 0.5 sensor or nothing, i.e. sensor with PoD = 0. 
This equates to  

       0.06 0.5 0.5 0.5 0 0.5 30.0 15.0.u u u       

Other intermediate points are determined the same 
way. 

5) The resulting data are depicted in Figure 1. They 
can be fitted with the following utility function:  
 

Table 2. Sensor cookie-cutter model data. 

  PoD   

 S1 S2 S3  

Alternatives 0.3 0.4 0.3 E(PoD) 

A1 0.89 0.40 0.34 0.53 

A2 0.70 0.50 0.40 0.53 

A3 0.80 0.70 0.20 0.58 

A4 0.50 0.50 0.50 0.50 
5The analysis can be extended to incorporate sensor physical properties 
based on experimental data [22]. 
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 , ,A   
    

1

2
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,

log log

0.5, 0.2, 11.49, 17

u x x x

u x x

  

  

   

  

    
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 ,

.57, 0.01.

x 



 



   (4) 

The utility values for Table 2 data are given in Table 
3. Sensors A1 and A2 have unequal EUs. This reflects the 
fact that the utility function given by Equation (4) cap- 
tures some aspects of risk aversion. The Rational Indi- 
vidual would select A3. The rational individual, however, 
might disagree with this choice because of the poor per- 
formance of A3 in state S3. S(he) would argue that this 
choice is not robust because it is vulnerable to attacks by 
adversaries who may have acquired this information [14].  

3. Limitations of the EUT Axioms 

3.1. Problem Formulation  

As with all theoretical models, EUT has limitations. Dif- 
ferent but logically equivalent sets of axioms have been 
proposed. Most rely extensively on the concept of mone- 
tary lotteries. In a 1921 lecture entitled, “Geometry and 
Experience,” Einstein [24, p. 233] states: 

“As far as the propositions of mathematics refer to re- 
ality, they are not certain; as far as they are certain, they 
do not refer to reality.” 

The above comment is equally relevant with “decision 
theory” substituted for “mathematics”. 

This section follows Luce and Raiffa’s formulation [2] 
because it provides greater visibility of the probabilistic 
aspects of the EUT axioms than recent more abstract ma- 
thematical formulations. Luce and Raiffa consider five 
basic assumptions: 1) ordering of alternatives including 
transitivity; 2) reduction of compound lotteries; 3) con- 
tinuity; 4) substitutability6; and 5) monotonicity. The con- 
tinuity and independence axioms are of special interest 
because of their key roles for the derivations of Equations 
(1)-(3). As a result, they are analyzed to systematically 
assess their validity for critical systems. 

Consider a generic scenario, a set of n alternatives  
 

Table 3. Sensor utility decision matrix. 

  PoD   

 S1 S2 S3  

Alternatives 0.3 0.4 0.3 EU 

A1 9.52 –1.67 –2.87 1.33 

A2 8.33 0.00 –1.67 2.00 

A3 9.03 8.33 –6.77 4.01 

A4 0.00 0.00 0.00 0.00 

1 nA A   , ,C C

.C C C  

, and r basic consequences 1 r . 
In accordance with the ordering axiom, the consequences 
can be arranged in order of decreasing preference and 
numbered accordingly: 1 2 r  Every al- 
ternative can then be thought of as a lottery associated 
with an r-tuplet of basic consequences and probabilities 
q7: 

 1

1

1~ , ; ; , with

1 d .0 an 1

i i
i r r

i
j

r
i
j

j

C

q

A q C q

q


  



 
 

1

1

, 0,1 . .

~ ( , ; , 1 .

i r

i r i

C C C p s t

C C p p CC 

  

 


 

 C

Y X

         (5) 

3.2. The Continuity Axiom  

For each outcome Ci, the Rational Individual8 is indif- 
ferent between Ci and an alternative involving just C1 
and Cr:  

       (6) 

Ci and iC  are two different entities: i  can be any 
outcome of an equivalence class with certainty equiva- 
lent Ci [25].  

Context is of the essence for validity of the continuity 
axiom. Taken literally, the Rational Individual should be 
indifferent between receiving an amount of money 

 , ;Death, 1  and the lottery X p p    for some 
probability p. Following this observation, Luce and 
Raiffa [2, p. 27] write:  

“When put in such bold form, some, whom we would 
hesitate to charge with being “irrational”, will say No... 
Even though the universality of the assumption is suspect, 
two thoughts are consoling. First, in few applications are 
such extreme alternatives as death present.”   

