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ABSTRACT

Let f (z) be a function transcendental and meromorphic in the plane of growth order less than 1. This paper focuses

on discussing and estimating the number of the zeros of a certain homogeneous difference polynomials of degree k in
f (z) , and obtains that this certain homogeneous difference polynomials has infinitely many zeros.
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1. Introduction and the Main Result

Let f(z) be a function transcendental and meromor-
phic in the plane. In what follow, we denote the conver-
gence exponent of the zeros of f(z) by A(f), the
growth order of f(z) by o(f), and the lower order
of f(z) by u(f).

Following Whittaker [1], define the forward differ-
ences to be k times iteration A* of the difference op-
erator A, that is,

Af (z)=f(z+1)-f(z),
A“f(2)= A (2+1)- A (2).

Recently, a number of papers research on complex
difference equations and differences analogues of Ne-
vanlinna’s theory [2-6]. Bergweiler and Langley [7] firstly
investigated the existence of zeros of Af(z), and ob-
tained a result as follow.

Theorem 1.1. Let f be a function transcendental and
meromorphic of lower order ()< <1 in the plane.
Let ce C\{O} be such that at most finitely many poles
z;,z, of f(z) satisfy z;—z =c.Then
g(z)=f(z+c)-f(z) has infinitely many zeros.

In 2008, Z. X. Chen and K. H. Shon [8].

Theorem 1.2. Let ne N and f be a function tran-
scendental and meromorphic of lower order
u(f)<u<1 in the plane. Let ceC\{0} and a set
B={bj} consistofall polesof f(z),such that

b, +kcg B(k=12,--,n)

(1.1
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at most except finitely many exceptions. Then A"f (z)
has infinitely many zeros.

In 2009, Z. X. Chen and K. H. Shon [9] continue to
investigate the existence of the zeros of the difference
polynomials defined as follows

9(z)=f(z+c)+f(z+c,)-2f(z) 1.2)
9,(z)=f(z+c) f(z+¢c,)-f*(2) (1.3)

and obtained two results.

Theorem 1.3. Let f be a function transcendental and
meromorphic of growth order o(f)=0<1, and c,,c,
be two complex numbers, such that c,,c, eC\{0}, and
c,+¢,#0. If f(z) has at most finitely many poles
p;. b satisfying p; —p, =k¢ +k,c,

(k; =0,+1,d =1,2), then g(z) has infinitely many
zeros,and A(g)=0o(g)=0.

In particular, if f(z) has at most finitely many zeros
z; satisfying f(z;+c )+ f zj+cz):0,then
G(z)=9(z)/f(z) has also infinitely many zeros, and
ﬂ(G)za(G)=a.

Theorem 1.4. Let f(z),c,,c, satisfy the conditions
in Theorem 1.3, If f(z) has at most finitely many
poles b; satisfying

f (b +k, +k,C,) =0,00(ky =0,+1,d =1,2),

then g,(z) has infinitely many zeros, and
/1(92):5(92):‘7-
In particular, if f(z) has at most finitely many zeros
z;,z; suchthat z;, -z =c,c,, then
2 - - -
Gz(z):gz(z)/f (z) has also infinitely many zeros,
and
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A(G,)=0(G,)=0.

It is not difficult to understand that g(z) defined by
(1.2) is more general difference polynomials than Af (z)
or A°f(z) and Theorem 1.3 extends Theorem 1.1.
Therefore, we pose naturally one question whether more
general difference polynomials than g,(z) defined by
(1.3) has also infinitely many zeros. In this paper, we
focus on research a certain homogeneous difference
polynomials and affirm to answer this problem.

Theorem 1.5. Suppose that k is a positive integer,
k>1.Let f(z) beafunction transcendental and mero-
morphic of growth order o (f)=0 <1, and there exists
k complex numbers c; e C\{0} j=1,2,---,k such that

Kk
D.c;#0.If f(z) has at most finitely many poles b
=1

satisfying
f (o +he +1,¢, ++++1,6, ) =0,,
l, =0,4#1,d =1,2,---,k.

k
Then H,(f)= Hf(z+c) f*(z) has infinitely
many zeros, and /I(H )=o(H)=0.
In particular, if f( ) has at most finitely many zeros
Z;,1, satlsfylng z,—12,=C,Cy,--,C,, then
v (f)=H (z) has also infinitely many zeros,
O .

