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ABSTRACT

The concept of a fuzzy topology on a fuzzy set has been introduced in [1]. The aim of this work is to introduce fuzzy o -
continuity and fuzzy J" -continuity in this in new situation and to show the relationships between fuzzy continuous
functions where we confine our study to some of their types such as, fuzzy d-continuity, fuzzy continuity, after present-
ing the definition of a fuzzy topology on a fuzzy set and giving some properties related to it.
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1. Introduction

The concept of a fuzzy topology on a fuzzy set has been
introduced by Chakrabarty and Ahsanullah [1]. Neigh-
bourhood systems, quasi-neighbourhood system, sub-
spaces of such fuzzy topology space and quasi-coinci-
dence in this new situation have also been discussed by
them. Also, the concepts of fuzzy continuity, Haus-
dorftness, regularity, normality, compactness, and con-
nectedness have been introduced by Chaudhuri and Das
[2]. The concepts of fuzzy o-closed sets, fuzzy d-open
sets fuzzy regular open, fuzzy regular closed, fuzzy J-
continuity and the relation between fuzzy continuity and
fuzzy o-continuity in this new situation was introduced
by Zahran [3]. These functions have been characterized
and investigated mainly in light of the notions of quasi-
neighborhood, quasi-coincidence. In our rummage we
confined ourselves to the study of some kinds of these
functions, the fuzzy continuous function, fuzzy J-conti-
nuity and some types of fuzzy regular. In this paper, we
introduce the concepts of a fuzzy J -continuity, fuzzy o -
continuity and to show the relationships between types of
fuzzy continuous functions in this situation and we ex-
amine the validity of the standard results.

2. Preliminaries
Let Xand Ybesetsand 4 and E be two subsets of X,

Y respectively. Let / denote the closed unit interval [0,1].

Let X ={x,x2,---,xn} and aiel for i=1,2,-,n
By (al,a2,---,an) we shall mean the fuzzy subset A
of X and the value of a fuzzy set 4 at some xe X
will be denoted by uA(x) such that wpA(xi)=ai for
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i=1,2,---,n, and the support of a fuzzy set A in X will
be denoted by S (A) such that g24(x)>0 for all x in
X If A4 and E ar~e fuzzy sets and uE(x)< pd(x)

for all x in X, then E is said to be a fuzzy subset of 4
and denoted by E < A . The set of all fuzzy subsets of a
nonempty set X is denoted by 7. _

Definition 2.1. [2] Let xe X, rel. A fuzzyset A4
of the form

~ 0 if y#x
,uA(y) {r if y=x
is called a fuzzy point with support x and value r. A s
often denoted by yr.

For a fuzzy point yr

1) ;(relA:>r<,uA( )

2) ;(reA:>r<,uA(x) 5 ~

Definition 2.2. [1] If E < 4, the complement of E’
referred to A, denoted by } is defined by
E'(x)=pA(x ) HE(x), foreach xeX .

Deflnltlon 23.[2] U, V<A are said to be quasi-
coincident (g-coincident, for short) referred to A writ-
tenas Ug Vf/]] if there exists x € X such that
uU (x)+pV (x)> pA(x). If U and ¥ is not quasi-

coincident referred to 4, we denoted for this by
Ugv[4].

3. Basic Definitions and Properties

In [4,5] fuzzy function have been introduced in a differ-
ent way considering them as fuzzy relations with special
properties. A special kind of fuzzy functions had been
called fuzzy proper functions or proper functions that
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would be the morphisms in the proposed category
FUZZY TOP.
Definition 3.1. [1] A fuzzy subset F of XxY is
said to be a proper function from A4 to E if
1) F(xy)< min{,u;l(x),yb:‘(y)} , for each
(x,y) e X xY.
2) For each x e X, there exists a unique y, €Y such
that F(Jx,yo) =pA(x) and F(x,y)=0 if VEY,-
Let F be aproper function from 4 to E.
Definition 32. [1] If ¥ c £, then F™'(V): A1
is defined by

(F_I(I;))(x):sup{min{ﬁ( ), ,uV(y)};y € Y}

foreach xe X .

Definition 3.3. [2] If Uc 4, then F(U):E—1 is
defined by
(F(0))(y) = sup{min{F (x,), 40 (x)};x € X}
foreachye?.

