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ABSTRACT 

We consider the VEM system in the context of spherical symmetry and we try to establish a global static solution with 
isotropic pressure that approaches Minkowski spacetime at infinity and have a regular center. To be in accordance with 
numerical investigation we take here low charge particles. 
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1. Introduction 

In [1], the authors established static spherically symmet-
ric solutions for the Vlasov-Einstein (VE) system by ex-
pressing the distribution function f of identical particles 
(stars, galaxies) on phase space as a function of the local 
energy and the angular momentum. This technique has 
already been used by J. Batt in [2] to prove existence of 
the static symmetric solutions of the Vlasov-Poisson (VP) 
system. These works concern uncharged case. Here, we 
couple the VE system with the Maxwell system in which 
the electromagnetic field reduces to its electric part that  

is     x
E x r

r
 , once the assumption of spherical  

symmetry and that of regularity are considered. We have 
to deal with the following equations:  
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In the above, (1) is the Vlasov equation, (2) and (3) are 
a part of the Einstein equations while (4) is a part of the 
Maxwell system. Notice that in the Vlasov equation we 
have adopted the Einstein summation convention that is  
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  , q denotes the charge of parti-  


  and cles,   denote the metric functions. Here f is 

spherically symmetric if    , ,f Ax Av f x v , for x , 
, 3v 3A SO
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. Our spacetime we are looking for is 
, endowed with the metric  

 

 0r  , , 0,π   and in which  0,2π . We 
are also looking for the asymptotically flat solutions with 
a regular center that allow us to prescribe the following 
boundary conditions:  

     lim lim 0 0.
r r

r r  
 

    

Again for the regularity of  , we will need the fol- 
lowing additional boundary conditions:  

   lim 0 0.
r

r 


   

We encourage the reader to obtain more details on 
how to establish the above equations in [3]. 
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Next, in the related literature, the initial value problem 
for the corresponding time dependent is investigating in 
[3]. Again the Newtonian limit of the spherically sym-
metric VEM is discussed in [4] and this work extends the 
work that is done in [5]. Moreover, in [6] the authors 
prove the existence of a globally defined smooth static 
solution for the Einstein-Yang-Mills equations with 

 gauge group. Also, global static solutions are 
established in [7] for the VP system. We also notice that 
stationary axially symmetric solutions have been found 
by G. Rein in [8] for the VP System. A construction by 
numerical means has been made by H. Andréasson in [9] 
for the spherically symmetric VEM system. In this paper 
numerical solutions are obtained only for the low charge 
particles and we try in what follows to obtain the same 
result by means of analytical arguments. 

 2SU

Now, why our problem is interesting? In the un-
charged case, the authors reduce the EV system in a sin-
gle non-linear integrodifferential equation in   and 
with the monotonicity of sources terms   and p of the 
field equations, they extend the local solution to the 
global one. But with the contribution of the electric field, 
things seem to be more complicated, since none of these 
properties hold. So, we try to deduce the global solution 
for the local one using the same techniques that were 
developed in [10] when constructing solutions that satis-
fying the constraints for the spherically symmetric EVM 
system. We recall that this method is based on the ODE 
techniques, since the charge q of particle is taking as a 
parameter. 

The present work proceeds as follows: in Section 2, 
considering f as function of two news variables E and L 
we write down the corresponding sources terms of the 
fields equations and then we obtain the reduced system. 
In Section 3, we try to prove the existence of solutions 
and we summarize this work in Section 4.  

2. Conserved Quantities and Reduction of 
the Problem 

We aim to express the full system as a nonlinear integro-
differential system for  ,   and  . Now, the char-
acteristic system that corresponds to the Vlasov equation 
reads  
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Next, the straightforward calculation shows that the 
following quantities 
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are conserved along the characteristics. We recall that E 
is the particle energy [7] and L

   , ,
 is the angular mo-

mentum. We now set f x v E L  , for a fixed 

function  . Then, f satisfies the Vlasov equation and 
we can write using the polar coordinates: 
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We are looking for solutions with an isotropic pressure, 
this means that pressure does not depend on the direction. 
So we take f in the form f x v E  . Once again, f 
defines a solution of the Vlasov equation and we obtain: 
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Before continuing our investigation, we give details on 
how to establish for instance the expression given by (5). 
Once this is done the reader could applied the same 
method to establish (6) and (7). We will focus on the first 
term on the right hand side of , that is denoted by 
A. So in this expression we take  ,E L E    and 
we can write:  
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where we have made the change of the variable:  
2 21L L r   

       
, and (5) is deduced. We also set  

 e , ,rE j r r r      with  
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So, the VEM system reduces to the following equa-
tions:  
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The integration of (8) on  0, r  0 0  with , yields:  
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and inserting this in (9), one has:  
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Next (10) yields by the integration on 0, r :  
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In the sequel, we try to solve the reduced system (11)- 
(13) globally on .  