Critical systems and decisions often impact life and 
death issues. The DM who is a rational individual cannot 
invoke the above loophole. S(he) needs to mindfully as- 
sess low probability events with potentially dire conse- 
quences such as serious injuries, death, and heavy finan- 
cial losses. The emotionally charged aspects of such de- 
cisions render the use of the continuity axiom impractical 
and unrealistic. 

3.3. The Independence Axiom9 

For every alternative in the set A, the Rational Individual 
is indifferent to the substitution of an equivalent outcome  

7The variables p and q denote probabilities in different contexts. The 
variable p denotes scenario probabilities. The variable q denotes the 
probabilities of the basic outcomes associated with alternatives. Equa-
tion (5) refers to a generic scenario and a scenario index has been omit-
ted with no loss of generality. 
8The original vNM EUT axioms did not explicitly refer to the “Ra-
tional Individual”. 
9The independence axiom is not one of the original vNM axioms. Mal-
invaud [25] showed that it had been implicitly assumed. 

6It is commonly referred to as the independence axiom. 
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Figure 1. Evaluation of utility function. 
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i i
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


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 for Ci: 

      (7a) 

The independence condition given by Equation (7a) is 
more apparent if expressed in terms of the combination 

i r r  in common with arbi- 
trary alternatives G or H. The independence axiom then 
reduces to its common form, 

 1 1, ; ; ,Q C p C 

 ~ , ; , 1 ~G H G p Q p H     (7b) 

It follows from the EUT continuity and transitivity 
axioms that 

 , ; , 1 ,G H G p Q p H     (7c) 

The probabilistic outcomes on the right-sides of Equa- 
tions (7b) and (7c) are the mutually exclusive basic out- 
comes associated with Q, G and H. It would be wrong to 
think of them as mixtures of outcomes. 

The independence axiom requires that when compar- 
ing probabilistic alternatives, the Rational Individual 
views the “common part” as irrelevant and preserves the 
original preference in accordance with Equations (7a)- 
(7c). This is a valid assumption if and only if there are no 
interaction effects including psychological influences be- 
tween G and Q or H and Q. The use of decision trees is 
often presented as a graphical justification for the inde- 
pendence axiom. This argument is flawed because the 
folding back procedure substitutes the certainty equiva- 
lent for branches at nodes and thereby implicitly assumes 
that outcomes are independent. De Neuville [26, p. 366] 
writes:  

“The axiom implies that the substitutions can occur re- 
gardless of the other opportunities in front of a person 
and, thus, regardless of how these substitutions alter the 
probabilistic distribution of the consequences.” 

In conclusion, the independence axiom is in conflict 
with probability calculus and the rational individual who 

makes decisions based on the complete risk curve rather 
than simply the EU [27].   

3.4. The Chew Weighted Utility Theory 

The Chew weighted utility theory [28] replaces the inde- 
pendence axiom with the weak substitution axiom: 

 
   

, , , ~ 0,1 , 0,1

. . , ; , 1 ~ , ; , 1 .

i j k i j

i k j k

A A A A A A

s t A A A A

 

   

     

      
  (8) 

For    the weak substitution axiom reduces to 
the independence axiom, Equation (7b). The Chew wei- 
ghted utility theory includes EUT as a special case. For 
   it admits the presence of complementarities of Ai 
and Aj with Ak. It, therefore, provides a resolution of the 
Allais paradox [29] as well as the two-sensor paradox of 
Section 4.   

The Chew weighted utility function for a probabilistic 
mixture of two alternatives H and G has the following 
linear functional form:  

            
     

1
1 .

1
wut pW H U H p W G U G

U pH p G
pW H p W G

 
  

 

(9) 

 U   is a vNM utility function; W  is an addi- 
tional weight function that enables it to accommodate the 
preference patterns of several key EUT paradoxes in- 
cluding the Allais paradox [29]. Equation (9) reduces to 
Equation (1) for 

 

 W    Constant. Otherwise, it signi- 
ficantly increases the complexity of EUT, which limits 
its applicability as a normative model for AoAs.   

