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ABSTRACT 

In [1], the authors established the Brunn-Minkowski inequality for centroid body. In this paper, we give an isolate form 
and volume difference of it, respectively. Both of these results are strength versions of the original. 
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1. Introduction 

The setting for this paper is n-dimensional Euclidean 
space . Let  denote the set of convex bodies 
(compact, convex subsets with non-empty interiors). Let 

 and  denote the unit ball and unit sphere in 
, respectively. If 

n n

n
nB


1nS 

n K K

    1, max : , nh K u u x x K u S    

u x

n

, then the support function 
of K, , is defined by    1, : n

Kh h K S   

    (1.1) 

where  denotes the standard inner product of u and 
x. 

For each compact star-shaped about the origin K  
 V K

, 
denoted by  its n-dimensional volume. The cen-
troid body K  of K is the origin-symmetric convex 
body whose support function is given by (see [2])  

   
1

h K u , d ,
K

u x x
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n

ˆ

         (1.2) 

where the integration is with respect to Lebesgue measure 
on . 

Centroid body was attributed by Blaschke and Dupin 
(see [3,4]), it was defined and investigated by Petty [2]. 
More results regarding centroid body see [2-7]. 

For star body K and L, let K L  denote the har-
monic Blaschke addition of K and L. In [1], the authors 
established the following Brunn-Minkowski inequality 
for centroid body. 

Theorem A. Let ,K L  be star bodies in . Then  n

      
1 1 1

,n nV K V K V L     ˆ nL     (1.3) 

the equality holds if and only if K L

,

 and  are ho- 
mothetic.  

In this paper, we give two strength versions of (1.3). 
Our main results are the following two theorems.  

Theorem 1.1. Let K L n
0 1

 be star bodies in  and 
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the equality holds if and only if  and   are 
homothetic.   

Theorem 1.2. Let  and L  be star bodies in . 
Ellipsoid 1 , and E  is a homothetic copy of 

1E hen  
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K Lthe equality holds if and only if  and  are ho- 
mothetic and  

         1 2, ,V K V E V L V E     ,  

where   is a constant.  
Remark. Let 1  or 0  

E E
 in Theorem 1.1, or let 

1 2  

L n

 in Theorem 1.2, we can both get the 
Theorem A.  

2. Notation and Preliminary Works  

For a compact subset  of , with the origin in its 
interior, star-shaped with respect to the origin, the radial 
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function , is defined by    1, : nL S   

 ax : .u L  

n



 ,L 

 , mL u          (2.1) 

If  is continuous and positive, L will be called 
a star body. Let o  denote the set of star bodies in . n

 , ,V K KThe mixed volume 1 n  of the compact con- 
vex subsets 


1, , nK K  of  is defined by  n
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, then  

 , ,V K K1 2

 , L V
 will be denote as  

,n i Li . If , then V K nL B  , B

, n

, 0 1 , n

i nV K  
is called the quermassintegrals of ; it will often be 
written as . 

K
  0,1,i i

The mixed quermassintegrals  
W K

 W K L i ,1, ,n i  of K L K , are defined by 
[8]  

       
0

, lim i
i

W K
n i W K L

 
  ,iL W K


 

 n i
i W K  

 i K

   L W L

0,1, , 1n

  (2.2) 

Since , it follows that   W K
 ,W K K W

i

i , for all i. Since the quermassintegrals 
 is Minkowski linear, it follows that  1nW 

W K1 1n n 

Aleksandrov [9] and Fenchel and Jessen [10] have 
shown that for  and i

,  for all K. 

nK   
 1nS 

, there exists 
a regular Borel measure  on , such that the 
mixed quermassintegrals 

 ,iS K
 , LiW K  has the following 

integral representation:  

     , d , ,i iu S K u

nL  ,S K 
K
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1

1
,
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n 

       (2.3) 

for all . The measure 1n  is independent 
of the body  and is just ordinary Lebesgue measure, 
S on . The surface area measure  will fre- 
quently be written simply as  , S K . 

