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ABSTRACT 

Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spa- 
tial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum con- 
dition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The 
algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel 
quadrates based on the preset two reference points of the spatial line respectively; second construct centerlines by con- 
necting one quadrate each vertices to another quadrate each vertices; after that, calculate the distances between mea- 
sured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing 
and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described 
in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can 
evaluate spatial straightness error more effectively and exactly. 
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1. Introduction 

Spatial straightness is one of important geometric ele- 
ments. Spatial straightness error is defined as “the mini- 
mum cylindrical diameter subsuming measured line” in 
ISO/TS 12780-1 [1] and its evaluation is normally car- 
ried out by Least Square Method (LSM) and Minimum 
Zone Method (MZM). 

LSM for spatial straightness error first uses linear least 
square fitting to obtain a line as centerline, then calcu- 
lates the distances between measured points and the cen- 
terline, at last constructs a cylinder including all meas- 
ured points by taking the maximum distance as radius, 
and the maximum distance is spatial straightness error by 
least square method. Owing to its ease of computation 
and uniqueness of solution, it is now widely applied in 
engineering. It can be easily found that LSM does not 
exactly coincide with spatial straightness error definition 
and brings some defectiveness in error evaluation such as 
spatial straightness error by LSM is usually not the mi- 
nimal [2]. It is very likely that overestimated form toler- 
ance may be artificially introduced and rejection of good 
parts may occur. 

MZM is used to determine the minimum cylinder in 
diameter to enclose the measured spatial line. The eva- 
luation of spatial straightness error can be carried out ba- 
sed on the minimum cylinder diameter which is an accu- 

rate and applicable method conforming to the definition 
of form error. However, how to find the minimum zone 
enclosing all measured points of the spatial line and ve- 
rify if the minimum zone is the smallest zone is still a 
problem received the widespread attention and urgent to 
be solved. Unfortunately there is no final conclusion in 
the academia in recent years. 

Because of the complexity of data process in MZM, 
many approximate methods with relative higher accuracy 
were proposed. Yue and Wu [3] established a nonlinear 
programming model for spatial straightness error evalua- 
tion based on the condition of minimum zone method 
and investigated the mathematical model and SQP 
evaluation algorithm for spatial straightness error, carried 
out several experiments of spatial straightness error 
evaluation and the results can meet the requirements for 
convex programming’s global optimization very well. 
Zhang [4] provided an intelligent evaluation method for 
spatial straightness errors based on the analysis of exis- 
tent evaluation methods, introduced the evolutional op- 
timum model and the calculation process and proposed 
ant colony optimization (ACO) algorithm to evaluate the 
minimum zone error, the control experiment results 
evaluated by different optimal methods indicate that the 
proposed method does provide better accuracy on spatial 
straightness error evaluation. Huang and Cui [5] put for- 
ward a new method for evaluating arbitrary spatial 
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Straightness error based on the disadvantages in evaluat- 
ing spatial straightness error with traditional method, 
such as difficulty in solving the nonlinear simultaneous 
equation, the evaluating precision is lower and data pro- 
cessing can’t be automated. The feasibility of method is 
validated by practical measurement. Altarazi Safwan and 
Mandahawi Nabeel [6] present a simulated annealing 
(SA) based methodology for the evaluation of straight- 
ness error of median line, tested the procedure and ana-
lyzed the results. Zhu and Ding [7] argue that spatial 
straightness evaluation is formulated as a linear complex 
Chebyshev approximation problem, and then reformula- 
ted as a semi-infinite linear programming problem. Both 
models for the primal and dual programs are developed. 
An efficient simplex-based algorithm is employed to 
solve the dual linear program to yield the straightness va- 
lue. Also a general algebraic criterion for checking the 
optimality of the solution is proposed. Numerical ex- 
periments are given to verify the effectiveness and effi- 
ciency of the presented algorithm. Zhong and Xu [8] ana- 
lyzed theoretical defects of the Least Squares Method 
(LSM) in the evaluation of the spatial straightness error 
with geometry, the theory of errors, and optimization 
principle so as to effectively boost the precision of the 
assessment of the spatial straightness error, and proposed 
the improved LSM algorithm for the spatial straightness 
error, the experiment results have shown that the im- 
proved LSM algorithm as overcome the theoretical de-
fects of LSM with higher accuracy. Wen and Song [9] 
proposed an improved genetic algorithm (GA) to imple- 
ment the minimum zone evaluation of planar and spatial 
straightness errors simultaneously. The algorithm em- 
ploys the generation alternation model based Minimal 
Generation Gap (MGP) and blend crossover operators 
(BLX-a), the experimental results evaluated by different 
methods confirm the effectiveness of the proposed GA. 
Compared to conventional evaluation methods; it has the 
advantages of algorithm simplicity and good flexibility. 
Zhang and Fan[10] affirmed the mathematical model for 
spatial straightness error evaluation cannot be linearized 
and established a nonlinear mathematical model for spa- 
tial straightness error evaluation based on the minimum 
zone condition, proposed a new computational method 
and criterion for verification of the existence and unique- 
ness of the minimum zone solution. 