(f )/fk
and ﬂ((//k)—a v )=
2. Lemmas

Lemma 2.1. (see [7]) Let f be a function transcendental
and meromorphic in the plane of growth order less than 1,
and h>0. Then there exists an ¢—set E such that

f(z+c)-f(z)=cf'(z)(1+0(1)), (2.1)

as z—,2eC\E, uniformly in ¢ for |c|<h.

Lemma 2.2. (see [7]) Let f(z) be a function tran-
scendental and meromorphic in the plane of lower order
u(f)=pu<1. Then there exists arbitrarily large R with
the following properties. First,

T(32R, f')<R*. 2.2)
Second, there exists a set J, c[R/2,R] of linear

measure m(Jg)= R—-[l 0(1)]R/2, such that for
Jr
relg,
f(z+1)-f(z2)~ f'(2) (2.3)
on |z|=r.
Lemma 2.3. Let f(z) be a function transcendental
and meromorphic in the plane with growth order

k
o(f)=0<1. Supposed that »'c; = 0. If the homoge-

=1
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neous difference polynomials
Kk
He () =TT (z+¢;)-f*(2).
j=1

or quotient of difference polynomials

l//k /f

is rational functions, then f(z) has at most finite many
poles.

Proof. Without loss of generality, we assume that ¢; =
1. Because that the homogeneous difference polynomials
H,(f) is rational, there exists a rational functions
R(z) such that

H (f)= ﬁf(z+c)

j=1

f“(2)=R(z). (24)

Set

B ={bj = xj +iyj|R(bj) =00, j=1.2,--,s},

and
M = max{|xj|+|yj|+1+zk:|cj|:1s j gs}.
=1

So there exists no poles of R(z) in the domain
D, ={z:Rez>M},
D, ={z:Rez<-M},
D,={z:Imz>M}

and
D,={z:Imz<-M}.

Now we complete the proof of the conclusion that f (z)
has at most finite.

Now we complete the proof of the conclusion that
f(z) has at most finite many poles. Suppose not, there
exists one domain D;, for example Dy, in which f(z)
has infinitely many poles. We assume that the set
A:{zj consists of all poles of f(z)in D; and
M <|z[<|z,|<--- and divide it into two cases:

Case 1. There exists z, € A, such that for an arbitrary
b; € B, there does not exist m;,m,,---,m, € N such that

k
b, =z, +m +> mc, , that is, for an arbitrary

r=2

k
m.eN, we have b, #z,+m +> mc, . In
r=2
fact, since Reb; <M and Rez, > M, this case appears
whenever Rec; >0 for every i=23,---,k. Therefore,

m,m,,--,

Kk

we know R(zd +m +Zmrch #oo and that there ex-
r=2

ists a unbounded subsequence set

A ={zy+m +m,C, +---+mc,}, inwhichevery
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Kk
Zy+m +Y.mec,
r=2

that there are at least one in these signs m;,m,,---,m,,
which takes every positive integer, for instance, m; takes
every positive integer.

Thus, A(f)=1, which contradicts the hypothesis of
Lemma 2.3.

Case 2. There exists b, € B, such that for every
Z; € A, there exists mjl,mjz, --,my € N, such that
by =2 { My +Mj,C, +--+ M. From Re(z;)>M and

Kk

is the poles of f (z). Hence we know

Re(by) <M, we have that » m, Rec, <0. As the set
r=2

A is infinite and B has only a finite elementary, there
exists b, € B, satisfying

k
=27,+My + ). M,C, = (25)

