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ABSTRACT 

In this study, the data envelopment analysis (DEA), three-stage DEA (3SDEA) and artificial neural network (ANN) are 
employed to measure the technical efficiency of 29 semi-conductor firms in Taiwan. Estimated results show that there 
are significant differences in efficiency scores among DEA, 3SDEA and ANN analysis. The advanced setting of the 
three stages mechanism of DEA does show some changes in the efficiency scores between DEA and ANN approaches. 
We further find that the environmental factor is still a significant variable to explain technical efficiency in Taiwan, 
irrespective of whether a DEA, 3SDEA or ANN approach is used. 
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1. Introduction 

In this paper, we compare traditional data envelopment 
analysis (DEA), three-stage data envelopment analysis 
(3SDEA) and artificial neural network analysis (ANN) to 
estimate technical efficiency indices, and to explore the 
effect of environmental factors (Fried, Lovell, Schmidt 
and Yaisawarng, 2002) [1] on technical efficiency for 
policy purposes in the semi-conductor sector. We focus 
on the efficiency assessment since we believe that effi- 
ciency and/or performance will become strategic vari- 
ables in tackling the increasing competitive pressure and 
structural changes within this industry. We incorporate 
an operation mechanism and employ DEA, 3SDEA and 
ANN approaches to our analysis since we consider that 
the unpredictability of market demand and supply makes 
the semi-conductor companies’ input-output relationship 
vary. 

The semi-conductor industry is a promising knowl- 
edge-intensive industry, which is characterized by large 
capital, high-quality talent, longer reward and profit for 
R & D activities, therefore semi-conductor companies 
must be accountable for the R & D efforts they provide 
(Chiesa and Toletti, 2003) [2]. In the 1980s, a push for 
accountability was undertaken in United States and all 
semi-conductor companies faced the task of allocating 
scarce resources among high risk and high return R & D 
activities. Semi-conductor companies are concerned with  

efficiency, and current tight economic conditions have 
further highlighted the importance of those concerns. In 
the 1990s, Taiwan government declared the Technology 
Industry Establishment Promotion Decree which empha- 
sized the importance of the semi-conductor industry as 
critical in the development of Taiwan’s manufacturing 
industry. The government also included the semi-con- 
ductor industry in the ten emerging focus industries in 
1998. Under this climate of focus, Taiwan started to in- 
crease operational efficiency in the semi-conductor in- 
dustry, and to place extra funds into the supply market. 
The objective of this focus was to increase quality of life 
and reduce financial uncertainty. Taiwan’s semi-con- 
ductor companies have also confronted accountability 
issues in the 2000s with administrators bringing some 
revolutionary changes. 

A semi-conductor firm may be viewed as an enterprise 
in which the professional staff provides the operating 
conditions for converting quantifiable resources (inputs) 
into patents and revenues (outputs). However R & D 
expense faces budget constraints, and whether or not 
there is a price tag attached, firms need to choose among 
competing expenditure options. The efficiency of semi- 
conductor companies is a critical issue in the develop- 
ment of the technology industry while operational ineffi- 
ciency increases uncertainty owing to fluctuations in the 
financial environment. The issues of market risk emerge 
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when we evaluate the operating efficiency of semi-con- 
ductor companies (Kliger and Sarig, 2000) [3]. Due to 
the continued rapid improvement of semi-conductor 
technology, it is expected that logistics management has 
become an increasingly important segment of the semi- 
conductor industry. Therefore, major issues in this study 
focus on the effect of factory location as part of the 
firm’s logistics management, when the carriage cost is 
viewed as an important input in Taiwan. Changes in the 
financial and political environment will undoubtedly 
affect a firm’s location decision. 

The research intensity and factory location present a 
useful reference indicator to the investor and legalistic 
institution (Garner, 1999) [4]. Thus, incorporating the 
environmental effects of the research intensity and fac- 
tory location into the performance evaluating system of 
semi-conductor companies can obviously improve the 
effectiveness of the evaluation results because the invisi- 
ble external and internal environment factors are in- 
cluded in the evaluating system in order to fit actual 
situations in the semi-conductor companies (Larsen, 
2006) [5]. We then employ a three-stage data envelop- 
ment analysis method to evaluate semi-conductor com- 
pany performance in order to tailor the multi-input and 
multi-output industry setting. To avoid the difficulty in 
making a subjective choice for the inputs and outputs of 
the DMUs (decision making unit), the artificial neural 
network (ANN) can be proposed to choose the inputs and 
outputs of DMUs which are more related to its operating 
efficiencies. 

The purpose of this paper is to measure the resource 
utilization efficiency of semi-conductor companies in 
Taiwan applying three-stage DEA model and artificial 
neural network analysis on a sample of 29 semi-con- 
ductor companies during the period from 2001 to 2006 
(Data sample refers to Appendix 1). This period of data 
is employed due to avoiding the one-off shock effect in 
overall efficiency evaluation. Hopefully the empirical 
results of this study can provide useful information for 
firms and government agencies to do decision-making 
about the improvement of operational efficiency. 

The reminders of this paper are organized as follows. 
Section 2 presents a review of the relevant literature. 
Section 3 describes the methodology of the three-stage 
DEA and ANN approaches. Section 4 describes the data 
employed and its characteristics. Section 5 presents the 
empirical results. The paper then provides the concluding 
remarks in Section 6. 