3.5. Choice Axioms for Catastrophic Risks 

As discussed in Section 2, the EUT linear functional 
form causes the ranking of alternatives to be relatively 
insensitive to low probability scenarios. This is in con- 
flict with the way rational individuals often choose op- 
tions for a wide range of problems with low probability 
but catastrophic consequences. These include, but are not 
limited to, global environmental risks, national security, 
and critical infrastructures. Chichilnisky [13] proposed a 
set of 3 axioms to account for such choices. It results in a 
utility function  W   that includes a term that assigns 
positive weights to low probability events:  

       
   

vNM 1

,

W x U x x

x y W x W y

    

 

0 1

      (10) 

 where    and     is an additive measure with 
a functional form yet to be specified. Chichilnisky [13] 
characterizes the status of her work as follows: “The new 
axioms require a new calculus of variation.... Some re- 
sults already exist, but much work is still needed.” 
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4. Two-Sensor Paradox 

The Section 2.2 sensors are considered for a border sur- 
veillance system of length 4R0. The problem is which 
two sensors to select to maximize the detection probabil- 
ity of potential intruders. It is assumed that the latter 
possess no intelligence of sensor performance; they try to 
infiltrate the border at random locations and times.  

4.1. EUT Analysis 

For the Rational Individual,  

   1 1 .i ji j i iA A pA p A pA p A        (11) 

S(he) would then conclude that the homogeneous com- 
bination i iA A  is preferable to the hybrid combination 

i jA A . By extending this reasoning to all sensor com- 
binations, the Rational Individual concludes that the best 
combination consists only of the highest utility sensor, i.e. 
A3. The rational individual would disagree with this solu- 
tion because it lacks diversity and it is highly vulnerable 
to infiltration given the low PoD in scenario S3 (see Ta- 
ble 2). There are several other examples of EUT par- 
adoxes with anomalous risk behaviors [30-31].  

4.2. Two-Dimensional Preference Analysis 

Given 4 alternatives, there are 10 possible two-sensor 
combinations to consider. Each combination  ,i jA A

   

 
may be represented by a two-dimensional vector with the 
PoD utility as elements. A two-dimensional utility func- 
tion is needed to represent preferences over the combina- 
tions such that 

   , , .j k l, ,i j k l iA A A A U x x U x x     (12) 

By analogy to the determination of the sensor utility 
function in Section 2.2, it is assumed that  , yU x  is 
given by treating Equation (4) as a function of the joint 
variable xy:

    
   

1
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1 2
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, log l
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
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   

  

 

   

 



   


 

 (13) 

The multiplicative form xy has advantages over the 
linear form x y . It more realistically accounts for 
two-sensor vulnerabilities. Furthermore, the  ,D yU x  
indifference or isoutility curves represent simple convex 
preferences10. 

The utilities for the 10 two-sensor combination are 
computed using Equation (13) and averaged over the 3 
scenarios. The results are presented in Table 4.  

Table 4. Two-dimensional preference analysis. 

 Utility    
 

S1 S2 S3   

Combination 0.3 0.4 0.3 EU Rank

A1-A1 9.52 –1.67 –2.87 1.33 9 

A2-A2 8.33 0.00 –1.67 2.00 6 

A3-A3 9.03 8.33 –6.77 4.01 4 

A4-A4 0.00 0.00 0.00 0.00 10 

A1-A2 8.97 –0.79 –2.25 1.70 8 

A1-A3 9.26 5.70 –4.58 3.68 5 

A1-A4 8.06 –0.79 –1.30 1.71 7 

A2-A3 8.71 7.10 –3.80 4.31 3 

A2-A4 7.10 7.10 –0.79 4.73 1 

A3-A4 7.64 7.10 –2.66 4.33 2 

 
1) 2 4 3 3A A A A . The MEU solution, 2 4A A  , 

does not consist of the two MEU alternatives. It draws on 
the synergistic interaction between the two alternatives. 

2) ·DU
andi k j k

 exhibits diversification [32]. For some 
combinations of A A A A  ,  

     , 1 .D D
i j kU pA p A U A          (14) 

3) The robust combination A4-A4 ranks last. This result 
combined with the above two demonstrates that convex 
preferences exhibit diversification but that diversification 
is not equivalent to robustness. 

A resolution of the two-sensor paradox is that EUT 
needs to be modified to be compatible with preference 
for robust and hybrid solutions. Options include 1) re- 
placing the independence axiom with a modification such 
as the weak substitution axiom, or 2) introducing correc- 
tions to EUT such as DT (see Section 6). 