2rr

by =2 +m11+2mlr :
r=2 r=2

k
By putting {zj +mjl+2mjrc,} in order again, we

r=2
have the following express

my<mg,,, =32,k j=12,--,
and
k
Zj+1:Zj+( i J+11)+Z( J+1r)cr
r=2
j:1121'“|
where
0>my, -m, >m, —m;, .,r K =12,
Now set
Zgjj...s = 21+(m11_m31+i)+(m12 —-m,, + j)C2 +

+(my —my +s)c,,

where
i:0,1,21"':(m11_m21)_(m11_m31)
j=012,,(my, —m,)—(m, -my, )
520’1’2!""(m1k_m2k)_(mlk_m3k)'

Since Re(zgjij,,,S are between Re(z,) and Re(z,),

Im(z;; ) are between Im(z,) and Im(z,), we
know that zy;., D, , that s, sz3ij--~s)¢ . From

f(z5) =, R(z5.,)# %, and (2.4), we know that one
of Zyg.01Zg01.0:0c+» aNd Zgy o is the pole of f(z). If

Z310..0 1S the pole of f(z), then from the some argu-
ment above we have one of z,,, ,,Zy, o.-,and z, 4

is also the pole of f(z).If zy,., isthepoleof f(z),

then one of g, 4, 2Z50,.0.:+, @nd Z,,, , is also the pole
of f(z).On the analogy of this, it is not difficult to find
there exists at least one of i, j,---,s, for instance, we
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assume that is j, such that j takes all value of

0,1,2,--,(my, —my)—(m, -m,). From z, to z;, z
to z,,and z, to z,,,repeating above proceeding, we
have
Znj.s = Zna +(mn—1,1 —My + i)+(mn—l,r —m,, )Cr o
+(mn—1k _mnk)ck1n =23,
where
i=012--,m_,, —my
j = 0!1! 2! .

'vmn—l,z —-m,,

$s=012,--m_, —m,.

Therefore, we can see that there exist infinite many
polesof f(z) whose expressions are as follows

=My +i)+(m, —m, +j)c, +--

+(my —m, +s)c,n=2.3,;--,

Zois = 2y +(Myy

nij---s

where
i=012,-,m,—-m,
j =0,1,2,-~~,mn'2 —my,

§=0,12,--,m , —my.

in which we can find that one of i, j,---,s takes every
positive integer. Thus, A(f), which still contradict the
hypothesis on the growth order of f(z) in Lemma 2.3.

By the similar method to above, it is easy to prove that
f (z) has at most finite many poles whenever quotient
of difference polynomials

'/’k /f

is rational functions. O
Lemma 2.4. Let f(z) be a function transcendental
and meromorphic in the plane with growth order

o(f)=0<1. Supposed that Z c; # 0, then the ho-

j=1"1i
mogeneous difference polynomials
k
H(f)=TTf(z+¢;)-*(2)
j=1

and

)/t ()
also are transcendental.
Proof. Suppose first that there exists a rational func-
tion R(z), such that
k
Ho(f)=T]f(z+c;)-f*(z2)=R(z)  (26)

j=1

By Lemma 2.3, f(z) has at most finite many poles.

APM



102 Q.LU, Q. L. LIAO

Again from Lemma 2.1, there exists &—setE such that
as z—>o(zeC\E), we have

f(z+c;)-f(z)=c;f'(z)(1+0(1)),j =12,

It follows that from (2.6) and (2.7)
(e (1) 1+0l0)
¢, (1/(2))" (1 (2) (2 +0(1))

k (2.7)

+...+l§kcj (f (z))k—1(1+o(1))}= R(z)

(2.8)

We write d(z) for a polynomial formed by the pole
of f(z), and fy(z)=f(z)d(z). So fy(z) is an en-
tire function, and o (f,)=o(f)=0 <1. With the stan-
dard result in the Wiman-Valiron Theory, we know that
there exists a subset F (1, +oo) with finite logarithmic

dr . . -
measure j—<+oo, in which for an sufficiently large
r

F
reF,|f(z)|=M(r, f,).|7|=r, the following equality

holds
fy (z) _o(r)
fo(z) :_(1+O(1))
Thus,
f'(z) _f/'(z) d'(z) _o(r)
) Lo d@ 2 00 @9
where v(r)/z—o, and v(r)—>o, as z—>o. Set