3. Existence of Solutions 

First of all we show that for a large class of  , the 
functions g ,   and   are . This will allow us 
to conclude that a solutions of our reduced system will be 
a regular one.  

h l 1C

Lemma 3.1. Let    : 0, 0,   

1 , 0E E
 

4

 be a mesurable 
function with  

  E C 

0C 

, 

for some constant , and  
 1 3C 

. Then the sources 
given by system (5)-(7) belong to .  

Proof: It will be enough if we prove that g , h  and 

  are . Next using the decay property of l 1C  , these 
functions are well defined. Besides, with the help of the 
change of variables, one obtains:  
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with  and 1 3j C   is deduced from the de- 
finition of j, replacing  ,   and   by ,  and  
respectively. We now prove that the function u u

u v w
,g h
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u  are  on  and with this we can conclude that 
the same property holds for g h  l and   on . 
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Using the decay property of  and the mean value 
theorem, one observes tha 0 . On the one 

hand, using Lebesgue’s dominated convergence theorem, 
one concludes that 2I


 exists and the left derivative 

function of  is in the form:  

 

uh
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On the second hand, the same argument is valid for 
 

h 

1C

 and the corresponding right derivative func-
tion exists with its expression being the same as the one 
above. Thus u  is differentiable on  and using once 
again the Lebesgue dominated convergence theorem, its 
derivative is continuous. So this function is  and one 
can proceed as above to obtain the same result for both 
functions ug l and u . Next we state and prove the local 
existence of   and  :   , 

Theorem 3.1. (Local existence) Let  
   : 0, 0,   C

   1 , 0,E C E E


 be a  function with  

   

0C  4
 

for some constant ,    and let  h,   and g
l  be defined by (5)-(7). Then for every 0  

0T 
, there 

exists a number  and a unique solution,  
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0 0  0 

 of system (8)-(10) with 
,  and   0

 by  
        1 2 3, , : , , , , , , , ,T T T T0 0  . Moreover, the above 

solution depends regularly on the parameter q.  
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. On , we 
consider the norm 
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and using the mean value theorem, one has the following 
estimates:  
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and thus,   is chosen small enough to force T to be a 
contraction mapping. Hence, we obtain a local solution 

  1, , 0,C     of the system (11)-(13) that can be 
ed on the right maximal interval extend 0, R , on which 
ution is unique, si  are away from the center 

, in which a singula occur. We also notice 
he regularity of 
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0r 
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defined by (5) and (7) respectively. Then, for q small, the 
system given by (8) and (10) has a unique global and 
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existence of a number 0   such that for  ,q    ,  
R can be ch  osen uniformly and the solution on 0, R  
de . Now, for fixed pends continuously on the parameter q
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the second term on the right hand side of ) vanishes as 
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where Q and m are respectively the total charge of the 
system and the mass function whose limit as r   is 
M the ADM mass of the system. We deduce, as it is the 
case in the proof of Th em 3.3 in [10], that the exterior 
region 2R M   can b ed by the r Nordström 
solution that extends our solution to e globale one. 
Thus the proof of Theorem 3.2 is comp e.  

Remark 3.2. In the isotropic c  



eor
e fill Reisne

 th
let

ase (i.e.  ,f x v E ), 
larity of f depends on tha . So, for 

 
the regu t of  instance 
if   is a 1C  function, then f will be a 1C  one too. 
Thus,    , , ,E     is a regular solution of the full 
EVM system.  

4. Conclusion 

Our goal in this work was to look for a global static solu-
tions for the spherically symmetric EVM system. To 
achieve this, a first step has consisted of establishing in 
Theorem 3.1 a local existence of solutions, using the con-
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traction mapping theorem on a complete metric space. 
We have also prove in Theorem 3.2 that these local solu-
tions can be extended to the global ones, if the assump-
tion of c ness is added to the decay property of the 
distribution function  . We obtain as it is the case for 
the uncharged particles that our spacetime is

ompact

 asymptoti-
ca  by the Reisne

e si
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lly flat, since the exterior region is filled r 
Norsdtröm solution. One can also prove that this space-
tim is geode cally complete. 
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