5. Robust Solutions 

5.1. Various Notions 

In semi-layman parlance, robust solutions perform rea- 
sonably well and have acceptable outcomes over a wide 
range of plausible scenarios without assuming that “eve- 
rything goes right”. The importance of robustness as a 
criterion for good decisions is reflected by the fact that 
DMs often purposefully forgo the MEU option for ones 
that perform well over a wide range of scenarios and are 
relatively insensitive to uncertainties. The professional 
literature contains different notions of robustness with 
variations that depend on the application domain. 

The following three notions of robustness are of inter- 
est for critical systems consideration.  

10The key property of convex preferences is that any point on the 
straight line joining two points on the same indifference curve has a 
higher utility than either point. A person with convex preferences pre-
fers mixes of goods to extremes. 1) Lempert et al. [33] define a robust strategy as “one 

Copyright © 2013 SciRes.                                                                                AJOR 



E. KUJAWSKI 133

with relatively small regret compared to the alternatives 
across a wide range of plausible futures.” They evaluate 
the regret of long-term policies using an approach based 
on Savage’s minimax regret rule11. 

2) Krokhmal et al. [34] advocate generating robust de- 
cision by optimizing an upper percentile of the risk prob- 
ability distribution12. They note that “in this regard, risk 
management in military applications is similar to other 
fields such as finance, nuclear safety, etc., where deci- 
sions targeted at achieving the maximal expected perfor- 
mance may lead to an excessive risk exposure.”   

3) Ullman [35] advocates developing designs with low 
sensitivity to noise or uncertainty in accordance with the 
Taguchi method. He considers performance, risk and cost 
among the factors that need to be addressed [35, p. 36]: 
“The result of a robust decision is an option chosen with 
known and acceptable satisfaction and risk... A major 
goal in making a robust decision is to eliminate all the 
uncertainty possible within the scope of available re- 
sources.” 

This section examines Savage’s minimax regret rule as 
a regret-based robustness criterion. Risk-based robust- 
ness is addressed in Section 6. 

5.2. The Minimax Regret Rule 

Savage’s minimax regret rule is a recommendation that 
under uncertainty a person should choose the alternative 
that minimizes the maximum difference from the highest 
achievable utility in each scenario. The anticipated regret 
for choice Ai in scenario Sj depends on the other alterna- 
tives: 

     , Max , , ,
l

i j l j i j
A

R A S U A S U A S 

 ,U A S

   (15a) 

where l j  is a vNM utility. Equation (15a) re- 
presents the largest possible loss for Ai in state Sj relative 
to the best alternative. The minimax regret choice is the 
alternative A  with the smallest regret over all of the 
scenarios: 

     1x , Min Max , , , , .
ij j

j i j n
AS S

R A S R A S A A A   Ma

(15b) 

The minimax regret rule leads to the comparison of the 
Table 3 sensors in Table 5. Sensor A3 is the recom- 
mended alternative; but, it performs poorly in S3. The 
rational individual who seeks a robust solution is likely 
to reject it. The well balanced A4 ranks 3

rd. These results 
raise serious doubts about the usefulness of the minimax 
regret rule as a robustness criterion13.  

The maximin criterion, also known as Wald’s mini- 
max for losses, recommends selecting the alternative 
with the maximum minimum utility, A4 (see Table 3). 
The maximin criterion and minimax regret criterion have 
different characteristics. The maximin criterion captures 
aversion to the worst possible outcome for each alterna- 
tive. The minimax regret criterion is concerned with 
missing beneficial opportunities. Numerous analysts be- 
lieve that the minimax regret criterion is preferable to the 
maximin criterion; this is in conflict with the above re- 
sults.  

6. Disappointment Theory for AoA 

The term “disappointment” has psychological connote- 
tions that are not relevant in the context of the paper. 
Nevertheless, it is used in the paper because it is en- 
trenched in the decision theory literature. 

6.1. General Overview 

Bell [10] and Loomes and Sugden [11] proposed DT to 
account for the fact that rational individuals may antici- 
pate disappointment when they counterfactually compare 
the outcome of an action in one scenario relative to the 
better outcomes in the other scenarios. The rational indi- 
vidual may account ex-ante for these negative feelings in 
decision making. Similarly, feelings of elation are asso- 
ciated with the better outcomes. DT, unlike RT, does not 
perform comparisons across alternatives. This avoids 
potentially misleading results of pairwise comparisons 
[36]. The disappointment level and utility of an alterna- 
tive are therefore independent of the other alternatives. 