Suppose o,K L n ,   and   are nonnegative real 
numbers and not both zero. To define the harmonic 
Blaschke addition, ˆK L  0, first define    by [6]  
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The body o   

  1 1
, , .

n n
L L  

, n
oK L

 is defined as the body whose 
radial function is given by  
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3. Inequalities for Centroid Body  

In this section, we will establish the inequality more ge- 
neral than Theorem 1.1 as follows. 

Theorem 3.1. Let  0 1i n  
0 1

,  and  
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with equality holds if and only if K  L and   are 
homothetic.   

To prove Theorem 3.1, the following preliminary re- 
sults will be needed: 

Lemma 3.2. ([8]). Let  and , nK L 0 1i n  

     1
, ,

n i n i

i i iW K L W K W L
  

, nK L 0 1i n

. 
Then  

       (3.1) 

with equality if and only if K and L are homothetic. 
Lemma 3.3. ([11]). Let ,   

 

. 
Then  

         1 1 1
,

n i n i n i

i i iW K L W K W L
    

 ˆV K L  

 
 

  (3.2) 

with equality if and only if K and L are homothetic.  
Proof of Theorem 3.1.  
By (2.4), (2.5) and the polar coordinate formula for 

volume, we can get .  Hence from (2.5), 
we obtain  

 
 

 
 

1 1 1ˆ , , ,
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n n nK L K L
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1nS

  (3.3) 

Using polar coordinates, (1.2) can be written as an 
integral over    

     
1

11
, d .

n

n

K

S

h K u u v v v
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       (3.4) 

Then from (3.3) and (3.4), we have  

       ˆ , , , .h K L u h K u h L u        

, n
oK L

  (3.5) 

For   and 0 1 

 

. Let  

 ˆ 1 ,F K L      

  ˆ1 ,G K L      

B  y (2.3) and (3.5), we have  
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That is  
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    ˆ ˆ , .W K L W K L F G     

   

i i     (3.6) 

By Lemma 3.2, we get  

        1 1
,

n i n i n i

i F G
   



ˆ ˆ
i iW K L W K L W     

which implies that,  

   ˆ ,iW K L W F G   

 ˆ

i         (3.7) 

with equality holds if and only if K L   and F G  
are homothetic. 

The Brunn-Minkowski inequality (3.2) can now be 
used to conclude that  
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,

n i n i n i

iW G
  

K

i iW F G W F    (3.8) 

with equality holds if and only if F and G are homo-
thetic. 

By (3.7) and (3.8), we get the first inequality of Theo-
rem 3.1. By the equality conditions of (3.7) and (3.8), the 
first equality of Theorem 3.1 holds if and only if   
and  are homothetic. L

 

By (3.5) and Lemma 3.3, we get 
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with equality holds if and only if K L and   are 
homothetic. This completes the proof. 

Let  in Theorem 3.1, we obtain an isolate form 
of Brunn-Minkowski inequality for centroid body.  

0i 

,Corollary 3.4. Let K L n
0 1

 be star bodies in  and 
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the equality holds if and only if  and   are 
homothetic.   

Now, we establish the volume difference of Brunn- 
Minkowski inequality for centroid body.  

Theorem 3.5. Let  and L  be star bodies in . 
Ellipsoid 1 , and E  is a homothetic copy of 

1E . Then  
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K Lthe equality holds if and only if  and  are ho- 
mothetic and  

         1 2, ,V K V E V L V E     ,  

where   is a constant.  
To prove Theorem 3.5, we need the following two 

lemmas:  
Lemma 3.6. (Bellman’s inequality) ([12], p. 38). Sup- 
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with equality if and only if  , where   is a 
constant. 
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Lemma 3.7. (Busemann-Petty centroid inequality) ([4], 
p. 359). Let . Then  

  is a constant. This completes the proof. 
nK 
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n

V K
n k
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with equality if and only if  is a centered ellipsoid. 
Proof of Theorem 1.2. Applying inequality (1.3), we 

have  
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the equality holds if and only if  and  are ho- 
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By (3.11) and Bellman’s inequality, we get  

     

       

1

1

1 2 .

n

nV E   

1 2

1

ˆ ˆ

n

V K L V E E

V K V E V L

      

       

 (3.12) 

By the equality conditions of (3.9) and the Bellman’s 
inequality, the equality of (3.12) holds if and only if 

K L

   
 and   are homothetic and  

     

where 
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