2. Literature Review 

In this section, we firstly introduce the non-parametric 
programming approach of DEA and the extended 
3SDEA to evaluate efficiency and then propose the al- 
ternative programming approach of ANN. The DEA ap-  

proach uses a mathematical programming technique to 
construct a piecewise linear frontier and it can be referred 
to as a non-parametric programming approach (Charnes, 
Cooper and Rhodes, 1978 [6]; Banker, Charnes and 
Cooper, 1984 [7]). DEA allows researchers to avoid 
specification of a given functional form or error structure, 
and many researchers have focused on estimating the 
technical efficiency and scale efficiency of DMUs by 
utilizing this technique (Oral and Yolalan, 1990 [8]; Fav- 
ero and Papi, 1995 [9]; Schaffnit, Rosen and Paradi, 
1997 [10]; Fukuyama, Guerra and Weber, 1999 [11]). 
The DEA model used to evaluate the efficiency in the 
semi-conductor industry is found in Liu and Wang (2008) 
[12], Chen and Chen (2007) [13], and Chen and Yeh 
(2005) [14], while Schaffnit, Rosen and Paradi (1997) 
[10] present a best practice analysis of bank branches 
based on a DEA assurance region (DEA-AR) model con- 
taining output multiplier constraints, with standard 
transaction and maintenance times, in order to evaluate 
allocative efficiency. 

The three-stage DEA was first proposed by Fried and 
Lovell (1990) [15]. Fried, Schmidt and Yaisawarng 
(1999) [16] then extended three-stage DEA and focused 
on estimating the environmental variables which influ- 
ence the input slacks variables. Fried, Lovell, Schmit and 
Yaisawarng (2002) [1] further compare the efficiency 
based on the first stage DEA and the third stage DEA; 
they argue that the three-stage DEA is better than the 
one-stage DEA adjusting inputs and considering the in- 
dividual environmental effect and statistical white noise. 
Greasley (2005) [17] employed a three-stage DEA and 
simulation to guide operating units to improved per- 
formance. The model compared the performance of the 
current and benchmark process designs. Athanassopoulos 
and Curram (1996) [18] compared DEA and artificial 
neural network (ANN) mechanisms to facilitate a defini- 
tion of efficiency measures from the two methods. Wang 
(2003) [19] further compared the DEA, stochastic fron- 
tier analysis (SFA) and ANN and argued ANN can ob- 
tain a similar valid effect of DEA proposed by Charnes, 
Cooper and Rhodes (1978) [6]. Pendharkar and Rodger 
(2003) [20] compared the performance of the ANN and 
DEA by using the “efficient” and “inefficient” training 
data subsets. It may be useful to screen training data on 
the screened examples to approximately satisfy the 
monotonicity property. Liao (2004) [21] proposed an 
effective procedure on the basis of the artificial neural 
network (ANN) and the data envelopment analysis (DEA) 
to optimize the multi-response problems. A case study of 
improving the quality of hard disk drivers in Su and 
Tong (1997) [22] is resolved by the proposed procedure 
and yields a satisfactory solution. Pendharkar (2005) [23] 
illustrated that a DEA-based data screening of training 
data improves forecasting accuracy of an ANN using 
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real-world health care and software engineering data. 
Santin (2008) [24] showed how ANN is a valid semi- 
parametric alternative for fitting empirical production 
functions and measuring technical efficiency. For the 
application of ANN in the semi-conductor industry, some 
results are shown in Wang, Su and Hsieh (2007) [25] and 
Buddefeld, Grosspietsch, Hosticka and Klinke (1991) 
[26]. These results demonstrate that DEA-ANN methods 
offer an useful range information regarding the assess- 
ment of performance. 

This paper then extends the basic deterministic DEA 
method to incorporate the three-stage DEA mechanism in 
order to obtain a more similar comparison base between 
artificial neural network programming and three-stage 
DEA approaches. 

3. The Three-Stage DEA and ANN  
Approaches 

3.1 Three-Stage DEA Approach 

In the DEA approach, Charnes, Cooper and Rhodes 
(1978) [6] initiated the data envelopment analysis 
method. They proposed an operational framework for the 
estimation of productive efficiency (the CCR model) 
which demonstrated that the mechanism for calculating 
DEA scores can be formulated as a linear programming 
problem. We denote j n  as the n-th output of the j-th 
DMU and j m  as the m-th input of the j-th DMU. If a 
DMU employs M inputs to produce N outputs, the score 
of j-th DMU, Ej, is a solution from the linear program- 
ming problem, 
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and Un and Vm give the weights associated with each 
output and input. The technical efficiency of each DMU 
is calculated by using the ratio of a weighted sum of out- 
put to a weighted sum of input. Here the input usage of a 
DMU is radial contracted to the best practice frontier (i.e., 
isoquant), and the DMU is assumed to continue using its 
original production process (i.e., production ray). The 
distance between the actual performance of the DMU 
and the best-practice frontier provides a measure of the 
relative inefficiency of the DMU. The DEA best-practice 
frontier is constructed from piecewise linear combina- 
tions of all available DMUs with each DMU being as- 
signed a positive weight when constructing the best- 

