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ABSTRACT 

In this paper, the Galerkin projection method is used for solving the semi Sylvester equation. Firstly the semi Sylvester 
equation is reduced to the multiple linear systems. To apply the Galerkin projection method, some propositions are pre-
sented. The presented scheme is compared with the -GL-LSQR algorithm in point of view CPU-time and iteration 
number. Finally, some numerical experiments are presented to show that the efficiency of the new scheme. 


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1. Introduction 

We want to solve, using Galerkin projection method, the 
following semi Sylvester equation 

,X X A E B C              (1) 
where A, E, B and C are , , n n n n m m  and 

 matrices, respectively, and the unknown matrix n m
X  is . Equation (1) has a unique solution if and 

only if 
n m

, A C  and  are regular matrix pairs 
with disjoint spectra, which will be assumed throughout 
this paper. 

 ,TB I 

The semi Sylvester equations appear frequently in 
many areas of applied mathematics. We refer the reader 
to the elegant survey by Bhatia and Rosenthal [1] and 
references therein for a history of the equation and many 
interesting and important theoretical results. The semi 
Sylvester equations are important in a number of appli- 
cations such as matrix eigen-decompositions [2,3], con- 
trol theory [4,5], model reduction [6-8], numerical solu- 
tion of matrix differential Riccati equations, and many 
more. 

When the sizes of the coefficient matrices A and B are 
small, the popular and widely used numerical method is 
the Hessenberg-Schur algorithm [9]. For large and sparse 
matrices A and B, iterative schemes to solve the semi 
Sylvester equations such as those based on the matrix 
sign function or the Newton method are widely used 
[10-12]. During the last years, several projection methods 
based on Krylov subspace methods have also been 
proposed, see, e.g., [13-15] and the references therein. 
The main idea developed in these methods is to con- 
struct suitable bases of the Krylov subspace and projects 
the large problem into a smaller one. Naturally, a direct 

method such the one developed in [16] is used to solve 
the projected problem. The final step in the projection 
process consists in recovering the solution of the original 
problem from the solution of the smaller problem. 

The semi Sylvesters Equation (1), in the special case, 
can be reduced to the following multiple linear systeam 

            1,2, , .i i iA x b i   n       (2) 

In [17], Ton F. Chan and Michael K. Ng presented the 
Galerkin projection method for solving linear systems (2). 
In this paper, we convert the semi Sylvester Equation (1) 
to the multiple linear system. We present some pro- 
positions for applying the Galerkin projection method to 
solve the reduced semi Sylvester equation. For showing 
the efficiency of the new scheme, in point of view CPU- 
time and iteration number, we compare the new scheme 
with the -GL-LSQR algorithm [18]. Note that the 
semi Sylvester Equation (1) is converted to standard 
Sylvester equation, when E be a identity matrix I. 



The remainder of the paper is organized as follows. 
Section 2 is devoted to a short review of the Galerkin 
projection method. In Section 3, we show that how to 
apply the Galerkin projection method for solving the 
semi Sylvester Equation (1). Some numerical experi- 
ments and comparing the new scheme with the -GL- 
LSQR algorithm, is devoted in Section 4. Finally, we 
make some concluding remarks in Section 5.  



2. The Short Summary of Galerkin 
Projection Method 

In this section, we consider using conjugate gradient (CG) 
methods for solving multiple linear systems  
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     i i iA x b
 i

, for 1 , where the coefficient ma- 
trices 

i s 
A  and the right-hand side  are different in 

general. In particular, we focus on the seed projection 
method which generates a Krylov subspace from a set of 
direction vectors obtained by solving one of the systems, 
called the seed system, by the CG method and then 
projects the residuals of other systems onto the generated 
Krylov subspace to get the approximate solutions. The 
whole process is repeated until all the systems are solved. 
CG methods can be seen as iterative solution methods to 
solve a linear system of equations by minimizing an 
associated quadratic functional. For simplicity, we let 

 ib

      T
T1

,
2

i i
if x x A x b  x          (3) 

be the associated quadratic functional of the linear sy- 
stem      i i iA x b . The minimizer of jf  is the solution 
of the linear system      i i iA x b . The idea of the 
projection method is that for each restart, a seed system 

     k k kA x b

 ˆ

 is selected from the unsolved ones which 
are then solved by the CG method. An approximate 
solution jx  of the nonseed system      j j jA x b

k
ip

 can 
be obtained by using search direction  generated 
from the ith iteration of the seed system. More precisely, 
given the ith iterate j

ix  of the nonseed system and the 
direction vector , the approximate solution k

ip  ˆ jx  is 
found by solving the following minimization problem 

 .min
j k

j i i f x p


            (4) 