Proposition 3.4. [2] For a proper function F

1) F(ﬁ'l(é))gé,foreach OckE.

2) F’l(ﬁ(ﬁ))gﬁ,foreach Ngzzl.

3) F(NUO)=F (W) UF(0) and

(¥N6)- P

Definition 3.5. [2] E E < is said to maximal if for
each pE(x)#o0= ,uE( ) ,uA(x).

Proposition 3.6. [2] If V' is a maximal fuzzy subset
of F'(7°E)=[F(7)] 4.

Definition 3.7. [2] Let £ < 4. Then F/E defined by

(F/E)(x,y) = min{ﬁ‘(x,y),,ul:}‘(x)} ,

fgr each~ (x, y) e X xY, is said to be the restriction of
F to E. o

Proposmon 38. [2 ] If V < A, then for each U c E,
(F/V) (O)=rnF(0).

Definition 3.9. [1] A collection T of fuzzy subsets
of a fuzzy set A issaidtobea fuzzy topology on A if

1}, AeT.

2) UI,U eT,then UNU,eT.

3) U el foreach iel,then U{Ul lel}eT
(A T ) is said to be a fu~zzy topological space (fts, for
short). The members of 7' are called fuzzy open sets in
A. The complement of the members of 7T referred to
A are called the fuzzy closed sets in 4 . The family of
all fuzzy closed sets in 4 will be denoted by C (T )

Definition 3.10. [1] If Ec 4, T, ={ENV:V eT}
is a fuzzy topology on E, (E T E) is called a subspace
of (4,T). i o

Definition 3.11. [1] Let ( T) beaftsand Ec 4
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then the closure of E denoted by CI (E) is defined
by Cl(E)zﬂ{U:Uef,Ec;U . Le. CZ(E is the
intersection of all closed fuzzy subsets of A4 containing
E.

Definition 3.12. [3] Let (4,7) be a fis and £c 4
then the interior of E denoted by
int(E) :U{U:U el,Uc E} ie.
of all open fuzzy subsets of A which contained in £ .

Definition 3.13. [1] Let (Zl,f) be a fts, a fuzzy sub-
set £ of A iscalled

1) Neighbourhood (nbd, for short) of the fuzzy point
gre A if there exists UeT such that yre UcCE;
2) Quasi-neighbourhood (g-nbd, for short) of the fuzzy
point yr e A ifthereexists U eT such that
2rq0[ 4], UcE.

The set U yr of all g-neighbourhood of yr is called
the system of g-nbd of yr.

Proposition 3.14. [2] If (E,T; )
SEaCCNOf (A T) , then CI. ( )=
UcCE.

Definition 3.15. [3]

1) Uc A4 is said to be a fuzzy regular open set in a
fis (4, T)lflnt cl(0))=0.

2) U c A is said to be a fuzzy regular closed set in a
fts (;1 T ) if U < is fuzzy regular open.

Definition 3. 16 [3] A fuzzy point yre A is said to
be a fuzzy oJ-cluster (resp. O-cluster) point of a fuzzy
subset V of A if for each fuzzy regularly open (resp.
fuzzy open) g-nbd of yr,UgV [A

(resp. Cl ( ) [A]) The set of all fuzzy o -cluster

int(E ) is the union

~is a maz(imal sub-
ENCI, (U) , where

(resp. fuzzy O-cluster) points of ¥ is called fuzzy & -
cluster (resp. fuzzy 6-closure) and is denoted by

6—01(17) (resp.H—cl(I;)). A fuzzy subset V < 4 is

called a fuzzy d-closed (resp. 6-closed) if V=56-cl (17 )
(resp. V=0-cl(V)) and the complement of a fuzzy
o-closed (resp. 6-closed) set is called fuzzy d-open (resp.
6-open).

Remark 3.17. [3] It is clear that fuzzy regular open
(fuzzy regular closed) implies fuzzy J-open (fuzzy J-
closed) implies fuzzy open (fuzzy closed) but the con-
verses are not true in general.