practice frontier of the N-th DMU. DMUs with positive 
weights are used to construct the best-practice frontier 
and a unique set of weights is determined when calculat- 
ing the efficiency for each DMU. These weights generate 
the theoretical best-practice DMU, against which a DMU 
is compared when calculating that particular DMU’s 
technical efficiency. The weights assigned to the DMUs 
in order to calculate the technical efficiency of the N-th 
DMU are then used to calculate the cross-efficiencies of 
the remaining N-1 DMUs, if necessary. Notably, the pure 
technical efficiency can be derived through the condition  
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former model to make the famous BCC model (Banker, 
Charnes and Cooper, 1984) [7], which provides valuable 
information about the cost-benefit evaluation. We can 
calculate the pure technical efficiency score from the 
BCC model, and then the scale efficiency score can be 
derived from the technical efficiency and pure technical 
efficiency scores in that the technical efficiency score is 
equal to the multiplication of pure technical efficiency 
and scale efficiency scores (Fare, Grosskopf and Lovell, 
1985) [27]. 

We employ the three-stage DEA model (Fried, Lovell, 
Schmidt and Yaisawarng, 2002) [1] in order to decom- 
pose the environmental and statistical noise effects from 
the efficiencies and further estimate the real efficiency of 
each DMU. Under this consideration, it can obtain an 
objective operating efficiency measure given the identi- 
cal external environment conditions. 

In the first stage, we employ the DEA method together 
with the output and input variables to estimate the effi- 
ciency values and also obtain input slacks given that the 
environmental variables are controlled; a type of deter- 
ministic model where the statistical noise is still allowed. 
As to the second stage, let the dependent variable be the 
slack variable on each factor input, and the independent 
variable be the environmental variable. We can set up 
four types of regressions on the input slack variables as 
follows, 
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where it  represents the slack value of each input of 
i-th DMU within period at Z is 
the vector 

S
, 1, , , 1, , ,t i n t T  

1k   and the first element is set as one. Com- 
paring to the intercept item, other k − 1 elements repre-
sents the environmental variable of i-th, and   is the  

corresponding coefficient vector and  0,itV N 2  is  

the random error item. We can estimate Equation (6) by 
the Tobin fixed effect model with the pooled data, and 
obtain the consistency estimator of coefficient estimate. 
Thus, we can divide the effect on the input variables into 
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the environmental variables, managing X-inefficiency, 
and random error item. Based on the method of adjusted 
input variable suggested by Fried et al. (2002) [1], one 
can keep each DMU facing the identical operating envi- 
ronment and opportunity by way of uplifting the data of 
input variables. The adjusted equation is shown as fol- 
lows:  

    ˆ ˆmax maxA
it it it it it it it itZ Z v             v  (7) 

noise effects from efficiencies and obtain the real effi- 
ciency of each decision making unit. Notably, Fried, 
Schmit and Yaisawarng (1999) [16] and Fried, Lovell, 
Schmit and Yaisawarng (2002) [1] recognize that a 
firm’s technical efficiency will be influenced by the out- 
side environment. They suggest that one should evaluate 
the effect on the change of input slack variable by the 
environment variable. 

3.2 The ANN Approach 
where A

it  represents the t-th adjusted data of specific 
input variable of i-th DMU and it represents the origin- 
nal data of specific input variable of i-th DMU. 

Alternatively, the artificial neural network analysis 
(ANN) is concerned with the simple simulation or train-
ing function base, and focuses on an establishment of the 
training sample based on previous experience under the 
assumption that back-propagation network mechanism 
based on rational economic behavior. In general, ANN 
model or procedure is specified by network topology, 
node characteristics and training or learning rules. It is an 
interconnected set of weights that contains the informa-
tion or knowledge generated by the model. There are 
many varieties of connections under study; here in our 
study we discuss only one type of network which is 
called the multilayer perception (MLP). The composition 
of MLP has three main components: input layer, hidden 
layer and output layer, and can be illustrated in Figure 1. 

 ˆmax it itZ   is the maximal fitted value within the  

whole sample, representing the worst operating environ-  

ment, and vice versa. Similarly,  maxit itv  is the larg-  

est residual within the whole sample, representing the 
worst fortune and/or opportunity, and vice versa. If the 
coefficient of environmental variables is negative in the 
regression on the input slack variable, it represents the 
beneficial managing environment, given that it can re- 
duce the factor surplus in the sample business. Similarly, 
firms with smaller residuals represent that it encountered 
good luck and results in a reduction of the factor surplus. 
In this circumstance, each DMU faces an identical man- 
aging environment in order to reflect the actual operating 
efficiency through the adjustment of the second stage. 

In this study, as it is explained later, the DMU evalua- 
tion variables such as number of stuff employed (NSE), 
expense of fixed assets (EFA), R & D expenses (RD), net 
business revenues (NBR), ratio of income before tax (RI) 
and earnings per share (EPS) are defined as the compo- 
nents (Xj) in input layer of ANN system, the technical 
efficiency which generated according to DEA results are 
defined as the components (Yj) in output layer. 