We know from the references that the assessment 
methods of spatial straightness error are very important 
in metrology. The construction of the cylinder containing 
and enclosing all measured points of the line is a very 
complex geometric problem and can be formulated as a 
nonlinear optimization. In the process of the nonlinear 
optimization, the selection and application of algorithms 
are of great importance. Meanwhile, the convergence rate, 
precision of result and reliability of the algorithm directly 

affect the evaluating precision. In other words, the sim- 
plified algorithms might not bring about accurate evalua- 
tion; the computation process of the optimization algo- 
rithms might be very complex and may be not under- 
stood by the non-professional.  

According to the definition of spatial straightness error, 
an innovative and simple evaluation method, named as 
Geometric Approximation Searching Algorithm (GASA) 
is presented, in which the spatial straightness error can be 
gained by repeatedly calculating spatial distance and 
simple judgment without any optimization and lineariza- 
tion processing. 

2. The Evaluation Principle of the GASA 

The essence of spatial straightness error evaluation 
methods is to resolve the parameters of the centerline of 
cylindrical surface containing all real measuring points 
[1-10]. It is obvious that the ideal centerline must be 
closed to the least square centerline, or closed to the con- 
necting line between the starting measured point and end 
measured point of measured straight line. If take the two 
endpoints the of the least square centerline as reference 
points, or take the two endpoints the of the measured line 
as reference points, the straightness error of the measured 
line can easily to get and expressed as 2F , evidently , it 
is not an outcome we look forward to. Now, take the two 
endpoints as reference points, a square is allocated re-
spectively (the length of side is f, f is estimated value 
according to the machining accuracy of the measured 
straight line, or f is the error of the LSM), and then, the 
16 lines can be arranged by connecting each vertices of 
one square to another square (Figure 1). If take one of 
the 16 lines as assumption ideal centerline of measured 
spatial straightness respectively, by calculating the radi- 
uses of all measurement points, the 16 cylindrical surface 
can be gained which containing all the data points. If the 
least radius of the 16 cylindrical surface is less than the 

2F , take the crossing points between the assumption 
ideal axis and initial and end measured section (i.e. 
crossing points are certain vertex of the pre-set square) as 
new reference points, the side length remain unchanged, 
the new square are re-established, So, 16 new assumption 
ideal centerlines and corresponding cylindrical surface 
can be gained. If the least radius is not less than the 2F , 
the reference points remain unchanged, the new square 
are re-establish by using the 0.618*f as the new side 
length, and so on. When the square side length f is less 
than the set value (normally, f < 0.001 mm), it could be 
considered that the searched assumption ideal centerline 
is getting close to the actual centerline of the cylinders 
which the minimum radius and contain all the data points, 
the search terminates. 
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Figure 1. The principle of Construct assumption ideal cen-
terlines. 

3. Implementation of the GASA  

Assuming that the measuring points are  0 0 0 0, ,m X Y Z 
0 , ,z z zn X Y Z , the LSM spatial straightness error is f 

(the LSM method has been discoursed in many papers, 
and its computational process is not given in this paper). 

3.1. Determination of Initial Reference Points 

It can be seen that from Refs [1-10] and actual measure- 
ments, the ideal center line for evaluating spatial straight- 
ness error must be closed the least square center line and 
the line between the initial measured point and end mea- 
sured point. Then the two endpoints of measured line or 
the least square center line can be chosen as the initial 
reference points for simplicity, the two initial reference 
points are expressed by  and  0 0 0 0, ,m X Y Z 0 , ,z z zn X Y Z  
respectively. 

3.2. Construction of Supposed Ideal Centerline 

Using the points  and  0 0 0 0, ,m X Y Z 0 , , z z zn X Y Z

 1, 2,3, 4

 as 
reference points, a square is set by the f as side length in 
initial measured section and end measured section re- 
spectively (as shown in Figure 1), the coordinates of the 
square vertex   and   , ,i mi mi mim X Y Z i 

 , ,j nj nj njn X Y Z   an be expressed in Equa- 
tions (7) and (8). 

1, 2,3, 4j   c
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And then, the 16 supposed ideal centerlines can be 
constructed by connecting vertex of the one square to 
another square, the lines can be expressed in the form of 
(x − a)/P = (y − b)/Q = z, based on geometric principle, 
the direction cosines of the lines are defined in Equation 
(9). 