F ={|z]:z<E}. Since E is &-set, we have that F;
also is of finite logarithmic measure. Therefore, for all z,
|z|¢[0,]]UFUF,, and

|fo(z)| =M (r’ fo)'
we immediately deduce that from (2.8) and (2.9)

S 3 (fe) ] o)

M=11< << iy <k \ t=L

R(z)d"
RS 1)
W 10) o)
Since o(f,)=0o<1 and f, istranscendental, there
exists a sequence |r ¢[0,1JUF UFr, — 0, such that for
arbitrary & >0, we have that

exp (k™ ) < M (r,, f,) <exp(k7**)

U(r)/z —>O,U(r) -

Then, we induce that from (2.4) and (2.11)

(2.10)

(2.11)

0(z > ). (2.12)

Copyright © 2013 SciRes.

k
r (1+0(1)) ‘R (2) Z‘ r (1+0o(1))
<
exp(kr‘”g) M(r,, f ) exp(krn"‘g)
Therefore, from (2.12) and (2.13) we have

R(z)d*z

M (r, fy)
By (2.10), (2.12), and (2.14), we deduce easily that
C, +¢, +---+C¢, =0, which contradicts the assumption on
G, +Cy+--+C, %0, thatis, H,(f(z)) transcendental.
Lemma 25. Let f(z) be a function transcendental

and meromorphic in the plane, whose growth orde
o(f)=0c<1. Supposed that a,,,-,a, €C\{0}, and

A(Yf)=A(Yf). Then
max{/I( ), A(a, (f')"

Proof. For f(z) of growth order o(f)=0<1,
from Hadamard’s factorization theorem we have

f(z)=p(2)a(2).
(2)=pn(2)a(z)

where p(z)(p,(z)) and q(z)(a,(z)) are respectively
the canonical product of zeros and poles of

f(z)(f'(z)), satisfying
(p(2).a(2))=
From (2.15), we have
o(1)=max(o(pi(2)).o(a(2)))
=max(2(f'(2)),4(Y/ f'(2))) =

Therefore, if A(f') <o, we deduce that

. (2.13)

—0(r, > ) (2.14)

+a, () +---+akfk‘1}=a

(2.15)

1(( pl(z)’ql(z)):]') :

A(Yf")=0c.For A(1/f)=A(1f), the following equa-
tions hold
AU =AY F)=2(Yf)=A(f)=0 (2.16)
We have that from A(f')<o and (2.16)
o(p)=o(p)=0c(f),
o(@)=ol@)<o(n) 7

If z, is a poles of f(z
z, must be a poles of f'(z)

so that we denote q,(z) by q(z)d(z), thatis,
a(z)d

6 (2z)= (2), (2.18)

where d(z) is a canonical product of distinct poles of
d(z). By (2.16), we obtain that

) with multiplicity m, then
z) with multiplicity m+1,

z

o(d)=A(d)=A(f)=0(f)=0. (2.19)

From (2.15) and (2.18), we deduce that
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k-1

al(f,) +a2(f’)k_2 f1+...+akfk‘l
a,(p) " +a,(p) " (pd) +--+a, (pd) " (220)
S '

Thus, if 7o is the pole of f'(z) (thatis, q,(z,)=0),
then d(z,)=0, p(z,)=0,0, but p,(z,)=0,0. Hence,
we have that z, is not the zero of

a(f) " +a,(f) 7" f+ta

So that
(a(p) " +a, (py) " (pd) +---+a (pd) " 0/ ) =1,
and

Aa (1) ey ()7 freta 1)

This completes the proof of Lemma 2.5. O

3. Proofs of Theorem 1.5

From Lemma 2.2 we see that there exists a sufficiently
large R, a positive number o, (o <o, <1) such that

T(32R, f') <R (2.21)

and there exists a set J, <[R/2,R] with linear meas-
ure (1-0(1))R/2, such that for any reJg,[z|=r, we
have the following equation

