Fuzzy δ^* -Continuity and Fuzzy δ^{**} -Continuity on Fuzzy Topology on Fuzzy Sets #### **Mohammed Salih Mahdy Hussan** Department of Mathematics, College of Education, Al-Mustansiriya University, Baghdad, Iraq Email: mssm 1975@yahoo.com Received September 1, 2012; revised October 17, 2012; accepted November 19, 2012 #### **ABSTRACT** The concept of a fuzzy topology on a fuzzy set has been introduced in [1]. The aim of this work is to introduce fuzzy δ^* -continuity and fuzzy δ^{**} -continuity in this in new situation and to show the relationships between fuzzy continuous functions where we confine our study to some of their types such as, fuzzy δ -continuity, fuzzy continuity, after presenting the definition of a fuzzy topology on a fuzzy set and giving some properties related to it. **Keywords:** Fuzzy δ^* -Continuity; Fuzzy δ^{**} -Continuity; Quasi-Neighbourhood; Fuzzy δ -Open; Quasi-Coincident #### 1. Introduction The concept of a fuzzy topology on a fuzzy set has been introduced by Chakrabarty and Ahsanullah [1]. Neighbourhood systems, quasi-neighbourhood system, subspaces of such fuzzy topology space and quasi-coincidence in this new situation have also been discussed by them. Also, the concepts of fuzzy continuity, Hausdorffness, regularity, normality, compactness, and connectedness have been introduced by Chaudhuri and Das [2]. The concepts of fuzzy δ -closed sets, fuzzy δ -open sets fuzzy regular open, fuzzy regular closed, fuzzy δ continuity and the relation between fuzzy continuity and fuzzy δ -continuity in this new situation was introduced by Zahran [3]. These functions have been characterized and investigated mainly in light of the notions of quasineighborhood, quasi-coincidence. In our rummage we confined ourselves to the study of some kinds of these functions, the fuzzy continuous function, fuzzy δ -continuity and some types of fuzzy regular. In this paper, we introduce the concepts of a fuzzy δ^* -continuity, fuzzy δ^{**} continuity and to show the relationships between types of fuzzy continuous functions in this situation and we examine the validity of the standard results. #### 2. Preliminaries Let X and Y be sets and \tilde{A} and \tilde{E} be two subsets of X, Y respectively. Let I denote the closed unit interval $\begin{bmatrix} 0,1 \end{bmatrix}$. Let $X = \{x1, x2, \cdots, xn\}$ and $ai \in I$ for $i = 1, 2, \cdots, n$ By $(a1, a2, \cdots, an)$ we shall mean the fuzzy subset \tilde{A} of X and the value of a fuzzy set \tilde{A} at some $x \in X$ will be denoted by $\mu \tilde{A}(x)$ such that $\mu \tilde{A}(xi) = ai$ for $i=1,2,\cdots,n$, and the support of a fuzzy set \tilde{A} in X will be denoted by $S\left(\tilde{A}\right)$ such that $\mu\tilde{A}(x)>0$ for all x in X. If \tilde{A} and \tilde{E} are fuzzy sets and $\mu\tilde{E}(x)\leq\mu\tilde{A}(x)$ for all x in X, then \tilde{E} is said to be a fuzzy subset of \tilde{A} and denoted by $\tilde{E}\subseteq\tilde{A}$. The set of all fuzzy subsets of a nonempty set X is denoted by I^X . **Definition 2.1.