In the third stage, we employ the original DEA model 
to estimate the operating efficiency by way of the ad- 
justed input variable from the second stage and the 
original output value from the first stage. It other words, 
we repeat the procedure of the first stage except that we 
use the adjusted input variable from the second stage 
(Equation (7)). At this time, we have decomposed the 
effects on the environmental conditions and statistical  

Our ANN is composed of a large number of simple 
processing units, each interacting with others via excita- 
tory or inhibitory connection (Figure 1). Distributed rep-  
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Figure 1. Framework of ANN (Xj refers to input values and Yj refers to output values). 
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resentation over a large number of unit together with 
interconnectedness among processing units, provide an 
error tolerance. Three different layers can be distin- 
guished. The input layer is responsible for receiving in- 
formation from the outside environment and transferring 
it to the hidden layer. In the hidden layer, a neuron will 
assign a series of weights to the input, cope with the in- 
formation via a training process, and then forward the 
results with weights to the output layer. 

As indicated in Figure 1, a typical three-layer feed- 
forward model used for forecasting purposes. In this 
study, the input nodes are the observations of NSE, EFA, 
RD, NBR, RI and EPS while the output provides the 
forecast for the future values of efficiencies for DMUs. 
Hidden nodes with appropriate nonlinear transfer func- 
tions are used to process the information received by the 
input nodes. The MLP’s most popular learning rule is the 
error back-propagation algorithm. Back-propagation learn- 
ing is a kind of supervised learning introduced by Wer- 
bos (1974) [28] and later developed by Rumelhart and 
McClelland (1986) [29]. The algorithm uses a learning 
set, which consists of input desired output pattern pairs. 
Each input-output pair is obtained by the offline proc- 
essing of historical data. These pairs can be used to ad- 
just the weights in the network to minimize the mean 
squared error (MSE) which measures the difference be- 
tween the real and the desired values over all output 
neurons and all learning patterns. After computing MSE, 
the back-propagation step computes the corrections to be 
applied to the weights. Under this process we determine 
how close the actual output to new situations is. In the 
learning process the values of interconnection weights 
are adjusted so that the network produces a better ap- 
proximation of the desired output. 

According to this procedure, the values of intercom- 
nection weights related to inputs, outputs and their effi-
ciency scores of each DMUs can be obtained. Since the 
structure of ANN is suitable to made concave functions 
with multidimensionality, therefore it can be used in cre- 
ating efficient frontier functions and estimating efficien- 
cies of DMUs (Wang, 2003) [19]. Based on this network 
design and process, we can farther compute the effi- 
ciency scores of each DMUs through the inputs and out- 
puts which have the relative higher value of interconnect- 
tion weights. 

4. The Data 

We employ the institution functions of the firm in this 
paper, which is in line with the competitive semi-con- 
ductor industry in Taiwan. This can also effectively 
benefit a firm’s operations and improve a semi-conductor 
firm’s efficiency. In accordance with this approach, we 
specify three types of firm’s output, namely the net busi- 
ness revenues (business revenues after tax), ratio of gross 

income before tax, ratio of net income after tax, ratio of 
business profit, turnover of accounts payable, and earn- 
ings per share. The first four types of output constitute 
the main activities of semi-conductor firms; with the last 
two representing an extended source of revenue for firms 
(Chiesa and Toletti, 2003) [2]. The input measures based 
on the above output entail operating resources. We select 
the following three input factors: number of staff em- 
ployed, expense of fixed assets, and R & D expenses. 

It should also be noted that the ratio of net income af- 
ter tax is sourced as a ratio of gross income before tax, 
the ratio of net income after tax being their main element. 
One of these needs to be excluded in order to avoid a 
multicollinearity problem in the DEA model. The results 
of our correlation analysis also support the high correla- 
tion phenomenon between these two variables, with a 
correlation coefficient of 0.919. We then choose the ratio 
of net income before tax for further analysis. 

Next, we determine the relationships between inputs 
and outputs. The DEA model requires definitions of in- 
puts and outputs so that when inputs are added, outputs 
will increase. We employ a correlation analysis to test for 
isotonicity (i.e., the positive direction of the relationship 
between inputs and outputs). According to the results of 
the inter-correlation analysis, it is clear that the correla- 
tion coefficients between our chosen outputs and inputs 
are all positive. 

Third, we have further utilized correlation analysis to 
determine the appropriate inputs/outputs in accordance 
with this approach (Golany and Roll, 1989) [30]. The 
less correlation between inputs and outputs is neglected 
since it is weak production oriented. Ratio of business 
profit and turnover of accounts payable are excluded in 
the further analysis. Thus, we specify three types of firm 
output, namely net business revenues (NBR), ratio of 
gross income before tax (RI) and earnings per share 
(EPS). Three types of input, namely number of staff em-
ployed (NSE), expense of fixed assets (EFA), and R & D 
expenses (RD) are included. The summaries of the data 
are provided in Table 1. 

The official report from the Commission on National 
Corporations of the Ministry of Economic Affairs pro- 
vides a rich source of data on the operations of all of 
Taiwan’s semi-conductor firms. We have gathered the 
requisite data for 29 companies, which represent 90 per 
cent of the domestic companies in Taiwan, covering the 
period 2001 to 2006. Please note that we chose the time 
span of 2001 to 2006 because the Taiwanese government 
first included the semi-conductor industry into the ten 
emerging important industries in 2000 and we evaluated 
the promotion performance in the first six-year periods. 
We employed MATLAB 7.0 software to solve the artifi- 
cial neural network programming problem and we used 
Frontier-41 software to run the three-stage DEA analysis. 