0

0

mi nj
ji

z
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ji
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Y Y
Q

Z Z
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             (9) 

3.3. Calculation of Distances between Measured 
Points and Constructed Ideal Centerlines 

The spatial distance from measured points  , ,l l l lK x y z  
to the constructed ideal centerlines can be calculated by 
Equation (10). 

   
2 2

, , , ,1

1

l nj l nj l z ji ji

ijl

ji ji

x X y Y z Z P Q
R

P Q

   


 
    (10) 

There are 16 presumptive ideal centerlines lines, there- 
fore the 16 maximum distances Rmax can be gained. Take 
one of the 16 maximum distances as radius and the cor- 
responding assumption ideal centerlines as axis, the cy- 
lindrical surface containing all measuring points can be 
constituted. According to definition of the spatial straight- 
ness error, we can know, the diameter of the cylindrical 
surface is spatial straightness error. There are 16 presum- 
ptive ideal centerlines lines and the 16 maximum dis- 
tances, therefore there are 16 cylindrical surface contain- 
ing all measuring points and 16 diameters. Among the 16 
diameter, the minimum diameter is expressed by 1F , 
and then: 

 1 2minF R  max             (11) 

3.4. Calculate the Distances between Measured  
Points and the Line of Two Reference Points 

The spatial distance from measured point  , ,l l l lK x y z
 0 0 0 0, ,Y Z

 
to the line of two reference points  and m X

 0 , ,z z zn X Y Z  can be calculated by Equation (12). 

   0 0 0 0 0
0 2 2
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1
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R
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
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    (12) 
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where,  is the direction cosines of the line linking 
the point and

0 0,P Q

0 0m X 0 0, ,Y Z  0 , ,z z zn X Y Z , 

   0 0 0   z zP X X Z Z   , 0 0z zQ X X Z Z   0 . 

Take maximum distances  as radius and the 
line of two reference points as axis; one cylindrical sur- 
face containing all measuring points can be constituted. 
According to definition of the spatial straightness error, 
we can know, the diameter of the cylindrical surface is 
spatial straightness error and expressed 

max0R

2F , and then 

2 0ma2F R  x              (13) 

3.5. Geometric Approximation Searching 

Comparing 1F  and 2F

 0, ,Y Z

, if 21 , the refer- 
ence points change to the endpoints of the assumption 
ideal centerline corresponding with the 1 , that is, the 
reference point change to the pre-set square vertex (ex- 
pressed as m m m and z respect- 
tively) correspond with the 1  (for example, the as- 
sumption ideal centerline correspond with the 1

FF 

F

 , ,n n nO X YO X Z
F

F is 
line ,so the reference point 0 and 0 change to the 
point 2 and 4 ), the new square are re-established by 
using f as the side length, repeat steps 3.2 - 3.5.  

2 4m n
m

m n
n

If 1 2F F   , the reference points remain unchanged 
and the new square are re-establish by using the 0.618f 
(i.e. f = 0.618f) as the new side length, repeat steps 3.2 - 
3.5. 

When the square side length f is less than a given value 
(normally, J < 0.0001 mm), it could be considered that 
the searched assumption ideal centerline is getting close 
to the actual centerline of the cylinders which the mini- 
mum radius and contain all the data points, the search 
terminates.  

And then, the minimum between 1F  and 2F  is spa-
tial straightness error of the MZM and expressed F . 
That is 

 1 2min , F F F              (14) 

The flowchart of the GASA is shown in Figure 2. 

4. Examples 

The measurement data from reference [10] are trans- 
ferred into Cartesian coordinate system shown in Table 1. 

The LSM spatial straightness is 0.031408 mm [10], 
and the endpoints coordinates of the least-square center- 
line are (−0.00087307, −0.00148151, 50) mm and  
(−0.00016736, −0.00350018, 600) mm. 

4.1. Algorithm 

In order to validate the correctness of the proposed algo- 
rithm, the initial conditions are given as follows: 

a) The endpoints of the least-square centerline as ini-

tial reference points and the straightness error of the least 
square method as the side length of the initial square. 
 

 1 2min ,F F F   

1F

nz

nz

m

m

YY

XX

YY

XX






0

0

lR0

 

Figure 2. The program flowchart of the GASA. 
 

Table1. Measurement data. 

Point x/mm y/mm z/mm 

1 0.005057 0.003411 50 

2 −0.01239 −0.0023 100 

3 −0.01046 0.004014 150 

4 −0.00923 −0.01182 200 

5 0.001436 0.003947 250 

6 0.011883 0.00167 300 

7 −0.00918 0.000642 350 

8 −0.00617 −0.00849 400 

9 0.015217 −0.00494 450 

10 −0.00134 −0.01092 500 

11 0.005835 0.006042 550 

12 −0.00191 0.003172 600 
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b) The endpoints of the measured line as initial refer- 
ence points and the straightness error the least square 
method as the side length of the initial square. 

c) The endpoints of the measured line as initial refer-
ence points and the side length of the initial square is 
assumed. 