** [2] Let $x \in X$, $r \in I$. A fuzzy set \tilde{A} of the form $$\mu \tilde{A}(y) = \begin{cases} 0 & \text{if } y \neq x \\ r & \text{if } y = x \end{cases}$$ is called a fuzzy point with support x and value r. \tilde{A} is often denoted by χr . For a fuzzy point χr 1) $\chi r \in 1\tilde{A} \Rightarrow r < \mu \tilde{A}(x)$. 2) $\chi r \in \tilde{A} \Rightarrow r \leq \mu \tilde{A}(x)$. **Definition 2.2.** [1] If $\tilde{E} \subseteq \tilde{A}$, the complement of \tilde{E}' referred to \tilde{A} , denoted by $\tilde{E}'_{\tilde{A}}$ is defined by $\tilde{E}'_{\tilde{A}}(x) = \mu \tilde{A}(x) - \mu \tilde{E}(x)$, for each $x \in X$. **Definition 2.3.** [2] \tilde{U} , $\tilde{V} \subseteq \tilde{A}$ are said to be quasicoincident (*q*-coincident, for short) referred to \tilde{A} written as $\tilde{U}q\tilde{V}\left[\tilde{A}\right]$ if there exists $x \in X$ such that $\mu\tilde{U}(x) + \mu\tilde{V}(x) > \mu\tilde{A}(x)$. If \tilde{U} and \tilde{V} is not quasicoincident referred to \tilde{A} , we denoted for this by $\tilde{U}q\tilde{V}\left[\tilde{A}\right]$. ### 3. Basic Definitions and Properties In [4,5] fuzzy function have been introduced in a different way considering them as fuzzy relations with special properties. A special kind of fuzzy functions had been called fuzzy proper functions or proper functions that Copyright © 2013 SciRes. would be the morphisms in the proposed category FUZZY TOP. **Definition 3.1.** [1] A fuzzy subset \tilde{F} of $X \times Y$ is said to be a proper function from \tilde{A} to \tilde{E} if 1) $\tilde{F}(x,y) \le \min \{ \mu \tilde{A}(x), \mu \tilde{E}(y) \}$, for each $(x,y) \in X \times Y$. 2) For each $x \in X$, there exists a unique $y_0 \in Y$ such that $\tilde{F}(x, y_0) = \mu \tilde{A}(x)$ and $\tilde{F}(x, y) = 0$ if $y \neq y_0$. Let \tilde{F} be a proper function from \tilde{A} to \tilde{E} . **Definition 3.2.** [1] If $\tilde{V} \subseteq \tilde{E}$, then $\tilde{F}^{-1}(\tilde{V}): \tilde{A} \to I$ is defined by $$(\tilde{F}^{-1}(\tilde{V}))(x) = \sup \{\min \{\tilde{F}(x,y), \mu \tilde{V}(y)\}; y \in Y\}$$ for each $x \in X$. **Definition 3.3.** [2] If $\tilde{U} \subseteq \tilde{A}$, then $\tilde{F}(\tilde{U}): \tilde{E} \to I$ is defined by $$(\tilde{F}(\tilde{U}))(y) = \sup \{\min \{\tilde{F}(x,y), \mu \tilde{U}(x)\}; x \in X\}$$ for each $y \in Y$. **Proposition 3.4.** [2] For a proper function \tilde{F} 1) $$\tilde{F}(\tilde{F}^{-1}(\tilde{O})) \subseteq \tilde{O}$$, for each $\tilde{O} \subseteq \tilde{E}$. 