Copyright © 2013 SciRes.                                                                                  ME 



H.-H. LIU  ET  AL. 25

5. Empirical Results 

5.1 The Mean of Efficiency Values in the DEA, 
Three-Stage DEA and ANN 

As indicated in Table 2, we can observe that the calcu- 
lated mean technical efficiency between 2001 and 2006 
was 0.825 by traditional DEA. Relative to their produc- 
tion frontier, semi-conductor companies operated effi- 
ciently with actual activities 20% above the maximum 
activity levels during 2001-2006. As for technical effi- 
ciency in each year, we then find that it was 0.866 in 
2001, with a gentle uplift to 0.892 in 2002, and 0.911 in 
2003, followed by a steep decline to 0.844 in 2004. It is 
clear that average technical efficiency slumped in 2005 
(0.708) relative to 2004. We also find that the mean tech- 
nical efficiency score of 0.708 and 0.732 during the pe- 
riod 2005-2006 was lower than during the periods 
2001-2004, at 0.866, 0.892, 0.911, and 0.844 respectively. 
The technical efficiency score (TE) equals the product of 
the pure technical efficiency (PTE) and the scale effi- 
ciency (SE) scores, and the relative magnitudes of these 
scores provide evidence of the source of the inefficien- 
cies. Similar results can be found when PTE and SE 
scores are analyzed. The PTE score of 0.972, 0.944, 
0.973 and 0.933 over the period 2001 to 2004 was also 

higher than the 0.759 in 2005 and 0.829 in 2006; while 
the SE scores of 0.891, 0.945, 0.936, 0.905 during the 
period 2001 to 2004 were not higher than the 0.933 and 
0.833 in 2005-2006. 

We further find that the mean pure technical efficiency 
scores of semi-conductor companies (0.901) were lower 
than the mean scale efficiency score (0.915) during the 
2001 to 2006 period. This seems to suggest that pure 
technical inefficiency has a greater significance than 
scale inefficiency as a source of inefficiency within all 
inefficient semi-conductor companies. Thus, given input 
prices, the effects on technical inefficiency could be at- 
tributed to the inappropriate incorrect choice of the initial 
input combinations, rather than the returns of scale. The 
reason is that semi-conductor companies increase their 
own scope or mass investment, and that the resource al- 
location issue is neglected. Semi-conductor companies 
suffer higher operating costs on the account that they 
produce goods without optimal production efficiency. 
Similar results can be found when periods of data are 
used for 2005 to 2006, with the respective mean pure 
technical efficiency scores (0.759; 0.829) being lower 
than the respective mean scale efficiency scores (0.933; 
0.883). 

The mean technical efficiency scores of an ANN ap-  
 

Table 1. Summary of the descriptive statistics of the input and output data. 

Number of staff  
employed 

The expense of  
fixed assets 

R & D expenses Net business revenues Income rate before tax Earnings per share 
Years 

Person Billion Billion Billion Billion Dollar 

2001-2002 1915 193.10 206.45 182.61 32.19 3.02 

2003-2004 2279 288.09 496.90 237.88 43.72 9.30 

2005-2006 2123 247.38 372.42 214.19 38.77 6.61 

Large 4451 558.04 770.10 442.64 79.06 12.62 

Small 1250 130.88 223.31 128.52 23.67 4.36 

Note: All monetary values are in NT$ billion. The data consists of thirty-nine domestic commercial semi-conductor companies and the seven years’ data. The 
data consists of seven large-sized semi-conductor companies, and twenty-two small-sized semi-conductor companies. 
 

Table 2. The mean of efficiency values in the DEA, three-stage DEA and ANN during the year of 2001-2006. 

Traditional (original) DEA Three-stage DEA ANN 
Year 

TE PTE SE TE PTE SE TE PTE SE 

2001 0.866 0.972 0.891 0.907 0.966 0.939 0.431 0.689 0.622 

2002 0.892 0.944 0.945 0.916 0.943 0.971 0.444 0.654 0.678 

2003 0.911 0.973 0.936 0.940 0.980 0.959 0.428 0.670 0.643 

2004 0.844 0.933 0.905 0.910 0.948 0.960 0.437 0.633 0.663 

2005 0.708 0.759 0.933 0.617 0.663 0.931 0.525 0.710 0.717 

2006 0.732 0.829 0.883 0.668 0.802 0.833 0.507 0.688 0.763 

AEV 0.825 0.901 0.915 0.826 0.884 0.934 0.462 0.674 0.681 

Notes: TE: technical efficiency; PTE: pure technical efficiency; SE: scale efficiency; AEV: average efficiency value. The results of sensitivity analysis of year 
2001 data are reported here, and the similar results are also obtained when 2001-2007 data are employed. 