In this paper, the family of all fuzzy regular open (resp.
fuzzy regular closed, fuzzy J-open, fuzzy é-closed, fuzzy
open, fuzzy closed) sets in 4 will be denoted by

[FRO(A)], (resp[ FRC(4)].[ Foo(4)] [ Foc(A)],
[Fo(4)][Fc(4))).

4. Fuzzy ¢ -Continuity

Unless otherwise mentioned 7,7 are two fuzzy to-
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pologies on A, E respectively, and F a proper func-
tion from A4 to E.

Definition 4.1. A proper function
F: (A T)—)(E T’) is called fuzzy o -continuous if
F

( ) [FﬁO( )} for each VE[FO(E)]

Example 4.2. Let
X ={x,y}.Y ={a,b}, A4={(x,0.7),(»,0.6)},

W ={(x,0.4),(y,0.3)}, U={(x,03),(»,03)}er"

and
E={(a,0.8),(6,0.6)}, V ={(a,0.3),(p,0.3)} e I".

Consider the fuzzy topologies on A, E resp.
T—{} A,U, W} and T'= {} E, V} Let the proper
function F.(A,T) (E,f) defined by F(x,a)—0.7,
F(x,b)zO, ]:“(y,a) 0, F(y,b):O.6, one may no-
tice that the only fuzzy open sets in (E,T') are V, }
and £ but F'(})=}', F'(E)=4, F'(V)=U
and }', 4, Ue F§0( )} Hence F is fuzzy o'-
continuous.

Theorem 4.3. If F (
continuous and E c A4, then

F[E:(E,T,)> (F(E) };(E))
is fuzzy o -continuous .
Proof: Let Vef’( ) such that V€|:FO( ~(E))J .

) <E,7~"') be fuzzy o'-

Then there exists fuzzy open U €T’ such that
V=F(E)NT.
Now

=E

t f‘ zzy5 -continuous such that
'Ue [ J Therefore

(F/E)" (V)| Foo(E)].
Hence F/E is fuzzy 6 -continuous.
Definition 4.4. [2] F:(A4,T)—(E.T") is said to

satisfy property (p) if F' (17) eT , foreach VeT'.
Henceforth such functions will be called fuzzy con-
tinuous proper function.

bu
F-
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Theorem 4.5. If a proper function F: (21,]:)—>(E,7~”)
is fuzzy J"-continuous then, it is fuzzy continuous.

Proof: Let W e FO(E but F is fuzzy ¢'-con-

tinuous. Hence F~ ( ) F 50( )] and by (Remark
(3.17)) every fuzzy J-open implies fuzzy open. (i.e.
F ’1( ) [FO( )]) Hence F is fuzzy continuous.
_We can see from Example (4.2) such that ;
F'(})=}, F (E) A, F’I(V) Uand }', 4,
Ue[Fo(f])] but }', E, Ve[FO( )]

Definition 4.6. [3] A proper function
:(A,T —)(E,T ’) is called fuzzy J-continuous if
71(V)€|:F§0(;1):| for each VG[FRO(E)]
Remark 4.7. [3] The concepts of fuzzy d-continuous
and fuzzy continuous are independent to each other .

Theorem 4.8. If F:(A4,T)—(E.T') be fuzzy o-
continuous and E c A4, then

F‘/E : (E,fE-)—> (F(E),TI;(E)) is fuzzy d-continuous.

F
F

Proof: Let V e TF’(E)

(F/E)" (7)=ENF" (V) [by Prop. 3.8]. But F is

such that ¥ e [FRO(ﬁ'(E))}

fuzzy oJ-continuous such that F- ( ) [F 50( )}

Therefore (F/E) (V)e[FcS‘O(E)J . Hence F/E is

fuzzy J-continuous.

Theorem 4.9. If a proper function
F:(&,f)%(é‘j') is fuzzy o0 -continuous, then it is
fuzzy J-continuous.

Proof: Let We[FRO(E)J. And by Remark 3.17
every fuzzy regular open implies fuzzy J-open implies

fuzzy open. (i.e. We[F&O(E)] and WE[FO(E)]

but F is fuzzy ¢ -continuous). Hence
F (W) € [F&O(E)} . Therefore F is fuzzy d-con-

tinuous.