2) $$\tilde{\mathbf{F}}^{-1}(\tilde{\mathbf{F}}(\tilde{N})) \supseteq \tilde{N}$$, for each $\tilde{N} \subseteq \tilde{A}$. 3) $$\tilde{\mathbf{F}}^{-1}(\tilde{N} \cup \tilde{O}) = \tilde{\mathbf{F}}^{-1}(\tilde{N}) \cup \tilde{\mathbf{F}}^{-1}(\tilde{O})$$ and $$\tilde{\boldsymbol{F}}^{-1}\left(\tilde{N}\cap\tilde{O}\right)=\tilde{\boldsymbol{F}}^{-1}\left(\tilde{N}\right)\cap\tilde{\boldsymbol{F}}^{-1}\left(\tilde{O}\right).$$ **Definition 3.5.** [2] $\tilde{E} \subseteq \tilde{A}$ is said to maximal if for each $\mu \tilde{E}(x) \neq o \Rightarrow \mu \tilde{E}(x) = \mu \tilde{A}(x)$. **Proposition 3.6.** [2] If \tilde{V} is a maximal fuzzy subset of $\tilde{\mathbf{F}}^{-1}(\tilde{V}^c\tilde{E}) = \left[\tilde{\mathbf{F}}^{-1}(\tilde{V})\right]^c\tilde{A}$. **Definition 3.7.** [2] Let $\tilde{E} \subseteq \tilde{A}$. Then \tilde{F}/\tilde{E} defined by $$(\tilde{F}/\tilde{E})(x,y) = \min\{\tilde{F}(x,y), \mu\tilde{E}(x)\},\$$ for each $(x, y) \in X \times Y$, is said to be the restriction of \tilde{F} to \tilde{E} **Proposition 3.8.** [2] If $\tilde{V} \subseteq \tilde{A}$, then for each $\tilde{U} \subseteq \tilde{E}$, $(\tilde{\boldsymbol{F}}/\tilde{V})^{-1}(\tilde{U}) = \tilde{V} \cap \tilde{\boldsymbol{F}}^{-1}(\tilde{U}).$ **Definition 3.9.** [1] A collection \tilde{T} of fuzzy subsets of a fuzzy set A is said to be a fuzzy topology on A if 1) $\}', \tilde{A} \in \tilde{T}$ 2) $\tilde{U}_1, \tilde{U}_2 \in \tilde{T}$, then $\tilde{U}_1 \cap \tilde{U}_2 \in \tilde{T}$. 3) $\tilde{U}_i \in \tilde{T}$ for each $i \in I$, then $\bigcup \{\tilde{U}i : i \in I\} \in \tilde{T}$. (\tilde{A}, \tilde{T}) is said to be a fuzzy topological space (fts, for short). The members of \tilde{T} are called fuzzy open sets in \tilde{A} . The complement of the members of \tilde{T} referred to \tilde{A} are called the fuzzy closed sets in \tilde{A} . The family of all fuzzy closed sets in \tilde{A} will be denoted by $C(\tilde{T})$. **Definition 3.10.** [1] If $\tilde{E} \subseteq \tilde{A}$, $\tilde{T}_{\tilde{E}} = \{\tilde{E} \cap \tilde{V} : \tilde{V} \in \tilde{T}\}$ is a fuzzy topology on \tilde{E} , $(\tilde{E}, \tilde{T}_{\tilde{E}})$ is called a subspace of (\tilde{A}, \tilde{T}) **Definition 3.11.** [1] Let (\tilde{A}, \tilde{T}) be a fts and $\tilde{E} \subseteq \tilde{A}$ then the closure of \tilde{E} denoted by $Cl(\tilde{E})$ is defined by $Cl(\tilde{E}) = \bigcap \{\tilde{U} : \tilde{U} \in \tilde{T}, \tilde{E} \subseteq \tilde{U}\}$ is the intersection of all closed fuzzy subsets of A containing **Definition 3.12.** [3] Let (\tilde{A}, \tilde{T}) be a fts and $\tilde{E} \subseteq \tilde{A}$ then the interior of \tilde{E} denoted by $\operatorname{int}(\tilde{E}) = \bigcup \{\tilde{U} : \tilde{U} \in \tilde{T}, \tilde{U} \subseteq \tilde{E}\}\$. *i.e.