
Journal of Software Engineering and Applications, 2013, 6, 29-32
http://dx.doi.org/10.4236/jsea.2013.61004 Published Online January 2013 (http://www.scirp.org/journal/jsea)

29

K-Gram Based Fuzzy Keyword Search over Encrypted
Cloud Computing

Wei Zhou1,2*, Lixi Liu1, He Jing1,2, Chi Zhang1, Shaowen Yao1,2, Shipu Wang1,2*

1National Software School of Yunnan University, Kunming, China; 2Key Laboratory in Software Engineering of Yunnan Province,
Kunming, China.
Email: *wz.weizhou@gmail.com, *spwang@ynu.edu.cn

Received October 21st, 2012; revised November 23rd, 2012; accepted November 30th, 2012

ABSTRACT

With recent significant development in the portable device market, cloud computing is getting more and more utilized.
Many sensitive data are stored in cloud central servers. To ensure privacy, these data are usually encrypted before being
uploaded—making file searching complicated. Although previous cloud computing searchable encryption schemes al-
low users to search encrypted data by keywords securely, these techniques only support exact keyword search and will
fail if there are some spelling errors or if some morphological variants of words are used. In this paper, we provide the
solution for fuzzy keyword search over encrypted cloud data. K-grams is used to produce fuzzy results. For security
reasons, we use two separate servers that cannot communicate with each other. Our experiment result shows that our
system is effective and scalable to handle large number of encrypted files.

Keywords: K-Gram; Fuzzy Keyword; Encrypted Cloud Computing

1. Introduction

Over the past few years, many people have started to use
cloud computing services for their works. With cloud
computing, people can store, access and share their in-
formation anywhere anytime. Therefore, there are more
and more sensitive information being stored in the cloud.
In such open environment, users expect not only efficient
operations, but also guaranteed privacy and security from
the cloud service provider.

Cloud storage is an online storage model where people
upload their files and their data will be stored on multiple
virtual servers, which are generally hosted by third par-
ties, instead of on dedicated servers. Only authorized
users, such as the data owners, can access the stored in-
formation. To further protect their data, people usually
encrypt not only their file content, but also their file
names, before uploading them to the cloud—which
makes it difficult for the cloud storage provider to search
through the data.

In recent years, searchable encryption techniques have
been developed to solve these problems [1-10]. However,
these methods are too slow to be used on a large dataset,
i.e. they are not scalable. Furthermore, users often have
spelling errors or use morphological variants of a word.
Hence, cloud storage search service should support fuzzy
searching.

To solve these problems, in this paper, we propose a
k-gram based fuzzy keyword ranked search system over
encrypted cloud data. To increase the security of our sys-
tem, we use two separate servers: search server and stor-
age server. When the search server is compromised, the
attacker will not be able to use the file access pattern to
deduce the corresponding document that is stored in the
storage server. We use k-grams to construct fuzzy key-
word sets and Jaccard coefficient to calculate the key-
words similarity. To avoid enumerating all fuzzy key-
words, and thus reducing the search space, we eliminate
keywords with Jaccard coefficient smaller than our
threshold value. This threshold value is decided through
experimentations described in Section 5. Search results
are ranked according to our proposed weighted ranking
function. With our system, a user can do fuzzy keyword
search in encrypted environment effectively and se-
curely.

This paper is organized as follows: Section 2 presents
some researches that have been done on encrypted key-
word search; Section 3 introduces our system architec-
ture; Section 4 describes our fuzzy keyword search algo-
rithm; Section 5 shows the simulation results and analy-
sis, and Section 6 concludes this paper.

2. Related Work

Boneh et al. [1] introduced the first searchable encryp- *Corresponding authors.

Copyright © 2013 SciRes. JSEA

K-Gram Based Fuzzy Keyword Search over Encrypted Cloud Computing 30

tion system, where anyone with public key can write to
the data stored on server but only authorized users with
private key can search. However, it takes too much time
to calculate public key and the server may decrypted the
uploaded file by using the received trapdoor and the
keywords encrypted by public key.

Many researchers then tried to improve the efficiency
and security definition of a single keyword search system
[2-5]. Golle et al. [6] defined the first secured model for
conducting conjunctive keyword search. Jin Wook Byun
et al. [7] proposed a more efficient conjunctive keyword
search that reduces the data storage and communication
cost. Next, Ning Caoy [9] presented multi-keywords
ranked search over encrypted cloud data and established
variety of privacy requirements. To reduce the user’s
computational overhead, Qin Liu et al. [10] utilized the
cloud provider to participate in the partial decipherment
of the files. However, all of those schemes only support
exact keywords search.

Jin Li [8] is the first to describe the scheme for fuzzy
keyword search over encrypted data in the cloud. In this
paper, we are introducing a system for performing multi-
ple fuzzy keywords search in encrypted environment.

3. Architecture

The architecture of our system is shown in the Figure 1.
Our system is divided into three parts: user clients, stor-
age servers and search servers. When a user sends a re-
quest to the search server, search sever will search
through its local index and send the result to the user.
User can then downloads, modifies any of these files
from the storage service using the file identifier.