H (1) =TT (2+6)- F*(2)=F (2)(1+0(), 2:22)
where F (zl)_1 satisfies the following express,
F(z)=1'(2)4(2).
nere g(2)=3 Y 0, (1)1

m=11< j<jp <<k
On the other hand, under the condition of Theorem 1.5
and from Lemma 2.4 we know H, (f) transcendental.
Suppose that ¢ —set E concludes all of zeros and
poles of H, (f),f(z),f(z+c),--, f(z+¢c,) , and
f'(z). Setting

ER:{r:reE,|z|=r<R},

(2.23)

E,={rireE|z=r<ow}.

Since the property of £—set and o, <1, we have
that E_, is with finite logarithmic measure, and E;
has linear measure o(1)R/2 for sufficiently large R.

We assume that F; is a set, such that

Copyright © 2013 SciRes.

F :{r;re[g,R]n(r, f):n[r—jzk_‘1|cj|. f]} (224)

Noting that there exists o(R) many points
a, e[g,R} at most from (2.22), at which n(t, f) is

not continuous, and also forany re[R/2,R],
r e[q“q' +Z?:l|cj H holds for some | whenever

n(r, f)>n(r—ZE:1|cj|, f). Therefore, F, has linear
measure

m(Fy)>(1-0(1)R/2), (2.25)

From (2.23)-(2.25), we know that there exists
reF,NJg\E; suchthat H (f), f(z), f(z+cj),
j=12,--k, and f'(z) have no zeros and poles on
the circle |z|=r . Therefore,

H(2)-F(2) <[o()F (2) <[F (2)].

Applying Rouché’s Theorem to H, (f) and F(z),
we obtain the following equation

n(r,ﬁJ: n(r,éj—n(r, F)+n(r,H (f)). (@27

Without loss of generality, we may assume that

Kk
f[20+2|j0j]¢0,00(|j =0,41j =1,2,---,k)
j=1

for all poles z, of f(z). From the assumption in
Theorem 1.3, we know that there exists positive number
r, >0, which does not depend on R and r, such that if
z, isapoleof f(z) with multiplicity n,
k
r <|zo| < r—zj:1|cj|,

then by the expression of H, (f) and Hk(f(z—cj)),
k
Hk(f(z—cj))zéf(prc[—cj)—fk(z—c].)

we see that zo, z,—c;(j=12,--,k) are respectively
the pole of H, (f) with multiplicity kn,n. Therefore,
we deduce that

n(r,H,(f))=2kn(r, f)+0(1).

(2.26)

(2.28)

Since the pole zo of F(z) has multiplicity k(n+1),
we have the following equality

n(r,F)=k(n(r, f)+a(r,f)). (2.29)
And obviously,
1 1 1
n(r,E]:n(r,TjJrn(r,m} (2.30)
APM
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Substituting (2.28), (2.30) into (2.27), we obtain

(Hlmj(fi“ﬁj

+k[n(r, £)-m(r, £)]+0(1),
If Z(%}<ﬂ[%} then n(r, f)=o(n(r, f)). Thus,

we have that by (2.31)

n(r,Hkl(f)JZn(r,%}rn(r,f)+O(1), (232)
H, (1) =o(H, (1))=a(1).

If Z[—] =1 % , we have that from (2.31)

{estefetlighon e

By Lemma 2.5 and (2.33), we deduce that

A(H () =o(He (1)) =o(f).

In particular, if z, is the zero of

vi(f)=H (F)/t(2).
then z, is, also the zero of H, (f). On the other hand, if
z, is the zero of H,(f), but not the zero of w, (f),
then z; must be the zero of f(z), thatis, f (zl +C ) =0
for some j. From the assumption in Theorem 1.5 that
f (z) has at most finitely many zeros z,,z, satisfying
Z; -7,=0C;,Cy, -+,C,, We have

sttt

Therefore, A(y (f))=c(w(f))=0(f).

(2.31)

Copyright © 2013 SciRes.
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