* $\operatorname{int}(\tilde{E})$ is the union of all open fuzzy subsets of \tilde{A} which contained in \tilde{E} . **Definition 3.13.** [1] Let (\tilde{A}, \tilde{T}) be a fts, a fuzzy subset E of A is called 1) Neighbourhood (nbd, for short) of the fuzzy point $\chi r \in \tilde{A}$ if there exists $\tilde{U} \in \tilde{T}$ such that $\chi r \in \tilde{U} \subseteq \tilde{E}$; 2) Quasi-neighbourhood (q-nbd, for short) of the fuzzy point $\chi r \in \tilde{A}$ if there exists $\tilde{U} \in \tilde{T}$ such that $\chi rq\tilde{U}[\tilde{A}], \ \tilde{U} \subseteq \tilde{E}$. The set $U\chi r$ of all q-neighbourhood of χr is called the system of q-nbd of χr . **Proposition 3.14.** [2] If $(\tilde{E}, \tilde{T}_{\tilde{E}})$ is a maximal subspace of (\tilde{A}, \tilde{T}) , then $Cl_{\tilde{E}}(\tilde{U}) = \tilde{E} \cap Cl_{\tilde{A}}(\tilde{U})$, where $\tilde{U} \subset \tilde{E}$. #### **Definition 3.15.** [3] 1) $\tilde{U} \subseteq A$ is said to be a fuzzy regular open set in a fts (\tilde{A}, \tilde{T}) if int $(Cl(\tilde{U})) = \tilde{U}$. 2) $\tilde{U} \subseteq \tilde{A}$ is said to be a fuzzy regular closed set in a fts (\tilde{A}, \tilde{T}) if $\tilde{U}_{\tilde{A}}^c$ is fuzzy regular open. **Definition 3.16.** [3] A fuzzy point $\chi r \in A$ is said to be a fuzzy δ -cluster (resp. θ -cluster) point of a fuzzy subset \tilde{V} of \tilde{A} if for each fuzzy regularly open (resp. fuzzy open) q-nbd of $\chi r, \tilde{U}q\tilde{V} \mid \tilde{A}$ $(resp. Cl(\tilde{U})q\tilde{V}[\tilde{A}])$. The set of all fuzzy δ -cluster (resp. fuzzy θ -cluster) points of \tilde{V} is called fuzzy δ cluster (resp. fuzzy θ -closure) and is denoted by $\delta - cl(\tilde{V})$ (resp. $\theta - cl(\tilde{V})$). A fuzzy subset $\tilde{V} \subseteq \tilde{A}$ is called a fuzzy δ -closed (resp. θ -closed) if $\tilde{V} = \delta - cl(\tilde{V})$ (resp. $\tilde{V} = \theta - cl(\tilde{V})$) and the complement of a fuzzy δ -closed (resp. θ -closed) set is called fuzzy δ -open (resp. θ -open). Remark 3.17. [3] It is clear that fuzzy regular open (fuzzy regular closed) implies fuzzy δ -open (fuzzy δ closed) implies fuzzy open (fuzzy closed) but the converses are not true in general. In this paper, the family of all fuzzy regular open (resp. fuzzy regular closed, fuzzy δ -open, fuzzy δ -closed, fuzzy open, fuzzy closed) sets in \hat{A} will be denoted by $$[FRO(\tilde{A})], (resp, [FRC(\tilde{A})], [F\delta O(\tilde{A})], [F\delta C(\tilde{A})], [FO(\tilde{A})], [FC(\tilde{A})]).$$ ## 4. Fuzzy δ^* -Continuity Unless otherwise mentioned \tilde{T}, \tilde{T}' are two fuzzy to- pologies on \tilde{A} , \tilde{E} respectively, and \tilde{F} a proper function from \tilde{A} to \tilde{E} . **Definition 4.1.