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ABSTRACT 

It is shown that a novel anomaly associated with transverse Ward-Takahashi identity of axial vector current in QED is 
derived by using Fujikawa’s method in the path-integral formulation of quantum field theory. Also it is verified that 
there is no transverse anomaly for the vector current. 
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1. Introduction 

Some time ago Takahashi made the argument for the 
plausible existence of transverse Ward-Takahashi(WT) 
relation in canonical field theory, which has the potential 
to restrict the transverse vertex function from gauge 
symmetry alone [1]. Subsequently these transverse WT 
relations for the fermion-boson vertex in coordinate 
space (or in momentum space) are cast in four-dimen- 
sional Abelian gauge theory by computing the curl of the 
time ordered products of three-point Green functions 
[2,3]. In addition, the proposed transverse WT relation 
holds at one-loop order level in four dimensions gauge 
theory [4]. Up to the effect of quantum anomaly, the pos- 
sible anomaly for the transverse Ward-Takahashi rela- 
tions in four dimensional gauge theories is studies by He 
using the point-splitting method [5]. Recently, the anom- 
aly issue reexamined by means of perturbative method. 
The conclusion is that there are no transverse anomalies 
for both the axial vector and vector current [6]. Also the 
path-integral derivation of the transverse WT relation for 
the vector vertex and axial vector vertex is presented due 
to a set of infinitesimal transverse transformation of field 
variable in QED in Refs. [7,8], wherein Lie group prop- 
erty of the transverse transformation has been illustrated 
in Abelian gauge theory. Based on the validity of Fuji- 
kawa’s analysis, it seemed to us imperative to reevaluate 
in detail the transverse anomaly of the transverse WT 
identity for the axial-vector and vector vertex in the QED, 
which need to be specified. We have done so and find that 
a careful application of Fujikawa’s approach leads to a 
transverse quantum anomaly for the axial vector current. 

2. Calculation of Anomaly Factor in 
Ward-Takahashi Identity 

From the point of view of path-integral formulation, we 
proposed a infinitesimal transverse transformation of 
field variables to derive the WT identities [7,9]. Let us 
consider a set of infinitesimal local transformation in the 
QED 
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 xwhere   stands for the antisymmetry tensor,   
and  B x

e
  are the fermion and gauge fields, respec-

tively. Here we have suppressed the charge  pre-
scribed to define the variation of gauge field. 

In principle, the variation of the generating functional 
itself under the transformation of field variables Equation 
(2.1) can lead to a Ward-Takahashi type’s identities. The 
change of the function integral due to the transformation 
(choosing   0B x    for simplicity) gives the relation 
in momentum space in QED (in the simpler massless 
fermion) case [3]. 
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  

This WT relation for the vector current has been listed 
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in Ref. [9]. The integral term in Equation (2.2) may be 
called the integral-term involving the vertex function 

 with the internal momentum $k$ of the 

gauge boson appearing in the Wilson line [10]. The Fou-
rier transformation for vertex function  is 
defined as  1 2, ,A p p k

 1 2, ,A p p k
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where . 

Obviously, the full vector function and the full axial- 
vector function are coupled with each other. As shown is 
Ref. [3], the apparent feature of this transverse identity 
(2.2) is that the vertex function V



 

 (fermion’s three 
point function) has the transverse component of itself. 

Completely analogous to the calculations above, let us 

consider the other transverse transformation 
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The identity for the axial-vector current is rewritten in 
momentum space as, 
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According to Fujikawa’s interpretation, it is argued that 

the appearance of the quantum anomaly in WT identity is 
a symptom of the impossibility of defining a suitably 
invariant functional integral measure due to the relevant 
transformations on fermionic field variables. The regu-
larization procedure for the variations of the integral meas-

ure can provide access to a wider class of such anomaly 
objects [11-13]. To see how the change of the measure 
corresponding to the transverse transformation Equation 
(2.1) gives rise to a possible anomaly factor, let us con-
sider an Abelian gauge field to show our argument. The 
Lagrangian density for massive QED, which is of the form 
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where  and  denote, respectively, the charge and 
mass of the electron. In this case, the gauge field is just 
the photon field 
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 of integral measure due to 

the transformations Equation (2.1) is evaluated below 
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This is what we set out to calculate. 
Due to the transverse transformation (2.1), the anom-

aly functions can be written as the limit of a manifestly 
convergent integral 
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where  is the covariant derivative.      

In addition, the transformation of the field  B x
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 is 
a translation, so that its Jacobian is trivial. 

The anomaly function A x  requires regulation, 

which is achieved by inserting a regulator 
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The expression of the transverse vector anomaly func-
tion x  can be put in the regulating form A      
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  1JIn terms of the symmetry of metric and antisymmetry 

of 4-dimensional field strength tensor, we expand the 
anomaly function and find that it equals zero. Thus the 
Jacobian Equation (2.7) becomes 
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By the parallel procedure, for the case of the transfor-

mation Equation (2.4), the transverse axial vector anom-
aly function is given by 
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Obviously the Equations (2.11) is perfectly consistent 

with result of derivation of transverse vector U(1) ano- 
malies in four-dimensional gauge theory using pertur-
bative methods [5]. 