Copyright © 2013 SciRes.                                                                                  ME 



H.-H. LIU  ET  AL. 26 

 
proach in Table 2 is 0.462, implying that semi-conductor 
companies could have produced the same level of output 
using 46% of the input actually used. Using the three- 
stage DEA approach, we find that the three-stage DEA 
efficiency scores (0.826) are on average higher than that 
of ANN scores (0.462). Similar results are also obtained 
when the regular DEA technical efficiency is employed. 
The three-stage frontier (and/or traditional DEA frontier) 
of semi-conductor companies is naturally a “soft” fron- 
tier, at which the output observations of semi-conductor 
companies are in some cases allowed to cross the enve- 
lope, allowing us to make more observations closer to 
this frontier. However, the ANN frontier is a “hard” 
frontier for any given figures, and the envelope is located 
far from the three-stage frontier. Hence, the three stage 
DEA frontier may be crossed by a few efficient semi- 
conductor companies, but most semi-conductor compa- 
nies (95% or more) are still assumed to fall on or beneath 
the frontier. That is, the efficiency scores of 3SDEA are 
higher than ANN. Similar results are also obtained when 
pure technical efficiency and scale efficiency are ana- 
lyzed. We further find that the average pure technical 
efficiency and scale efficiency are 0.674 and 0.681 from 
the artificial neural network analysis (ANN), which are 
significantly lower than the result gained from the three- 
stage DEA approach (0.884; 0.934), or the traditional 
DEA (0.901; 0.915) (Table 2). 

We then employ a Tobit regression model in the second 
stage in order to obtain a consistency estimator by solving 
the intercept issue of data. The intercept issue of data oc- 
curred due to the value of slack variables being less than zero, 
which is not permitted. As indicated in the second column 
in Table 3, we find that there are positive and significant 
coefficients in a number of semi-conductor companies’ loca- 
tion. There is also a positive result for R & D intensity and 
the slack variable of the number of staff employed; it shows 
that the input of the number of staff employed should in- 
crease; however, it does not need to be adjusted constantly 

due to the negative and insignificant coefficient displayed 
by the number of years that the business has been run for. 
As to the third column in Table 3, the inputs of R & D 
expenses should increase because there are positive and 
significant coefficients in a number of semi-conductor 
companies’ location, and R & D intensity in the regres- 
sion of the slack variable of R & D expense. Additionally, 
there is a negative and significant coefficient of estab- 
lishment years in the regression of the slack variable of R 
& D expense. It shows that more years of establishment is 
beneficial to the semi-conductor companies in order to 
deduce the extraneous inputs of R & D expense. The de- 
crease in the inputs of R & D expense is attributed to a 
benevolent operating environment. Additionally, as to the 
second columns in Table 3, the inputs of fixed assets and 
R & D expense should be increase especially when the 
company operates in more than one country because there 
are positive and significant coefficients of location in the 
regressions of the slack variable of fixed asset and R & 
D expense; however, one does not adjust the fixed asset 
and R & D expense due to the insignificant coefficients 
of the number of semi-conductor companies location, 
and establishment years on the slack variable of person- 
nel expense. 

Based on the estimated adjusted inputs from the second 
stage and the original outputs from the first stage, we can 
estimate the technical efficiency again using DEA. 
Among the estimated technical efficiency in this stage, 
one can reflect the actual operating efficiency, represent- 
ing the results on the removal of the environmental factor 
and statistical noise effects. Table 4 lists the polished 
efficiency of the 29 semi-conductor companies in Taiwan. 

5.2 Testing Efficiency Differences for DEA, 
Three-Stage DEA and ANN Approach 

Based on Table 4, our results are identical with those of 
Fried, Lovell, Schmit and Yaisawarng (2002) [1]. The 

 
Table 3. The estimated results of tobit regressions in the second stage. 

Dependent variable: slack variable of  
Independent variable The numbers of staff  

employed 
The expenses of fixed 

assets 
R & D expenses 

6.2992 942.8320 −0.6012 
Intercept 

(0.7240) (0.9470) (−0.0450) 

4.5849** 71.7644 7.6427*** 
Location 

(2.5340) (0.3460) (2.7480) 

−0.3446 12.2296*** −0.6652* 
Establishment years 

(−1.4340) (2.5160) (−1.8010) 

17.5395** 3082.8900*** 19.6375* 
R & D intensity 

(2.5050) (3.8390) (1.8240) 

Notes: ***, **, *Representing the significance of 1%, 5%, 10%, respectively. Log likelihood = −595.6005. 
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Table 4. Numbers of semi-conductor companies with efficient efficiency and economies of scale during 2001-2006. 

Traditional DEA Three-stage DEA ANN 
Year 

TE PTE SE TE PTE SE TE PTE SE 

2001 9 22 10 13 22 13 3 4 4 

2002 10 18 10 14 18 14 0 0 1 

2003 12 25 12 15 25 16 0 1 0 

2004 8 18 8 14 19 14 5 11 5 

2005 9 12 9 9 14 8 5 11 5 

2006 10 15 11 8 14 8 4 8 4 

Average 9.67 18.33 10.00 11.57 17.86 11.57 2.83 5.83 3.16 

Traditional DEA Three-stage DEA ANN 
Year 

CRS DRS IRS CRS DRS IRS CRS DRS IRS 

2001 10 19 0 13 11 5 3 0 26 

2002 10 16 3 14 5 10 0 5 24 

2003 12 15 2 16 8 5 0 0 29 

2004 8 19 2 14 12 3 5 12 12 

2005 9 12 8 8 14 7 5 16 8 

2006 11 13 5 8 13 8 4 19 6 

Average 10.00 15.67 3.33 12.17 10.50 6.33 2.83 8.67 17.50 

Notes: TE: technical efficiency; PTE: pure technical efficiency; SE: scale efficiency; AEV: average efficiency value. CRS = constant return to scale; DRE = 
decreasing returns to scale; IRS = increasing returns to scale. 