The initial condition is shown in Table 2. 
The straightness errors and cycle index of three initial 

conditions by the proposed searching algorithm are car-
ried out. Table 3 and Table 4 show the straightness errors 
and cycle index terminated when the final side length of 
the square is less 0.001 mm and 0.0001 mm respectively. 

4.2. Processing Results Analysis and Comparison 

It is seen from Tables 3 and 4 that, the straightness er- 
rors obtained by the proposed evaluation algorithm is the 
nearly same in despite of the initial reference point and 
the side length of the initial square are different, only a 
few nanometer difference. Therefore, the initial reference 
does not affect straightness error evaluation resultgained 
by this algorithm. For the sake of calculation, the initial 
reference points usually choose the endpoints of the 
measured line and the side length of the initial square is 
assumed by the manufacturing precision of parts. 

It was also seen by comparing Tables 3 and 4 that the 
results are of no significant difference with different ter- 
mination conditions such as f < 0.001 mm and f < 0.0001 
mm. Generally,  mm can satisfy straightness 
error evaluating requirement.  

001.0f

The straightness errors obtained by the proposed 
evaluation algorithm are in accordance with the results in 
 

Table 2. Initial conditions. 

Condition coordinates the endpoints/mm Side length/mm 

A 

  
0
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50

X

m Y

Z

 
  
 

 0

0.00016736

0.00350018

600

z

z

z

X

n Y

Z

 
  
 

 

0.031408f   

B 

0

0 0

0

0.005057
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0.1f   

Table 3. Straightness and cycle (f < 0.001 mm)/mm. 

Straightness Cycle 
index A B C 

1 0.031408 0.031408 0.039171 

2 0.031408 0.031408 0.039171 

3 0.026942 0.027451 0.038192 

4 0.026942 0.027451 0.038192 

5 0.025577 0.027451 0.031581 

6 0.025075 0.025951 0.031581 

7 0.025075 0.025549 0.025267 

8 0.023918 0.025549 0.025267 

9 0.023918 0.025272 0.025267 

10 0.023918 0.024753 0.02480 

11 0.023918 0.024753 0.02480 

12 0.023655 0.024753 0.023834 

13 0.023583 0.024527 0.023834 

14 0.023583 0.023819 0.023691 

15  0.023746 0.023691 

16  0.023746 0.023691 

17  0.023734  

18  0.023734  

 
Table 4. Straightness and cycle (f < 0.001 mm)/mm. 

Straightness Cycle 
index A B C 

1 0.031408 0.031408 0.039171 

2 0.031408 0.031408 0.039171 

3 0.026942 0.027451 0.038192 

4 0.026942 0.027451 0.038192 

5 0.025577 0.027451 0.031581 

6 0.025075 0.025951 0.031581 

7 0.025075 0.025549 0.025267 

8 0.023918 0.025549 0.025267 

9 0.023918 0.025272 0.025267 

10 0.023918 0.024753 0.0248 

11 0.023918 0.024753 0.0248 

12 0.023655 0.024753 0.023834 

13 0.023583 0.024527 0.023834 

14 0.023583 0.023819 0.023691 

15 0.023583 0.023746 0.023691 

16 0.023583 0.023746 0.023691 

17 0.023563 0.023734 0.023691 

18 0.023563 0.023734 0.023647 

19 0.023547 0.023664 0.023639 

20 0.023545 0.023664 0.023634 

21 0.023545 0.023624 0.023629 

22  0.023624 0.023629 

23  0.023624 0.023567 

24  0.023617 0.023532 

25  0.023617 0.023532 

26   0.023532 

27   0.023532 
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reference [10], and therefore the proposed algorithm 
could be an easy and effective minimum zone method for 
the evaluation of spatial straightness. 

5. Conclusion 

The GASA for spatial straightness error presented in this 
paper is a new spatial straightness evaluation algorithm. 
It is not necessary to require evenly distributed sampling 
interval and assume small error or deviation in this algo- 
rithm, the evaluating accuracy of the GASA depends on 
the pre-set termination condition, the smaller the values 
of the termination condition is, the more precise the 
evaluation is. Generally, take the endpoints of the meas- 
ured line as initial reference points and the side length of 
the initial square is assumed by the manufacturing preci- 
sion of parts and the termination condition is 001.0f  
mm can satisfy spatial straightness error evaluating re- 
quirement. The algorithm is simple, intuitive and easy to 
program, and it has the commonality and better practica- 
bility.  
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