** A proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ is called fuzzy δ^* -continuous if $\tilde{\mathbf{F}}^{-1}(\tilde{V}) \in [F\delta O(\tilde{A})]$ for each $\tilde{V} \in [FO(\tilde{E})]$. Example 4.2. Let $$X = \{x, y\}, Y = \{a, b\}, \quad \tilde{A} = \{(x, 0.7), (y, 0.6)\},$$ $$\tilde{W} = \{(x, 0.4), (y, 0.3)\}, \quad \tilde{U} = \{(x, 0.3), (y, 0.3)\} \in I^X$$ and $$\tilde{E} = \{(a,0.8),(b,0.6)\}, \quad \tilde{V} = \{(a,0.3),(b,0.3)\} \in I^{Y}.$$ Consider the fuzzy topologies on \tilde{A} , \tilde{E} resp. $\tilde{T} = \{\}', \tilde{A}, \tilde{U}, \hat{W}\}$ and $\tilde{T}' = \{\}', \tilde{E}, \tilde{V}\}$. Let the proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ defined by $\tilde{F}(x, a) = 0.7$, $\tilde{F}(x,b) = 0$, $\tilde{F}(y,a) = 0$, $\tilde{F}(y,b) = 0.6$, one may notice that the only fuzzy open sets in (\tilde{E}, \tilde{T}') are \tilde{V} , $\}$ and \tilde{E} but $\tilde{F}^{-1}(\)' = \$ ', $\tilde{F}^{-1}(\tilde{E}) = \tilde{A}$, $\tilde{F}^{-1}(\tilde{V}) = \tilde{U}$ and $\}'$, \tilde{A} , $\tilde{U} \in [F\delta O(\tilde{A})]$. Hence \tilde{F} is fuzzy δ^* continuous. **Theorem 4.3.** If $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ be fuzzy δ^* -continuous and $\tilde{E} \subseteq \tilde{A}$, then $$\tilde{F}/\tilde{E}: (\tilde{E}, \tilde{T}_{\tilde{E}}) \rightarrow (\tilde{F}(\tilde{E}), \tilde{T}'_{\tilde{F}(\tilde{E})})$$ is fuzzy δ^* -continuous. **Proof:** Let $\tilde{V} \in \tilde{T}'_{\tilde{F}(\tilde{E})}$ such that $\tilde{V} \in \left[FO(\tilde{F}(\tilde{E})) \right]$. Then there exists fuzzy open $\tilde{U} \in \tilde{T}'$ such that $\tilde{V} = \tilde{F}(\tilde{E}) \cap \tilde{U}$. Now $$(\tilde{F}/\tilde{E})^{-1}(\tilde{V})$$ $$= \tilde{E} \cap \tilde{F}^{-1}(\tilde{V})[\text{by Prop.3.8.}]$$ $$= \tilde{E} \cap \tilde{F}^{-1}(\tilde{F}(\tilde{E}) \cap \tilde{U})$$ $$= \tilde{E} \cap \tilde{F}^{-1}(\tilde{F}(\tilde{E}) \cap \tilde{F}^{-1}\tilde{U})[\text{by Prop.3.4. 3})]$$ $$= \tilde{E} \cap \tilde{E} \cap \tilde{F}^{-1}(\tilde{U})$$ $$= \tilde{E} \cap \tilde{F}^{-1}(\tilde{U}),$$ but \tilde{F} be fuzzy δ_{-}^* -continuous such that $\tilde{\mathbf{F}}^{-1}\tilde{U} \in \left[F\delta O(\tilde{A})\right]$. Therefore $$(\tilde{F}/\tilde{E})^{-1}(\tilde{V}) \in [F\delta O(\tilde{E})].$$ Hence \tilde{F}/\tilde{E} is fuzzy δ^* -continuous. **Definition 4.4.** [2] $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ is said to satisfy property (p) if $\tilde{F}^{-1}(\tilde{V}) \in \tilde{T}$, for each $\tilde{V} \in \tilde{T}'$. Henceforth such functions will be called fuzzy continuous proper function. **Theorem 4.5.