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ABSTRACT 
This paper studies the integration of the control system and entertainment on board of train wagons. Both the control 
and entertainment loads are implemented on top of Gigabit Ethernet, each with a dedicated controller/server. The con- 
trol load has mixed sampling periods. It is proven that this system can tolerate the failure of one controller in one wagon. 
In a two wagon scenario, fault tolerance at the controller level is studied, and simulation results show that the system 
can tolerate the failure of 3 controllers. The system is successful in meeting the packet end-to-end delay with zero 
packet loss in all OPNET simulated scenarios. The maximum permissible entertainment load is determined for the fault 
tolerant scenarios. 
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1. Introduction 
Networked Control Systems (NCS) is a rapidly expand- 
ing field, with many applications, from industrial auto- 
mation to intelligent transportation systems [1-6]. The 
origins of NCS can be traced back to CAN, PROFIBUS 
and PROFINET; however Ethernet has spread rapidly in 
the past few decades, introducing non-deterministic pro- 
tocols to the world of NCS [7-9]. Ethernet is a non-de- 
terministic protocol, with several sources of randomness 
due to the use of Carrier Sense Multiple Access with 
Collision Detection (CSMA/CD) [10]. Such probabilistic 
nature is undesirable in real-time NCS implementations 
until certain modifications were made in order to ac- 
commodate real-time applications. Packet formats were 
modified in order to give certain messages priority over 
others [11,12]. Other modifications can be found imple- 
mented by Rockwell Automation, the ODVA, EtherNet/ 
IP, CIP, TT Ethernet and FTT Ethernet. Some of these 
solutions are in course of standardization [13-19]. One 
famous form of NCS exists in terrestrial transportation 
systems and studies on the subject are numerous and ex- 
tensive [1,2,20,21]. Recent studies have researched a 
specific implementation that utilizes the Ethernet proto- 
col (IEEE 802.3) in trains [22-28]. 

Entertainment is now common in most forms of 
transportation ranging from terrestrial transportation sys- 
tems to sea and air travel. The existence of an entertain- 
ment load alongside the control network on the same 
infrastructure may introduce an increased level of traffic 

congestion. Such a concept was tested in previous studies 
and it was shown that the control network performed 
within required deadlines [22,23]. 

Another growing trend in NCS is the incorporation of 
Fault Tolerance. Reference [3] studied the use of Fast 
and Gigabit Ethernet in advanced networked control sys- 
tems. It was proven that the use of redundant control 
nodes minimizes down-time. Reference [29] investigated 
the effect of failures on the productivity of fault-tolerant 
networked control systems under varying loads. Refer- 
ence [30] studied the availability of the Pyramid archi- 
tecture in the context of Networked Control Systems. 
Reference [31] also studied the Mean Time to Failure 
(MTTF) of a fault-tolerant two-machine production line 
in the context of Networked Control Systems (NCS). 
More details about fault-tolerance in NCS can be found 
in [32]. 

This paper presents a study of a train control network 
utilizing the Ethernet protocol without modifications. It 
includes all previously mentioned issues namely the use 
of unmodified protocol communicating both real-time 
(control) and non-real-time applications (entertainment). 
It also incorporates fault-tolerance aspects. The study 
consists of several OPNET Network Modeler [33] simu- 
lations which model two train wagons for control and 
entertainment loads. The main contribution of this paper 
is that the control load proposed is more realistic, con- 
sisting of a mixture of different sampling periods for 
sensors and actuators (SA) [27]. The entertainment load 
is comprised of video streaming and bounded WiFi ac- 

http://dx.doi.org/10.4236/jtts.2013.31010


T. K. REFAAT  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JTTs 

106 

cess to the Internet. The proposed design also incorpo- 
rates a fault-tolerance study at the controller level. It will 
be shown that the simulated model is successful in both 
the fault-free and fault-tolerant scenarios. 

The rest of this paper is organized as follows. Section 
2 gives a recap of previous work on train control net- 
works. Section 3 will introduce the newly proposed 
model. Section 4 presents the simulated scenarios and 
shows the results. Section 5 concludes this paper. 

2. Previous Work 
There have been several research studies modeling train 
networks such as LonWorks and Train Control Networks 
(TCN) [25-28,34]. Recent studies have modeled train 
wagons using Switched Ethernet [22-24,35]. The re- 
search revolved around the feasibility of a single network 
carrying both control and entertainment, fault-tolerance 
on the controller level and sensor level.  