It is easy to check that the minimizer of (4) is attained 
at 

 ˆ ,j j k
i ix x p              (5) 

where 

 
   

   
T

T
     and     .

k j
i i j jj j

i
jk k

i i

p r
r b A x

p A p
   i   (6) 

After the seed system      k k kA x b

 j k
i

 is solved to the 
desired accuracy, a new seed system is selected and the 
whole procedure is repeated. We note from (6) that the 
matrix-vector multiplication A p

 j k
i

 is required for each 
projection of the nonseed iteration. In general, the 
matrix-vector multiplication A p  cannot be com- 
puted cheaply. The cost of the method will be expensive 
in the general case where the matrices  jA  and  kA  
are different. 

In order to reduce the extra cost in projection method 
in the general case, we propose using the modified qua- 
dratic function jf , 

      1
,

2

T
k iT

if x x A x b  x  

to compute the approximate solution of the nonseed 

system. Note that we have used  kA  instead of  jA  
in the above definition. In this case, we determine the 
next iterate of the nonseed system by solving the fol- 
lowing minimization problem: 

 .min
j k

j i i f x p


           (7) 

The approximate solution  ˆ jx  of the nonseed system 
     j j jA x b  is given by 

ˆ ,j j
i

k
ix x p              (8) 

where 

 
   

   
T

T
   and    .

k j
i i j kj j

i i
kk k

i i

p r
r b A x

p A p
      (9) 

Now the projection process does not require the 
matrix-vector product involving the coefficient matrix 

 jA  of the nonseed system. Therefore, the method does 
not increase the dominant cost (matrix-vector multiplies) 
of each CG iteration. Of course, unless  jA  is close to 

 kA  in some sense, we do not expect this method to 
work well because jf  is then far from the current jf . 
So we have the following algorithm. 

Algorithm 1 [17]: Preconditioned version of Pro- 
jection Method 
1.  Set for 1, ,k s   until all the systems are solved 
2.  Select the kth system as seed. 
3.   For 10,1,2, , ki m  

, 1,j k k
 CG iteration,   

4.     For , s    unsolved systems 
5.       If j k  then perform usual CG steps  

6.              , , , , ,
1 1

T Tk k k k k k k k k k
i i i i iz r z z    

7.           , , ,
1

k k k k k k k k
i i i ip z p   ,

8.              T T, , , , kk k k k k k k k k k
i i i i iz r p A p  ,

,

  

9.         , , ,
1

k k k k k k k k
i i i ix x p     

10.            , , ,
1

kk k k k k k k k
i i i ir r A p   ,

11.            1
,
1    preconditioningk k k

i iz C r


   

12.       Else perform Galerkin projection 

13.              T T, , , , kk j k k k j k k k k
i i i i iz r p A p  ,

,

  

14.         , , ,
1

k j k j k j k k
i i i ix x p     

15.            , , ,
1

kk j k j k j k k
i i i ir r A p   ,

16.       end if 
17.     end for 
18.   end for 
19.  end for 

3. Solving the Semi Sylvester Equation 

In this section, we focus on numerical solution of the 
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semi Sylvester equations 

,X X A E B C             (10) 

where n nA  , , m mB  n nE  , n mC   and 
n mX   is the solution matrix. The semi Sylvester 

equation (10) has a unique solution if and only if  ,A C  
and  are regular matrix pairs with disjoint 
spectra. 

 T ,B I

Now we want to apply Galerkin projection methods 
for solving the semi Sylvester Equation (10). Let B be 
symmetric matrix then semi Sylvester Equation (10) can 
be reduced to the following multiple linear systeams 

      , 1, ,i i i ,A x b i s           (11) 

where  i n nA  ,   1i nb   and .   1i nx 
By using the Schur decomposition, there is a unitary 

matrix BQ  such that  
T ,B B BB Q Q             (12) 

where B  is diagonal matrix and it’s digonal com- 
ponents are the eigenvalues of . By substitution of (12) 
in (10), we have  

B

T ,B B BAX EXQ Q C    

.B B B BAXQ EXQ CQ  

ˆ

 

By taking BX XQ  and ˆ
BC CQ , we obtain the 

following multiple linear systems  

     ˆ ˆ ˆ , 1, ,i i i ,A x c i m             (13) 

where  ˆ iA ,  ˆ ix  and  are  ˆ ic  i A E , i-th column 
of the matrix X̂  and -th column of the matrix , 
respectively. 

i Ĉ

To use the Galerkin projection method for solving the 
multiple linear systeams (13), it is need the matrix 

 ˆ ,    1,2, ,iA i   m  to be symmetric positive definite. 
So the following propositons are presented and their 
proof are clear. 