** If a proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{E}, \tilde{T}')$ is fuzzy δ^* -continuous then, it is fuzzy continuous. **Proof:** Let $\hat{W} \in |FO(\tilde{E})|$, but \tilde{F} is fuzzy δ^* -continuous. Hence $\tilde{F}^{-1}(\hat{W}) \in [\tilde{F}\delta O(\tilde{A})]$ and by (Remark (3.17)) every fuzzy δ -open implies fuzzy open. (i.e. $\tilde{\mathbf{F}}^{-1}(\hat{W}) \in |FO(\tilde{A})|$). Hence $\tilde{\mathbf{F}}$ is fuzzy continuous. We can see from Example (4.2) such that $\tilde{U} \in [FO(\tilde{A})]$ but \tilde{V} , \tilde{E} , $\tilde{V} \in [FO(\tilde{E})]$. **Definition 4.6.** [3] A proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ is called fuzzy δ -continuous if $\tilde{\mathbf{F}}^{-1}(\tilde{V}) \in \left\lceil F\delta O(\tilde{A}) \right\rceil$ for each $\tilde{V} \in \left\lceil FRO(\tilde{E}) \right\rceil$. **Remark 4.7.** [3] The concepts of fuzzy δ -continuous and fuzzy continuous are independent to each other. **Theorem 4.8.** If $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ be fuzzy δ continuous and $\tilde{E} \subseteq \tilde{A}$, then $\tilde{F}/\tilde{E}: (\tilde{E}, \tilde{T}_{\tilde{E}}) \rightarrow (\tilde{F}(\tilde{E}), \tilde{T}'_{\tilde{F}(\tilde{E})})$ is fuzzy δ -continuous. **Proof:** Let $\tilde{V} \in \tilde{T}'_{\tilde{F}(\tilde{E})}$ such that $\tilde{V} \in \lceil FRO(\tilde{F}(\tilde{E})) \rceil$. $(\tilde{F}/\tilde{E})^{-1}(\tilde{V}) = \tilde{E} \cap \tilde{F}^{-1}(\tilde{V})$ [by Prop. 3.8]. But \tilde{F} is fuzzy δ -continuous such that $\tilde{\mathbf{F}}^{-1}(\tilde{V}) \in \left[F\delta O(\tilde{A})\right]$. Therefore $(\tilde{F}/\tilde{E})^{-1}(\tilde{V}) \in [F\delta O(\tilde{E})]$. Hence \tilde{F}/\tilde{E} is fuzzy δ -continuous. **Theorem 4.9.** If a proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ is fuzzy δ^* -continuous, then it is fuzzy δ -continuous. **Proof:** Let $\hat{W} \in |FRO(\tilde{E})|$. And by Remark 3.17 every fuzzy regular open implies fuzzy δ -open implies fuzzy open. (i.e. $\hat{W} \in [F\delta O(\tilde{E})]$ and $\hat{W} \in [FO(\tilde{E})]$ but \tilde{F} is fuzzy δ^* -continuous). Hence $\tilde{\mathbf{F}}^{-1}(\hat{W}) \in [F\delta O(\tilde{E})]$. Therefore $\tilde{\mathbf{F}}$ is fuzzy δ -continuous. ## 5. Fuzzy δ^{**} -Continuity **Definition 5.1.** A proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ is called fuzzy δ^{**} -continuous if $\tilde{\mathbf{F}}^{-1}(\tilde{V}) \in \lceil FO(\tilde{A}) \rceil$ for each $\tilde{V} \in \left[F \delta O(\tilde{E}) \right]$. Example 5.2. Let $$X = \{x, y\}, Y = \{a, b\}, \tilde{A} = \{(x, 0.7), (y, 0.6)\}$$ $$\tilde{V} = \{(x, 0.3), (y, 0.3)\}, \hat{W} = \{(x, 0.5), (y, 0.4)\} \in I^X$$ and $$\tilde{E} = \{(a, 0.7), (b, 0.6)\}, \tilde{U} = \{(a, 0.3), (b, 0.3)\} \in I^{Y}.