In the real-word environment, there are always threats
from adversaries. Some adversaries may have no knowl-
edge about the contents stored by the client. However,
some may know the user’s query records and use it to
generate the list of keywords associated with some of the
files. Thus, we use two separate servers (Figure 2), one
for search and another for storage.

Cloud of Storage Servers: Users upload tuples of file
and file identifier to the storage servers. These servers
are supplied by the cloud service provider. All the files
stored are encrypted. Authorized users use the file identi-
fier to manage and retrieve the file on the storage servers.

Cloud of Search Servers: Search servers use the in-

Figure 1. System architecture.

formation uploaded by the user to build index. People
can perform k-grams based fuzzy keyword search on the
search servers.

By performing all the searches in a server that cannot
communicate directly to the server that stores the actual
data, an attacker who knows the content of the search
servers will not be able to find the files stored in the
storage servers.

Now we briefly describe the ways users can interact
with our system.

Figure 3 shows the procedure of uploading files. A
user uses a web client to upload an encrypted file with
identifier Di to the storage service and generate the fuzzy
keyword trapdoor index Ii. The tuple < Ii, Di > is up-
loaded to the search server. The search server inserts the
tuple into the Bloom filter and build safe index.

When a user wants to search through their collection,
he sends a fuzzy query request to the search server and a
list of file identifiers will be returned and sorted based on
their rank. He then decides which document to get, mod-
ify or delete. Finally he sends a request to the storage
service to complete his operation. Figure 4 shows the
procedure of searching files.

4. Fuzzy Keyword Search Algorithm

To generate the fuzzy keyword set, we use the concept of
k-grams index, which is used to perform wildcard queries
on plain-text files. K-grams is a sequence of k characters.
For example, “cou”, “our”, “urs” and “rse” are all the
3-grams of the word “course”. We use the character $ to
denote the beginning or the end of a word. Thus, the set
of 3-grams generated is: “$co”, “cou”, “our”, “urs”, “rse”

Figure 2. Separated storage service and searching service.

Figure 3. Procedure of uploading file.

Copyright © 2013 SciRes. JSEA

K-Gram Based Fuzzy Keyword Search over Encrypted Cloud Computing 31

and “se$”. In a k-grams index, our dictionary contains all
the k-grams of every word in the collection. For each
k-grams, we create a posting list of all the words in the
collection that contain all the characters in the gram. For
instance, in Figure 5 the 3-gram “emp” would point to
all the words such as employable and employee.

During the indexing process, our system first con-
structs the dictionary of all the k-grams in the collection.
Posting list for each k-grams are then generated. All of
these posting lists compose the k-gram index, that we
called safe index. This predefined index will be used to
generate fuzzy keyword set.

4.1. Fuzzy Keyword Set Generation

Let’s assume that a user queries the keyword K. First, we
generate the k-grams for keyword K, called  G K . For
every gram  i kg G K , the system looks for gi in the
k-gram index introduced above and returns the list of
words containing the gram gi. To reduce our search space,
we only want to retrieve vocabularies that are closely
similar to the user’s query.

If W is one of the words in our k-gram index that con-
tain the gram gi, we use the Jaccard coefficient
 A B A B  to measure the similarity of the word
K and the word W. Sets A and B represent the set of
k-grams for K and W, respectively. If W is equal to K, W
will have the highest Jaccard coefficient value compare
to the other words in the index. If the Jaccard coefficient
of W, W , is bigger than our threshold value, min , i.e.

minw W K W KA B A B   

we add W to our fuzzy keyword set kF . As explained in
Section 5, in our system, min is 0.18.

Because each word in the fuzzy keyword set we gen-
erated for the word K has its own Jaccard coefficient

Figure 4. Procedure of searching file.

Figure 5. A 3-gram posting list beginning with emp.

  , our fuzzy keyword set is sorted in descending order
based on the words’  values.

4.2. Weighted Ranking Algorithm

Once users entered their search query, our system will
generate the fuzzy keyword set for all the fuzzy words in
the query and calculate the weight of each word in the set.
The weight of word W in fuzzy keyword set Fk is the
multiplication of the predefined weight of the word K
with the Jaccard coefficient of word W. We then find the
weight of each file in our collection. The weight of a file
is defined as the total weight of all the words in the file
that are inside the fuzzy keyword set. Thus, we can sort
all of the files in our collection in ascending order based
on their weights.

4.3. Fuzzy Keyword Search Sumary

To describe how our multiple fuzzy keyword search
works, suppose the user types a query  1 2, , , nQ K K K  ,
where n is the number of keywords entered by the user.

As Figure 6 shows, for each iK Q , we compute the
fuzzy keyword set

iKF by using the method explained
in Section 4.1. Thus, the complete fuzzy keyword set for
Q is  1 2

,
nQ K KF F F , ,KF  .

Figure 6. Relation between coefficient and fuzzy sizes.

Figure 7. Time of building query request with different
query coefficient.