Several DT models have been proposed as corrections 
to EUT. Bell [10] and Loomes and Sugden [11] assumed 
that for a given alternative the strength of the disappoint- 
ment associated with a probabilistic outcome is measured 
relative to the alternative’s EU. Delquié and Cillo [37] 
noted that rational individuals are more likely to compare 
 
Table 5. The minimax regret decision matrix corresponding 
to Table 3. 

 S1 S2 S3   

Alternative  Regret  
Max 

Regret 
Selected 

A 

A1 0.00 10.00 2.87 10.00  

A2 1.19 8.33 1.67 8.33  

A3 0.49 0.00 6.77 6.77 A3 

A4 9.52 8.33 0.00 9.52  

   
Minimax 
Regret 

6.77  

11Savage [4, p. 163] objected to use of the term “regret” and used 
“loss” instead. Referring to “regret”, he writes “that term seems to me 
to be charged with emotion and liable to lead to such misinterpretation 
as that the loss necessarily becomes known to the person”. 
12The percentile is one of several mathematical criteria used for “con-
ditional value-at-risk”. 

13For completeness, it is noted that there are other serious problems 
with the minimax regret rule that can lead to irrational choices [4,26].
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the outcome obtained against the outcomes that they 
failed to get had other scenarios realized. They hypothe- 
sized that the level of disappointment associated with 
outcome Oi depends explicitly on the probabilities and 
utilities of the outcomes that are preferred, i.e. the out- 
comes k

14. The disappointment associ- 
ated with alternative Aj given the realization of scenario 
Si, is modeled as follows: 

 , 1, , 1i 

 vNM , ,j iA S 

 Df 

O k

   vNM

1

, ,
i

j i k D j k
k

DT A S p f U A S U


  (1

6) 

where is a positive function of  vNMU   with 
;  is the probability of scenario Sk.  0 0 kp

 f 

 , , ,k i k i jp u u


 


 , 1, ,

Df

6.2. Disappointment Correction to EUT 

For the purpose of this paper, D  in Equation (16) is 
assumed to be a linear function. The overall disappoint- 
ment is then obtained by averaging Equation (16) over all 
the m scenarios. This simplified version of the Delquié 
and Cillo Linear Disappointment Model (LDM) [37] 
modifies the vNM EU, Equation (2), as follows:  

 LDM
,

1 1

EU d
jm

i j i j
j k

A p u
 


 


    (17) 

where d is a positive constant that captures the rational 
individual’s sensitivity to disappointment. 

Equation (17) has several notable properties:  
1) The functional form is similar to the vNM EU but 

with rank-dependent weighted probabilities. 
2) The second term represents downside risk15 relative 

to the best possible outcome. It provides a credible meas- 
ure of risk-based robustness.  

3) The parameter d can be varied to reflect varying 
degrees of risk tolerance and thereby identify alternatives 
with unacceptable consequences. 

6.3. Two-Sensor Selection Example  

The two-sensor paradox of Section 4 is analyzed using 
the LDM. Given that disappointment is explicitly ac- 
counted for, the analysis uses the Table 2 physical data. 
The results for d = 0.8 are presented in Table 6. Figure 2 
compares several two-sensor combinations versus d.  

The results are consistent with a rational preference for 
diversification and the notion of risk-based robustness. 
The two-sensor combinations change rank as d varies. 
For d > 0.7, A4-A4 rank 1st and A2-A4 ranks 2nd. A3-A3 

changes rank from 1st
 for d = 0 to last for d > 0.6. To 

reach a final decision, a risk-averse DM would peruse 

Figure 2 and chooses between.A2-A4 or A4-A4 depending 
on preferences for risk tolerance and diversification. 

The LDM16 analysis is simpler and more intuitive than 
the utility theory two-dimensional preference analysis of 
Section 4.2. It can readily be extended to complex com- 
binations of multiple constituents. However, all available 
DT models lack a mathematical basis for developing 
complex hybrid solutions or portfolios. Such an approach 
is presented in the next section. 