$$ Consider the fuzzy topologies on \tilde{A} and \tilde{E} resp. $\tilde{T} = \left\{ \right\}', \tilde{A}, \tilde{V}, \hat{W} \right\}$ and $\tilde{T}' = \left\{ \right\}', \tilde{E}, \tilde{U} \right\}$. Let the proper function $\tilde{F}: \left(\tilde{A}, \tilde{T} \right) \rightarrow \left(\tilde{E}, \tilde{T}' \right)$ defined by $\tilde{F}(x, a) = 0.7$, $\tilde{F}(x, b) = 0$, $\tilde{F}(y, a) = 0$, $\tilde{F}(y, b) = 0.6$ One may notice that the only fuzzy δ -open sets in $\left(\tilde{E}, \tilde{T}' \right)$ are \tilde{U} , $\left\{ \right\}'$ and \tilde{E} and $$\tilde{\mathbf{F}}^{-1}(\ \}') = \ \}' \in \left[FO(\tilde{A})\right],$$ $$\tilde{\mathbf{F}}^{-1}(\tilde{E}) = \tilde{A} \in \left[FO(\tilde{A})\right],$$ $$\tilde{\mathbf{F}}^{-1}(\tilde{U}) = \tilde{V} \in \left[FO(\tilde{A})\right].$$ Hence $\tilde{\mathbf{F}}$ is fuzzy δ^{**} -continuous. **Theorem 5.3.** If $\tilde{F}: (\tilde{A}, \tilde{T}) \to (\tilde{E}, \tilde{T}')$ be fuzzy δ^{**} -continuous and $\tilde{E} \subset \tilde{A}$, then $$\tilde{\pmb{F}}/\tilde{E}:\!\left(\tilde{E},\tilde{T}_{\tilde{E}}\right)\!\to\!\left(\tilde{\pmb{F}}\left(\tilde{E}\right),\tilde{T}_{\tilde{F}\left(\tilde{E}\right)}'\right)\ \text{is fuzzy δ^{**}-continuous}.$$ **Proof:** Let $\tilde{V} \in \tilde{T}'_{\tilde{F}(\tilde{E})}$ such that $\tilde{V} \in \left[F \delta O\left(\tilde{F}\left(\tilde{E}\right)\right) \right]$. $\left(\tilde{F}/\tilde{E}\right)^{-1}\left(\tilde{V}\right) = \tilde{E} \cap \tilde{F}^{-1}\left(\tilde{V}\right)$ [by Prop. 3.8]. But \tilde{F} is fuzzy δ^{**} -continuous such that $\tilde{F}^{-1}\left(\tilde{V}\right) \in \left[FO\left(\tilde{A}\right) \right]$. Therefore $\left(\tilde{F}/\tilde{E}\right)^{-1}\left(\tilde{V}\right) \in \left[FO\left(\tilde{E}\right) \right]$. Hence \tilde{F}/\tilde{E} is fuzzy δ^{**} -continuous. **Theorem 5.4.** If a proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{E}, \tilde{T}')$ is fuzzy δ -continuous, then it is fuzzy δ^{**} -continuous. **Proof:** Let $\hat{W} \in [FRO(\tilde{E})]$, and (by Remark 3.17 every fuzzy regular open implies fuzzy δ -open), *i.e.* $\hat{W} \in [F\delta O(\tilde{E})]$. But \tilde{F} is fuzzy δ -continuous. Hence $\tilde{F}^{-1}(\hat{W}) \in [F\delta O(\tilde{A})]$, and (by Remark 3.17 every fuzzy δ -open implies fuzzy open). Therefore, $$\tilde{\mathbf{F}}^{-1}(\hat{W}) \in [FO(\tilde{A})].$$ (i.e. $\tilde{\mathbf{F}}$ is fuzzy δ^{**} -continuous). **Theorem 5.5.** If a proper function $\tilde{F}: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{E}, \tilde{T}')$ is fuzzy continuous, then it is fuzzy δ^{**} -continuous. **Proof:** Let $\hat{W} \in [F\delta O(\tilde{E})]$, and (by Remark 3.17 every fuzzy δ -open implies fuzzy open), *i.e.* $\hat{W} \in [FO(\tilde{E})]$. But \tilde{F} is fuzzy continuous. Hence $\tilde{\mathbf{F}}^{-1}(\hat{W}) \in [FO(\tilde{A})]$. Therefore $\tilde{\mathbf{F}}$ is fuzzy δ^{**} -continuous. We can see from Example (5.2.). **Remark 5.6.