Reference [22] tested the performance of a single 
Ethernet infrastructure supporting both a control and an 
entertainment system in train wagons. Using OPNET, 
several scenarios with different settings were simulated. 
SAs were set up to use a unified sampling period across 
the model. Depending on the scenario, some were simu- 
lated using a sampling period of 1ms and others using 
16ms, each simulated independently. The results of the 
study guaranteed that the packet end-to-end delay is al- 
ways within constraints of the maximum allowable delay. 

Reference [23] successfully introduced fault-tolerance 
at the controller level to the system proposed by [22]. A 
follow-up study introduced fault-tolerance at the sensor 
level using Triple Modular Redundancy (TMR), a con- 
cept described in [36,37], achieving successful results 
[35]. 

3. Proposed Model 
The proposed model utilizes a 1 Gigabit Ethernet infra- 
structure without modifications based on the IEEE 802.3 
standard for the whole network and follows the regula- 
tions described in the IEC 61375 [27]. Several sampling 
periods were mentioned in the standard, concerning the 
SAs, however the most common values were 1ms (the 
smallest sampling period) and 16 ms. References [22,23] 
studied these values independently. However, the cur- 
rently proposed model incorporates both sampling peri- 
ods in a single control network, representing the different 
possible applications of SAs. A typical number of SAs 
on a single train wagon is around 250 with sampling pe- 
riods 1ms (minority) and 16 ms (majority) [27]. These 
will be broken down into 3 groups. Group 1 (G1) con- 
sists of 30 sensors and 30 actuators (1:1 ratio) operating 
with the most demanding sampling period of 1ms. Group 
2 (G2) consists of 100 sensors and 50 actuators (2:1 ratio) 

operating at 16ms sampling period. Finally, Group 3 (G3) 
also operating at 16ms sampling period, consists of 30 
sensors and 10 actuators (3:1 ratio). The distribution is 
illustrated in Figure 1. This design minimizes the num- 
ber of switches, using standard 128 port switches, readily 
available in the market. Also note that the locations of 
the SAs have been chosen to increase the distance be- 
tween the switches and the controller, maximizing the 
trip distance to simulate a worst case scenario. The main 
switch (labeled MS1) utilizes a forwarding rate of 6.6 
Mbps, which is much lower than rates available in mod- 
els such as the Cisco Catalyst 3560 Gigabit Ethernet 
switches [38]. 

The entertainment load in the train model can be de- 
scribed in terms of the number of streams, the quality of 
the video screens as well as the number of WiFi nodes 
and the number of applications per node. The worst case 
scenario, in a large wagon of 60 seats [25], supports 60 
different and simultaneously playing DVD quality video 
streams (one per seat) [39], as well as one WiFi user per 
seat. Each WiFi user runs several simultaneous applica- 
tions: Database access, email sending/receiving, web 
browsing and file transfer. This gives a total of 60 Video 
streams and 60 WiFi users, each running 4 simultaneous 
applications requiring access to the network. These WiFi 
applications are simulated using the generic built-in 
heavy load applications of OPNET. This WiFi load re- 
quires a maximum bandwidth of 6Mbps and therefore 
only 6Mbps are allocated for the WiFi traffic. The WiFi 
access is provided via the Access Point (AP) in the mid- 
dle of the wagon, maximizing coverage area. Lastly, the 
model has 2 dedicated controllers per wagon. The exis- 
tence of two controllers allows the incorporation of fault- 
tolerance at the controller level as explained next. Wagon 
1 has K1 and E1, where K1 is a controller, handling the 
control load only, and E1 is the entertainment server. The 
same is true for Wagon 2. 

Each controller can readily take over in the case of 
failure of the other. This is achieved by having sensors 
send the sampled data at every sampling instant to all 
available controllers. Should any given controller have to 
take over for a failed controller, it must have the most 
updated sampled data in order to achieve zero packet loss. 
All simulations are modeled using OPNET. 

4. Simulated Scenarios and Results 
The proposed model is used to form 2 main tests, each 
broken down into 2 scenarios. 

4.1. Simulated Scenarios 
The first set of simulations is performed for a single 
wagon model with 60 video streams and 60 WiFi users. 
The first scenario simulates the fault-free case, where     
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Figure 1. Two-wagon overview. 

 
both controllers are fully functional; K1 handling all con- 
trol data and E1 handling the entertainment load. In the 
second scenario (fault-tolerant), one of the two control- 
lers is off, simulating a failure. Both control and enter- 
tainment loads are handled by the remaining controller. 
Then an attempt is made to maximize the number of 
video streams and WiFi users without jeopardizing the 
control load. 