7. Portfolio Optimization for Robustness 

7.1. General Formulation 

As discussed in Sections 4-6, a risk-adverse DM is likely 
to prefer a hybrid solution that performs relatively well 
over all scenarios of interest rather than a homogeneous 
solution consisting solely of the MEU alternative. Con- 
sider a situation of n alternatives iA i n   and m 
mutually exclusive probabilistic scenarios 
 , ,  1, ,S p j m j j . A hybrid solution may be thought 
of as a portfolio characterized by a multidimensional 
probability distribution function [39], 
 

Table 6. Results using the linear disappointment model. 

Combination EU DT d = 0.8 ULDM Rank 

A1-A1 0.53 0.09 0.44 10 

A2-A2 0.53 0.05 0.48 4 

A3-A3 0.58 0.10 0.48 6 

A4-A4 0.50 0.00 0.50 1 

A1-A2 0.53 0.07 0.46 8 

A1-A3 0.56 0.10 0.46 9 

A1-A4 0.52 0.05 0.47 7 

A2-A3 0.56 0.08 0.48 5 

A2-A4 0.52 0.03 0.49 2 

A3-A4 0.54 0.05 0.49 3 
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Figure 2. Comparison of selected two-sensor combinations 
versus disappointment parameter d using the linear disap- 
pointment model. 

14The outcome Oi is associated with scenario Si. It is convenient to 
number the outcomes, and thereby the scenarios, in order of decreasing 
preference. This ordering is used throughout the section. 
15Downside risk is a proven measure for characterizing portfolio risk 
[38]. 

16Simplicity and descriptive realism are two key objectives of DT [10,
11]. 
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 
1 1

n m

HS i pd
i j

P x x F f
 

    , , ,i j jA S p
 
 
 
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      (19a) 

where 1 2 nx x x



x  is the decision vector of allo- 
cation variables with xi being the Ai allocation fraction. 
The multidimensional function F 

 ,

 is a generalized 
discrete probability distribution with values being prob- 
ability distributions functions (pdf) rather than point es-
timates. pd i j  is a pdf that models the Ai out- 
come17 for scenario Sj. 

f A

1
n

i
i

x

S

The determination of the decision vector x may be 
specified in terms of the following stochastic optimiza- 
tion problem: 

Maximize the th percentile of PHS(x), Equation (19a), 
subject to the normalization, scenario performance, and 
affordability constraints, Equations (19b)-(19d): 



,d j jA S S

             (19b) 

  
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j i
t

p i
h

i

R S x f j
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.
n

i i
i

x C B


 

 , , ,

(19c) 

 TC Nx       (19d) 

The values  and  are percentiles18 that a DM speci- 
fies in accordance with his/her risk tolerance; j is 
his/her lowest acceptable value for the th percentile for 
performance in scenario Sj; Ci is the Ai cost; N0 is the 
number of required systems; and B0 is the available 
budget. Equation (19d) can accommodate pdfs for Ci 
with an agreed-to percentile for the cost constraint [27]. 

The above formulation provides a flexible and trans- 
parent way for the analyst and DM to define the choice 
problem and generate mixed solutions with desirable pro- 
perties such as diversification and robustness19. 

7.2. Hybrid Solution Example 

The above approach is applied to the design of a robust 
border surveillance system of N0 sensors using the four 
Table 2 sensors. The problem is to determine the com- 
bination of sensors 1 2 3 4

Table 7. Sensor hybrid solution optimized for robustness. 

Objective Constraints  Decision Variables  

Maximize 
E(PoD) 

PoD(S3) ≥ 0.43 A1 A2 A3 A4

0.52 0.43 0.0 0.7 0.0 0.3

 

 

Figure 3. Cumulative distributions for the hybrid sensor 
solution (HS) optimized for robustness, its constituent sen- 
sors A2 and A4, and the MEU alternative A3. 
 
The hybrid solution is robust: 1) the associated cumula- 
tive distribution is narrower than those of the homoge- 
neous alternatives, 2) the minimum PoD = 0.4, and 3) 
there is a 80% probability that the PoD  0.5 for the 
identified scenarios. Given the Table 2 alternatives, this 
is the solution that a DM who desires some level of ro- 
bustness at an acceptable performance cost is likely to 
intuitively prefer. Diversity provides additional benefits 
such as defense against common-cause failures [42] and 
increased deterrence against attackers [14]. 