** It is clear that not every fuzzy δ^{**} -continuous may be fuzzy δ^{*} -continuous and we can see from example. Example 5.7. Let $$X = \{x, y\}, Y = \{a, b\}, \tilde{A} = \{(x, 0.7), (y, 0.6)\}$$ $$\tilde{V} = \{(x, 0.3), (y, 0.3)\}, \hat{W} = \{(x, 0.5), (y, 0.4)\} \in I^{X}$$ and $$\tilde{E} = \{(a,0.7),(b,0.6)\}, \tilde{U} = \{(a,0.3),(b,0.3)\} \in I^{Y}.$$ Consider the fuzzy topologies on \tilde{A} and \tilde{E} resp. $\tilde{T} = \left\{ \right\}', \tilde{A}, \tilde{V}, \hat{W} \right\}$ and $\tilde{T}' = \left\{ \right\}', \tilde{E}, \tilde{U} \right\}$. Let the proper function $\tilde{F}: \left(\tilde{A}, \tilde{T} \right) \rightarrow \left(\tilde{E}, \tilde{T}' \right)$ defined by $\tilde{F}(x, a) = 0.7$, $\tilde{F}(x, b) = 0$, $\tilde{F}(y, a) = 0$, $\tilde{F}(y, b) = 0.6$. \tilde{F} is fuzzy δ^{**} -continuous but not fuzzy δ^{*} -continuous such that the only fuzzy δ -open sets in $\left(\tilde{E}, \tilde{T}' \right)$ are $\left\{ \right\}', \tilde{E}$ and \tilde{U} but $\tilde{F}^{-1}(\tilde{U}) = \tilde{V} \not\in \left[F\delta O(\tilde{A}) \right]$. From what we have deduced so far, we now obtain: Fuzzy continuous \rightarrow Fuzzy δ^{**} -continuous; Fuzzy δ -continuous \rightarrow Fuzzy δ^{**} -continuous; Fuzzy δ^* -continuous \rightarrow Fuzzy continuous; Fuzzy δ^* -continuous \rightarrow Fuzzy δ -continuous. #### 6. Conclusion The main purpose of this paper introduces a new concept in fuzzy set theory, namely that of a fuzzy δ^* -continuity and fuzzy δ^{**} -continuity. On the other hand, fuzzy topology on a fuzzy set is a kind of abstract theory of mathematics. First, we present and study fuzzy δ^* -continuity and fuzzy δ^{**} -continuity from a fuzzy topological space on a fuzzy set into another. Then, we present the relationships between types of fuzzy continuous functions. #### 7. Acknowledgements The author is thankful to the referee for his valuable suggestions. #### REFERENCES - [1] M. K. Chakraborty and T. M. G. Ahsanullah, "Fuzzy To-pology on Fuzzy Sets and Tolerance Topology," Fuzzy Set and Systems, Vol. 45, No. 1, 1990, pp. 103-108. doi:10.1016/0165-0114(92)90096-M - [2] A. K. Chaudhari and P. Das, "Some Results on Fuzzy Topology on Fuzzy Sets," *Fuzzy Set and Systems*, Vol. 56, No. 3, 1993, pp. 331-336. doi:10.1016/0165-0114(93)90214-3 - [3] A. M. Zahran, "Fuzzy δ-Continuous, Fuzzy almost Regularity (Normality) on Fuzzy Topology No Fuzzy Sets," Fuzzy Mathematics, Vol. 3, No. 1, 1995, pp. 89-96. - [4] M. K. Chakraborty and S. Sarkar, "On Fuzzy Functions, Homorelations, Homomophisms etc.," *IFSAEURO Pro*ceeding, Warsaw, 1986. - [5] M. K. Chakraborty, S. Sarkar and M. Das, "Some Aspects of [0,1]—Fuzzy Relation and a Few Suggestions towards Its Use," In: Gupta, et al., Eds., Approximate Reasoning in Expert Systems, North-Holland, Amsterdam, 1985, pp. 156-159.