The second set of simulations takes the model a step 
further, concatenating two identical wagons and hard- 
wiring the main switch of each wagon to the other. 
Modifications are made such that all sensors will send 
their data to all 4 controllers rather than merely the two 
on their corresponding wagons. Other communication 
techniques can be found in [40]. The total number of 
video streams and WiFi users is now double. Again, the 
first scenario simulates the fault-free case, where all 4 
controllers are fully functional. The next scenario (fault- 
tolerant) models an extreme case, where 3 of the 4 con- 
trollers have failed, and now only 1 controller has to 
carry the control and entertainment load of both wagons. 
The goal again is to maximize the number of video 
streams and WiFi users, without the control load suffering. 

4.2. Simulated Results 
In order to gauge the performance of the system, end- 
to-end delay and packet loss must be monitored. In all 
simulations, zero packet loss (no packets dropped or de- 
layed) is observed and total end-to-end delays across all 
SAs are within their respective constraints [41]. A 95% 
confidence analysis is applied to all results. Figures 2-5 
show examples of results from different scenarios. In all 
figures, the x-axis represents the simulation time in min- 
utes and seconds, while the y-axis shows the delay in 
seconds. The figures show delay measured at an actuator 

from one of the three groups (as indicated in the caption: 
e.g., G1). These delays represent the time taken for a 
packet to travel from the K to the A, and in cases like 
Figures 3 and 4 the packet delays oscillate between sev- 
eral values, depending on the level of network congestion 
faced. 

With all video streams at DVD quality and all WiFi 
users running the full load of applications described in 
Section 3, the maximum total end-to-end delay (with a 
95% confidence) for each group of SAs is shown in Ta- 
ble 1. The maximum number of streams and WiFi users 
to be supported in each simulated scenario are shown in 
Table 2. These results guarantee that all SAs operating 
with a sampling period of 1ms have an end-to-end delay 
of less than 1ms, and those operating at 16 ms have an 
end-to-end delay of less than 16 ms (with 95% confi- 
dence). It is important to note that the overhead incurred 
on the network by the WiFi nodes is negligible in com- 
parison to the control and the video streaming loads. As 
this load is extremely small, no matter what state the 
network is in, the WiFi network would be unaffected (as 
can be seen in Table 2). This can also be attributed to the 
fact that the bandwidth allotted to the WiFi users is 
bounded/restricted to 6 Mbps. 

5. Conclusion 
Ethernet implementation for Networked Control Systems 
(NCS) is a growing field. Train networks utilizing 
Ethernet have been previously studied, carrying both an 
entertainment load and a control load on a single network. 
This paper studied a fault-tolerant train NCS utilizing 
Switched Ethernet without modifications, with an enter- 
tainment load of video streams and WiFi access. The 
model was successfully simulated, showing correct 
packet transmission and reception, with zero losses in    
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Figure 2. Two wagon fault free scenario (G1). 

 

 
Figure 3. Two wagons fault tolerant scenario (G1). 
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Figure 4. Two wagons fault tolerant scenario (G2). 

 

 
Figure 5. Two wagons fault free scenario (G3).        
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Table 1. Total end-to-end delay (ms) per group. 

Wagons Operational Ks G1 G2 G3 

1 2 0.010 0.011 0.011 

1 1 0.751 0.870 0.876 

2 4 0.016 0.013 0.026 

2 1 0.772 0.908 0.922 

 
Table 2. Entertainment load per scenario. 

Wagons Operational Ks Video Streams WiFi Users 

1 2 60 60 

1 1 6 60 

2 4 120 60 

2 1 6 60 

 
control data. Both the single wagon and the two-wagon 
model were simulated, in fault-free and faulty scenarios 
showing zero packet loss and delays within the con- 
straints of the sampling periods of the control network. 
However, when a load increases on a single controller 
due to a failure, the maximum number of supported 
streams, is reduced. This does not reduce the number of 
passengers with a capability of watching a video; it 
merely limits the number of possible simultaneously 
playing videos at any given time. 
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