The solution to this example is obvious. Nevertheless, 
it illustrates the significant advantages and benefits of 
portfolio allocation with stochastic optimization for de- 
veloping robust critical systems. Solving complex real- 
world problems will require tools with integrated Monte 
Carlo simulation and stochastic optimization capabilities. 
They are available in commercial and proprietary ver- 
sions. For information purposes, Crystal Ball® with Opt- 
Quest® was applied to the illustrative example. OptQuest® 
is a general purpose optimizer developed to effectively 
solve complex stochastic, nonlinear, and combinatorial 
optimization problems [43]. 

x x x x

 , ,S S S
 PoD 0.43S 

, Equation (19a), that 
maximizes the expected PoD over the three scenar- 
ios 1 2 3  subject to the normalization constraint, 
Equation (19b), and 3  for the perform- 
ance constraint, Equation (19c). The budget is assumed 
not to be a constraint. The hybrid solution data are sum- 
marized in Table 7 and its cumulative distribution [41] 
and several of interest are depicted in Figure 3.  8. Conclusions 

The paper begins by analyzing the suitability of EUT for 
AoAs of critical systems in a multistate world. The con- 
cept of robust solutions is discussed within the context of 
multiple scenarios. Several well-known models are com- 
pared for a simplified example of choosing sensors for a 
hypothetical border surveillance system. Portfolio allocation 

17Given complex systems, realistic scenario outcomes have significant 
uncertainties that need to be accounted for distinct from the scenario 
probabilities. 
18Expected values are included. 
19“Robustness,” as used in this paper (see Section 5), is an attribute of 
the solution or decision. It is not to be confused with “robust optimiza-
tion,” which refers to an optimization approach where the uncertainty 
model is not stochastic, but set-based [40]. 

Copyright © 2013 SciRes.                                                                                AJOR 



E. KUJAWSKI 136 

with stochastic optimization is proposed and demon- 
strated to be a valid and realistic method for defining 
robust critical systems. 

Some of the key conclusions are: 
1) The EUT is inadequate for critical systems AoA 

because MEU alternatives may possess vulnerabilities 
that could be exploited and/or are susceptible to com- 
mon-cause failures. The continuity axiom is unrealistic 
given the emotionally charged aspects of critical deci- 
sions. The independence axiom is in conflict with the 
rational individual who is not an expected utility maxi- 
mizer and prefers to make decisions using risk curves.  

2) The two-sensor paradox raises serious doubts about 
the validity of the minimax regret rule as a robustness 
criterion for decision making under risk and the belief 
that it is superior to the maximin rule. Both have serious 
problems and are potential misleading for choosing criti- 
cal systems. 

3) If the utility is linear in the probabilities, the EU of 
a hybrid solution cannot be greater than the EU of every 
constituent alternative. A GEUT and nonlinear utility 
functions are required to exhibit robustness and diversi- 
fication. 

4) The LDM simply modifies the vNM EU by adding 
a term proportional to downside risk. The results of the 
two-sensor selection example confirm that it is a promis- 
ing model for choosing robust homogeneous solutions. 
However, the LDM and other available DT models do 
not provide a mathematical basis for developing hybrid 
solutions. 

5) Portfolio allocation with stochastic optimization 
provides a flexible and transparent approach for defining 
the choice problem and determining hybrid solutions for 
critical systems with desirable properties such as diversi- 
fication and robustness. The best combination does not 
necessarily consist of the alternatives with the highest 
EUs; it draws on the strengths and complementarities 
that any of the alternatives can provide.  

6) The composition of the hybrid solution is deter- 
mined by optimizing a specified percentile of the system 
performance subject to robustness and cost constraints. 
Performance and cost uncertainties can be modeled using 
realistic pdf’s. 

Ultimately, the selection of robust solutions depends 
on the identified alternatives. Critical systems require 
analysis that is mindful of the following considerations: 1) 
the limitations of EUT and GEUT models; 2) risk-miti- 
gation properties such as FARness; and 3) the impor- 
tance of hybrid solutions as options. Given the availabil- 
ity of commercial and proprietary tools with integrated 
Monte Carlo simulation and stochastic optimization ca- 
pabilities, the future direction is the implementation of 
the proposed portfolio allocation with stochastic optimi- 
zation as a practical design and analysis tool for complex 

systems and SoS on actual projects. 
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