Copyright © 2013 SciRes. JSEA

K-Gram Based Fuzzy Keyword Search over Encrypted Cloud Computing

Copyright © 2013 SciRes. JSEA

32

We then calculate the weight of each fuzzy word in the
set. Let’s KW be the pre-defined weight of Ki. The
weight of the word

ij KK F is
j iK K KW W  .

For each file, its weight is calculated by adding the
weight of all the words in the file that are inside FQ.
Once we finished calculating the weight of each file, we
sort them in ascending order based on their weights and
return it to the user.

5. Experiments

According to our algorithm, the building coefficient,

min , controls the size of the fuzzy keyword set. It de-
scribes the minimum similarity level between the prede-
fined keywords (or query keywords) and the fuzzy key-
words we generated. To find the best building coefficient
value, we scan all the words in the Oxford dictionary and
generate the fuzzy sets by using various building coeffi-
cient values from 0 to 0.5. As shown in Figure 6, when
the building coefficient is bigger than 0.2, the demanded
similarity level will be too high and the size of the fuzzy
keyword set is almost 0. Hence, the result of the fuzzy
operation will not be obvious. For example, consider the
query word “quick”, the fuzzy set will only contain the
word “quick” when the coefficient is set to 0.5. Figure 6
shows that the size of the fuzzy keyword set will be lar-
ger than 20 if the coefficient is less than 0.15. Fuzzy
keyword set that contains more than 20 words will waste
computer space and operation time. Furthermore, those
words may have nothing to do with the query word.
Through experimentations, we decide that we can get a
reasonable fuzzy keyword set size when we set the coef-
ficient to 0.18.

In our scheme, building query request includes 3 pro-
cedures: generating fuzzy keyword set according to the
building coefficient; generating trap doors; generating
index. In procedure 1, we use a predefined k-gram index.
To provide more security, two hash functions are used in
procedure 2 to generate trap doors. In procedure 3, we
use 10 hash functions to generate index. This makes the
keyword invisible and safer, and increases the speed to
process the query. Figure 7 shows that as the number of
query words increases, the time required to build the
query request is growing linearly which means that the
time complexity of our building algorithm is O(n). We
also find that the time we spent to build the query request
is nearly the same even for different fuzzy keyword set.

6. Conclusion

In this paper, we proposed a novel way for performing

multiple fuzzy keyword ranked search over encrypted
cloud data by utilizing some advanced techniques (such
as k-gram) are used to generate a search-efficient index.

7. Acknowledgements

This work is supported by the National Natural Science
Foundation of Yunnan Province, China (Grant No.
2008CD084), and the Key Discipline foundation of
School of Software of Yunnan university (Grant No.
2010KS05).

REFERENCES
[1] D. Boneh, G. D. Crescenzo, R. Ostrovsky and G. Per-

siano, “Public Key Encryption with Keyword Search,”
Proceedings of EUROCRYPT, Interlaken, 2-6 May 2004.

[2] E.-J. Goh, “Secure Indexes,” Cryptology ePrint Archive,
2003. http://eprint.iacr.org/2003/216

[3] Y.-C. Chang and M. Mitzenmacher, “Privacy Preserving
Keyword Searches on Remote Encrypted Data,” Lecture
Notes in Computer Science, Applied Cryptography and
Network Security, Vol. 3531, 2005, pp. 391-421.

[4] R. Curtmola, J. A. Garay, S. Kamara and R. Ostrovsky,
“Searchable Symmetric Encryption: Improved Definitions
and Efficient Constructions,” Proceedings of ACM CCS,
Alexandria, 30 October-3 November 2006.

[5] M. Bellare, A. Boldyreva and A. ONeill, “Deterministic
and Efficiently Searchable Encryption,” Lecture Notes in
Computer Science, Advances in Cryptology, Vol. 4622,
2007, pp. 535-552.

[6] P. Golle, J. Staddon and B. Waters, “Secure Conjunctive
Keyword Search over Encrypted Data,” Lecture Notes in
Computer Science, Applied Cryptography and Network
Security, Vol. 3089, 2004, pp. 31-45.

[7] J. Byun, D. Lee and J. Lim, “Efficient Conjunctive Key-
word Search on Encrypted Data Storage System,” Lecture
Notes in Computer Science, Public Key Infrastructure,
Vol. 4043, 2006, pp. 184-196.

[8] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren and W. Lou,
“Fuzzy Keyword Search over Encrypted Data in Cloud
Computing,” Proceedings of IEEE INFOCOM’10 Mini-
Conference, San Diego, March 2010.

[9] N. Cao, C. Wang, M. Li, K. Ren and W. Lou, “Privacy-
Preserving Multi-Keyword Ranked Search over Encry-
pted Cloud Data,” 2011 Proceedings IEEE INFOCOM,
Shanghai, 10-15 April 2011, pp. 829-837.

[10] Q. Liu, G.-J. Wang and J. Wu, “An Efficient Privacy
Preserving Keyword Search Scheme in Cloud Comput-
ing,” International Conference on Computational Science
and Engineering, Vancouver, 29-31 August 2009, pp.
715-720.