5. Fuzzy 6" -Continuity

is called fuzzy & -continuous if F ’1(

foreach V e [F50(E)] .
Example 5.2. Let

X ={x,y},Y ={a,b}, 4={(x,0.7),(,0.6)|

V ={(x,03),(»,0.3)}, W ={(x,0.5),(»,0.4)} e I*

and
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E={(a,0.7),(5,0.6)},U ={(a,0.3),(b,0.3)} e I".

Consider the fuzzy topologies on 4 and E resp.
T:{}’,A,V,W} and T':{}’,E,U}. Let the proper
function F :</~1,1~") N (E",f') defined by F(x,a)=0.7,
F‘(x,b) =0, F‘(y,a) =0, ﬁ(y,b) =0.6 One may no-
tice that the only fuzzy J-open sets in ('E,f’) are U,
}" and E and

Hence F is fuzzy ft—con}inyous. o
Theorem 5.3. If Ij:(A,T)—)(E,T’) be fuzzy §"-
continuous and E < 4, then

F/E : (E,fE ) - (F(E),f";(f.)) is fuzzy 5" "-continuous.

Proof: Let V e fFI(E) such that 7 e [FéO(I:" (E))J .
(F/E)'(7)=ENE"(V) [by Prop. 3.81. But F is fuz-
zy " -continuous such that F~' (17) € [FO(/NI)] There-
fore (F/E)il(l;')e[FO(E)] Hence F/E is fuzzy

*ok

J -continuous.
Theorem 5.4. If a proper function F :(;1,]:)—>(E,7~“’)
is fuzzy d-continuous, then it is fuzzy 6~ -continuous.
Proof: Let W e FRO(E) , and (by Remark 3.17
every fuzzy regular open implies fuzzy d-open), i.e.

We [F 50<E )J But F is fuzzy d-continuous. Hence

F~! (W) € [FéO(,ZI)}, and (by Remark 3.17 every fuzzy

J-open implies fuzzy open). Therefore,

F! (Vf/) € [FO(E)}. (ie. F is fuzzy 6 -continuous).
Theorem 5.5. If a proper function **17" : (21,7")—)(1:7,7:’)

is fuzzy continuous, then it is fuzzy J -continuous.

Proof: Let W e F50<E)], and (by Remark 3.17
every fuzzy d-open implies fuzzy open), i.e.

WG[FO(E):I But F is fuzzy continuous. Hence

F_I(W)E[FO(A)} Therefore F is fuzzy ¢ -con-

tinuous.

We can see from Example (5.2.).

Remark 5.6. It is clear that not every fuzzy 6 -con-
tinuous may be fuzzy & -continuous and we can see from
example.

Example 5.7. Let

X ={x,y},Y ={a,b}, 4={(x,0.7),(1,0.6)}

V ={(x,0.3),(»,0.3)}, W ={(x,0.5),(»,0.4)} e I*
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and

E={(a,0.7),(5,0.6)},U ={(a,0.3),(5,03)} e I".

Consider the fuzzy topologieson 4 and E resp.
T~={}’,;1,I7,Vf/} and f’:{}’,E,U}. Let the proper

function ﬁ':(;{,f) - E,f’)ﬂeﬁned by F'(x,a) =07,
F(x,b) =0, F(y,a) =0, F(y,b) =0.6. F is fuzzy
6""-continuous but not fuzzy §'-continuous such that the
only fuzzy J-open sets in (E ,f’) are }', E and U
but F'(0)=7 ¢|Fs0(4)].

From what we have deduced so far, we now obtain:

Fuzzy continuous — Fuzzy 6" -continuous;

Fuzzy d-continuous — Fuzzy J" -continuous;

Fuzzy ¢ -continuous — Fuzzy continuous;

Fuzzy ¢ -continuous — Fuzzy d-continuous.

6. Conclusion

The main purpose of this paper introduces a new concept
in fuzzy set theory, namely that of a fuzzy § -continuity
and fuzzy J" -continuity. On the other hand, fuzzy to-
pology on a fuzzy set is a kind of abstract theory of
mathematics. First, we present and study fuzzy 6 -con-
tinuity and fuzzy " -continuity from a fuzzy topological
space on a fuzzy set into another. Then, we present the
relationships between types of fuzzy continuous func-
tions.
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