 
number of efficient semi-conductor companies, with the 
technical efficiency that equals unity, is higher during the 
three-stage DEA (13 DMUs) than that of the first stage 
DEA (9 DMUs) in 2001. Similar results are also obtained 
when scale efficiency is analyzed. We further find that the 
majority of sample semi-conductor companies belong to 
the stage of decreasing returns to scale (DRS). The num- 
ber of firms with constant returns to scale during 2001- 
2006, is also higher during the three-stage DEA (12.17 
DMUs) than that of the first stage DEA (10.00 DMUs). 

The percentage of decreasing returns to scale firms 
during 2001-2004 is 65.5%, 55.2%, 51.7%, and 65.4% 
respectively. The source of the inefficient semi-conduc- 
tor companies mostly arise from scale inefficiency. 
Similar results are also obtained when 2005-2006 data is 
analyzed. We can derive that the semi-conductor compa- 
nies are shifting from decreasing returns to scale (DRS) 
to increasing returns to scale (IRS) through the adjust- 
ment of the effects on the environment and rand effort in 
the three-stage DEA. This implies that the production 
scale of the firms have adjusted and are close to the op- 
timum scale. 

Two Banker’s asymptotic DEA efficiency tests have 
been used to test for inefficiency differences between 
two different efficiency scores (Banker, 1996 [31];  

Banker and Chang, 1995) [32]. Firstly, we assume that 
the two inefficiencies  1 and 1a b    follow the ex- 
ponential distribution. The test statistic  

   1 1ar a br b
r r

N N           
 

 
is evaluated relative to the F-distribution with (2Na, 2Nb) 
degrees of freedom. Secondly, we assume that the two 
inefficiencies  1 and 1a b    follow the half-normal 
distribution. The test statistic  

   1 1ar a br b
r r

N N           
    

is evaluated relative to the F-distribution with  ,a bN N  
degrees of freedom. Another two traditional test proce- 
dures, Welch’s mean test and Mann-Whitney test have 
also been used to test for comparison on inefficiency 
differences between the different efficiency scores. For 
Welch’s mean test, the test statistic, under the assump- 
tion of unequal variances, is given by,  

     2 2
a b a a a aX X N   N

 
which follows the t-distribution of freedoms calculated 
as, 

 

            2 22 2 2 21 1a a b b a a a b b bN N N N N N                 
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where aX  and bX  and 2

a  and 2
b  are the sample 

means and variances of the inefficiencies. In the Mann- 
Whitney test, the test statistic Z-value is calculated by 

   Z U E U V U        

and  is the lower figure between the calculated mag- 
nitudes of 

 
and , 

U

aU bU

 1 2 ;a a b a a aU N N N N W   
 

 1 2 ;b a b b b bU N N N N W   
 

  2a bE N N 
 

and 

   1 12a b a bV N N N N     

where a  and bW  are the rank sums of each selected 
sample. In our case, one of N has large sample sizes (N > 
15); we can generate a Z-value and refer to the standard- 
ized normal distribution to test the null hypothesis. 

W

We apply four tests: Banker’s two asymptotic DEA 
tests, Welch’s mean test and Mann-Whitney test in our 
study. All tests show that there is a significant difference 
among the average efficiency scores of ordinary DEA vs. 
ANN methods (see the third column, Table 5), and 
3SDEA versus ANN methods (see the fourth column, 
Table 5). Moreover, the advanced setting of the three- 
stages mechanism of DEA does not change the instinct- 
tive differences of DEA mechanisms. Derived results can 
be obtained when DEA and 3SDEA are compared and 
efficiencies obtained within these two approaches are not 
different as confirmed in four kinds of tests (see the fifth 
column, Table 5). Estimated results show that there are 
significant differences in efficiency scores between 
three-stage DEA and ANN. Similar results are also ob- 
tained when the efficiencies of regular DEA and ANN 
are compared. Identical to the results of Fried, Lovell, 
Schmit and Yaisawarng (2002) [1], we find that different 
approaches (DEA versus ANN) will result in different 
results when they are employed in similar methodology-  

cal framework. The advanced setting of the three-stage 
mechanism of DEA does not change the instinctive dif- 
ferences between DEA and ANN approaches. 

6. Concluding Remarks 

In this study, ordinary (original) DEA, three-stage DEA, 
and artificial neural network (ANN) approaches are em- 
ployed to compare the technical efficiency of 29 semi- 
conductor companies in Taiwan. The six-year data set 
2001-2006 is employed, which avoids the one-off shock 
effect in the overall efficiency evaluation. Estimated re- 
sults show that there are significant differences in effi- 
ciency scores between three stages DEA and ANN. 
Similar results are also obtained when the efficiencies of 
regular DEA and ANN are compared. Identical to the 
results of Fried, Lovell, Schmit and Yaisawarng (2002) 
[16], we find that different approaches (DEA vs. ANN) 
will produce different results when they are employed in 
similar methodological framework. Furthermore, the 
advanced setting of the three-stage mechanism of DEA 
does not change the instinctive differences between DEA 
and ANN approaches. The results are comparable as a 
whole; however, ANN approach produces a more robust 
frontier and identifies more efficient units since more 
good performance patterns are explored. Furthermore, 
ANN approach provides worse performers the guidance 
on how to improve their performance in different effi- 
ciency ratings. The neural network approach requires no 
assumptions about the production function (the major 
drawback of the parametric approach) and it is highly 
flexible. 