Proposition 1: Let A and B are symmetric matrices 
and E is symmetric positive definite matrix and 

 
 

,
 ,      1, , ,

,j

x x
j s

x x
   

A

E
 

where j  be the eigenvalues of matrix . Then B  ˆ iA  
is symmetric positive difinite. 

Proposition 2: Let A, B and E be symmetric positive 
difinite matrices and symmetric positive semi-difinite  

matrix, respectively. Then   , 1, ,j j  A E s  are  

symmetric positive definite, where j  be the eigen- 
values of matrix . B

Note that the semi Sylvester Equation (1) is converted 
to standard Sylvester equation, when E be a identity 
matrix I. Now by using the assumptions of the above 
propositions, we can apply the previous algorithm to 

solve the semi Sylvester Equation (10). 

4. Numerical Experiments 

In this section, all the numerical experiments were com- 
puted in double precision with some MATLAB codes. 
For all the examples the initial guess 0X  was taken to 
be zero matrix. We apply the new scheme for solving the 
standard Sylvester equation. 

For obtaining the numerical solution of the Sylvester 
equation by using new scheme, we consider two ex- 
amples. At the first example the dense coefficient matrix 
is as the form  

 randint 500 , E I A  

where  randint m  is an  matrix of uniformly 
distributed random integers and 

m m
I  is an identity matrix. 

At the second example the coeffient matrix is 

1 1
tridiag 1 ,3, 1 ,

1 1

1 1
tridiag 1 ,4, 1

1 1

n n

n n

        
        

A

E

 

where  , ,tridiag a b c  is  tridiagonal ma- 
trix. In both examples the matrix B is symmetric tri- 
diagonal matrix with s size, as follows 

4000 4000

1 1
tridiag 1 ,5, 1 .

1 1s s
         

B  

Also the right-hand side matrix C in both examples is 
normalized random matrix. The -GL-LSQR algorithm 
and Galerkin projection method are stopped when the 
residual norms of the first and second examples are less 
than 10−7 and 10−6, respectively. 



In Table 1, we compare two -GL-LSQR algorithm 
and Galerkin projection method for the first test example. 
We show that Galerkin projection method is better than 

-GL-LSQR algorithm in point of view CPU-time and 
iteration number. In this table, (s)m is the sum of 
iterations when we apply the Galerkin projection method 
for solving s linear systems (2). In Table 2, we compare 
the -GL-LSQR algorithm and Galerkin projection 
method for the second test example. We find that the 

-GL-LSQR algorithm is better in point of veiw the 
iteration number and the new scheme is better in point of 
veiw the CPU-time. Finally, Figures 1 and 2 show that 
the efficientcy of the Galerkin projection method for 
solving the semi Sylvester equation. In both tables, the 
symbols cond and iter are the condition number of the 
coefficient matrix A and the iteration number of the 
methods, respectively. 









5. Conclusion 

We proposed a new scheme for solving the semi Syl-  
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Table 1. Numerical results of the new scheme and -GL- 
LSQR algorithm for the semi Sylvester equation with the 
first example. 



cond Error  iter CPU-time Method (n, s) 

1.2599e+006 1.7581e−008 2160 96.8445 GL-LSQR (500, 5)

1.2599e+006 4.4181e−008 (5)537 8.6389 Galerkin (500, 5)

 
Table 2. Numerical results of the new scheme and -GL- 
LSQR algorithm for the semi Sylvester equation with the 
second example. 



cond Error  iter CPU-time Method (n, s) 

4.9970 1.3837e−07 23 0.09578 GL-LSQR (4000, 4)

4.9970 5.0897e−007 (4)40 0.04339 Galerkin (4000, 4) 

 

 

Figure 1. Comparing the new scheme with the  -GL- 
LSQR algorithm with n = 500, s = 5. 
 

 

Figure 2. Comparing the new scheme with the  -GL- 
LSQR algorithm with n = 4000 s = 4. 
 
vester equation. By forcing some conditions on coeffi- 
cent matrices A, B and E, We converted the semi Syl- 
vester equation to s linear systems with different co- 
efficent matrices and right-hands. Then we applied the 

Galerkin projection method for obtaining the numerrical 
solution, and we showed the efficiency of the new 
scheme. In Table 1, was shown that when the condition 
number of the coefficient matrix A is to be large then the 
new scheme is better then the -GL-LSQR algorithm 
for solving the semi Sylvester equation. But in Table 2, 
the -GL-LSQR algorithm is better than new scheme 
in point of view iteration number for sparse and well- 
conditioned matrix A. 




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