3. Concluding Remarks 

As already described, Fujikawa’s path-integral method 

provide a general regularization procedure handling the 
transverse anomaly factor associated with the WT iden-
tity. The calculation shows that there is a quantum 
anomaly associated with the transverse Ward-Takahashi 
relation for the axial vector current due to a set of infini-
tesimal transverse transformation of field variables in 
QED. 

Copyright © 2013 SciRes.                                                                                 JMP 



D. WANG, A. D. BAO 38 

4. Acknowledgements 

We would like to thank Professor H. X. He for useful 
help. 

REFERENCES 
[1] Y. Takahashi, “Point Spoitting Technique and Canonical 

Formalism,” In: F. Mancini, Ed., Quantum Field Theory, 
Elsevier Science Publishers, Amsterdam, 1986, p. 19. 

[2] K.-I. Kondo and Maris, “Spontaneous Chiral-Symmetry 
Breaking in Three-dimensional QED with a Chern- 
Simons Term,” Physical Review D, Vol. 52, No. 2, 1995, 
pp. 1212-1233. doi:10.1103/PhysRevD.52.1212 

[3] H. X. He, F. C. Khanna and Y. Takahashi, “Transverse 
Ward-Takahashi Identity for the Fermion-Boson Vertex 
in Gauge Theories,” Physical Review B, Vol. 480, No. 1-2, 
2000, pp. 222-228. doi:10.1016/S0370-2693(00)00353-1 

[4] M. R. Pennnington and R. Williams, “Checking the Tran-
verse Ward-Takahashi Relation at One-Loop Order in 
Four Dimensions,” Journal of Physics G: Nuclear and 
Particle Physics, Vol. 32, No. 11, 2006, p. 2219. 
doi:10.1088/0954-3899/32/11/014 

[5] H. X. He, “Quantum Anomaly on the Transverse Ward- 
Takahashi Relation for the Axial-Vector Vertex,” Physi-
cal Review B, Vol. 507, No. 1-4, 2001, pp. 351-355. 
doi:10.1016/S0370-2693(01)00430-0 

[6] W. S. Sun, H. S. Zong, X. S. Chen, et al., “A Note on 
Transverse Axial Vector and Vector Anomalies,” Physics 

Letters B, Vol. 569, No. 2, 2003, pp. 211-238. 
doi:10.1016/j.physletb.2003.07.033 

[7] A. D. Bao and S. S. Wu, “Various Full Green Functions 
in QED,” International Journal of Theoretical Physics, 
Vol. 46, No. 12, 2007, pp. 3093-3108. 
doi:10.1007/s10773-007-9423-1 

[8] A. D. Bao, H. B. Yao and S. S. Wu, “Topological Ap-
proach to Examine the Singularity of the Axial-Vector 
Currnet in an Abelian Gauge Field Theory (QED),” Chi-
nese Physics C, Vol. 33, No. 3, 2009, p. 177. 
doi:10.1088/1674-1137/33/3/003 

[9] H. X. He, “An Introduction to Nuclear Chromodynam-
ics,” China University of Science and Technology Press, 
Hefei, 2009. 

[10] H. X. He, “Transverse Ward-Takahashi Relation for the 
Fermion-Boson Vertex Function in Four-Dimensional 
Abelian Gauge theory,” International Journal of Modern 
Physics A, Vol. 22, No. 11, 2007, pp. 2119-2132. 

[11] K. Fujikawa, “Path-Integral Measure for Gauge Invariant 
Field Theories,” Physical Review Letters, Vol. 42, No. 18, 
1979, pp. 1195-1198. 

[12] M. B. Einhorn and T. Jones, “Comment on Fujikawa’s Path- 
Integual Derivation of the Chiral Anomaly,” Physical Re-
view D, Vol. 29, No. 2, 1984, pp. 331-333. 
doi:10.1103/PhysRevD.29.331 

[13] M. Umezawa, “Regularization of the Pth-Integral Meas-
ure for Anomalies,” Physical Review D, Vol. 39, No. 12, 
1989, pp. 3672-3683. 

 

Copyright © 2013 SciRes.                                                                                 JMP 

http://dx.doi.org/10.1103/PhysRevD.52.1212
http://dx.doi.org/10.1016/S0370-2693(00)00353-1
http://dx.doi.org/10.1088/0954-3899/32/11/014
http://dx.doi.org/10.1016/S0370-2693(01)00430-0
http://dx.doi.org/10.1016/j.physletb.2003.07.033
http://dx.doi.org/10.1007/s10773-007-9423-1
http://dx.doi.org/10.1088/1674-1137/33/3/003
http://dx.doi.org/10.1103/PhysRevD.29.331