We also find that the environmental factors still pro- 
vide a significant variable to explain the technical effi- 
ciency in the efficiency model, irrespective of whether 
DEA, 3SDEA or ANN approach is employed. Neverthe- 
less, future research with neural networks in the effi- 
ciency analysis is suggested. The possible directions 
include weight restrictions and cross-industry compare- 
sons and, etc. 

 
Table 5. Summaries of efficiency difference test results. 

Classification Test Procedure DEA vs. ANN 3SDEA vs. ANN DEA vs. 3SDEA 

Semi-conductor er’s asymptotic Exponential Type 3.3112**1 3.3046** 1.0018 

DEA tests2 Half-normal Type 10.9649** 10.9170** 1.0035 

Traditional efficiency Welch test3 8.5732** 7.2751** 0.0060 

Tests Mann-Whitney test4 −5.2831** −5.9791** −0.8542 

Notes: 1). **Represents significance at the 0.05 level and *represents significance at the 0.10 level. 2). As to semi-conductor’s asymptotic DEA tests, there are 
six tests performed: the exponential type, a) DEA vs. ANN (=0.3943/0.1191 = 3.3112), b) 3SDEA vs. ANN (=0.3943/0.1193 = 10.9170), c) DEA vs. 3SDEA 
(=0.1193/0.1191 = 1.0018); the half-normal type, d) DEA vs. ANNA (=0.1554/0.0142 = 10.9649), e) 3SDEA vs. ANN (=0.1554/0.1423 = 10.9170), f) DEA vs. 
3SDEA (=0.0142/0.0141 = 1.0035). 3). As to Welch efficiency tests, there are also three tests performed: a) DEA vs. ANN (=0.2752/0.0321 = 8.5732), b) 
3SDEA vs. ANN (=0.2750/0.0378 = 7.2751), c) DEA vs. 3SDEA (=0.0002/0.0331 = 0.0060). 4). As to Mann-Whitney efficiency tests, there are also three tests 
performed, that is, a) DEA vs. ANN of technical efficiency ((490 − 495) − 162)/31.61 = −5.2831, b) 3SDEA vs. ANN of technical efficiency ((−27 − 
162)/31.61 = −5.9791), c) DEA vs. 3SDEA of technical efficiency ((135 − 162)/31.61 = −0.8542). Note that 162 and 31.61 are the calculated average and the 
standard deviation of the selected sample. 
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Based on the analytical results, the semi-conductor 

companies in Taiwan should take output factors and the 
business environment as important factors for improving 
operating performance. The empirical results also show 
that the three-stage DEA efficiency is different from the 
ordinary (first stage) DEA efficiency. Each semi-con- 
ductor company of average technical efficiency and scale 
efficiency in the three-stage DEA is better than in the first 
stage DEA. Compared with the first stage DEA, the 
numbers of semi-conductor companies for technical effi- 
ciency and scale efficiency values which are equal to one 
increased. The development of the business environment 
can enhance technical and scale efficiencies. To decom- 
pose environmental and statistical noise effects from effi- 
ciencies could estimate real efficiency of every decision 
making unit. The conclusions of these empirical results 
may provide some information to identify not only the 
efficiency of semi-conductor companies but also give 
evidence to promote the operating efficiency via adapting 
or adjusting the effects of environmental situations as 
indicated in this article. 
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Appendix 1: Data samples of the study 

DMU Full name of companies 

Sis Silicon Integrated Systems Corp. 

Realtek Realtek Semiconductor Corp. 

Sunplus Sunplus Technology Corp. 

Weltrend Weltrend Semiconductor Inc. 

MediaTek MediaTek Inc. 

Elan ELAN Microelectronic Corp. 

Esmt Elite Semiconductor Memory Technology Inc. 

Novatek Novatek Microelectronics Corp. 

Ali Ali Corp. 

Ame Analog Microelectronic Inc. 

Sq Service & Quality Technology Corp. 

Syntek Syntek Semiconductor Ltd. 

Myson century Myson Century Inc. 

Etron Etron Technology, Inc. 

Tm TM Technology, Inc. 

Sonix Sonix Technology Corp. 

Issi Integrated Silicon Solution, Inc. 

Tontek Tontek Design Technology Ltd. 

Avid AVID Electronics Corp. 

Genesys Genesys Logic, Inc. 

Ptc Princeton Technology Corp. 

Est EST Technology Integration Corp. 

Anpec Anpec Electronics Corp. 

Holtek Holtek Semiconductor Inc. 

Gsharp Gsharp Corp. 

Prolific Prolific Technology Inc. 

Cmedia Cmedia Electronics Inc. 

Ene ENE Technology Inc. 

Apec Advanced Power Electronics Corp. 
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