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ABSTRACT 
The paper presents heterogeneous fleet vehicle routing problem with selection of inter-depots. The goal of the proposed 
model is to schedule shipments of goods from the central depot to the inter-depots and finally to the endpoint customers, 
so that as inter-depots are considered the existing capacities of endpoints customers. In given type of transportation it 
can be expected to use two types of vehicles: large capacity vehicles ensuring the distribution of goods from the central 
warehouse and small capacity vehicles ensuring the delivery of goods from inter-depots for late shipment to other cus-
tomers. The principle of the model is illustrated on three demonstrative instances 
 
Keywords: multi-depot vehicle routing problem; replenishment; mathematical programming 

1. Introduction  
The problem that addresses the distribution of goods from 
a central warehouse to various delivery points using a  
fleet of vehicle with limited capacity is known as capa-
cited vehicle routing problem (CVRP). The relevance of 
that problem follows from many published articles, and 
also from practical applications of distribution (e. g. [1], 
[2], [3], [8]). The CVRP belongs to the group of NP-hard 
problems, so the possibility of solution of above men-
tioned problem is studied by many authors. Nowadays 
research attention is focused on heuristics, for example, 
the evolutionary approach is proposed by in [2], [3], [4], 
[5], [6], [7]. The problem can be extended by adding in-
ter-depots to the central storage facilities and also by 
considering the use of multiple types of vehicles ([6], [8], 
[9], [10], [11], [12]). Delivery is then realized in two 
levels, the first level is to carry the goods from a central 
distribution warehouse into inter-depots and the second 
level implements the transshipment of goods to the end-
point customers. Generally, each facility tends to be ex-
actly defined to belong to the group of inter-depots or to 
the group of final customers. However, in nowadays real 
life situations, companies that are dealing with this type of 
distribution do not open new inter-depots, which opening 
is associated with the construction cost and subsequently 
with operation cost, but they utilize endpoint customers 
useful storage capacities also as an intermediate storage 
for late shipment to other customers. In this case, as in-
ter-depots storage are used existing capacities of end-
points customers, so that existing supply points may or 
may not also serve as a inter-depots. In given type of 

problem it can be expected to use two types of vehicles: 
large capacity vehicles (L) ensuring the distribution of 
goods from the central warehouse and small capacity 
vehicles (S) ensuring the delivery of goods from in-
ter-depots and also from central warehouse. In this paper 
we formulate the considered problem as a mathematical 
programming model later used for further analysis. Due to 
its computational complexity, the formulated problem is 
solvable by classical optimization techniques (as well as 
other modifications of CVRP) only for small instances. 
We chose the following structure of the paper: In the first 
part we present classical CVRP, because it forms a base of 
modeling for a wide variety of routing problems. The next 
section describes the construction of proposed heteroge-
neous fleet vehicle routing problem with selection of 
inter-depots. Afterwards, the obtained experimental re-
sults are given and discussed. In this section, we also 
analyze presented model under different vehicle cost. 

2. Capacited Vehicle Routing Problem 
Classical capacitated vehicle routing problem is the basic 
routing model and it can be stated as follows: Let 
G = (V, E) be the full weighted graph, where V represents 
set of n nodes and E represents n.n set of edges. The node 
v1 represents the location of central warehouse and the 
nodes vi = 2, 3, ...n represent location of endpoint cus-
tomers.   
Assumptions of CVRP: 
• Unlimited number of vehicles with a certain capacity g, 

which are located in a certain depot with unlimited ca-
pacity. 
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• Set of delivery points (endpoints) with a certain de-
mand bi, i = 2, 3, ...n (the orders have to be delivered in 
full). 

• Minimal distances between all the pairs of endpoints 
customers and also between the endpoint customers 
and the depot are known (matrix D). 

• The goal is to find optimal vehicle routes (so that the 
total distance traveled is minimized) in such a way that 
each customer is visited only once by exactly one ve-
hicle, all routes start and end at the depot, and the total 
demands of all customers on one particular route must 
not exceed the capacity of the vehicle. 

• In the model is implicitly assumed bi ≤ g for each 
i = 2, 3, ...n.  

 
Parameters 
D – matrix of minimal distances between all the pairs of 
nodes  
c – transportation cost per unit  
b – vector of demands 
g – capacity of the vehicle. 
 
Variables 

{ }0,  1ijx ∈ , ,  1,  2,  . . .i j n=  - binary variables, that 
represent the use of corresponding edge: If the edge (i,j) 
is on the route of the some vehicle 1ijx = , otherwise 

0ijx = , 
0iu ≥ , 1,  2,  ...i n=  - non-negative variables, that 

represent the cumulative demand of the individual nodes 
on the route of any vehicle.  
Starting value of variable 

1 0u =           

CVRP formulation can be interpreted as follows:  

( )
1 1

min
n n

ij ij
i j

f c d x
= =

= →∑∑X,u   

Objective function ensures minimization of total trans-
portation costs of vehicles. 

1
1

=∑
=

n

i
ijx , 2,  3,  ...j n= , i j≠  

The equations represent that the vehicle comes to each 
node (except the centre) exactly once.   

1
1

=∑
=

n

j
ijx , 2,  3,  ...i n= , i j≠  

The equations represent that the vehicle leaves each node 
(except the centre) exactly once.  

( ) 0i j j iju b u x+ − = , 1,  2,...i n= , 2,  3,...j n= , i j≠

    

i ib u g≤ ≤ , 2,  3,  ...i n=       

The equations are anti-cyclic constraints which ensure 
also the accumulation of the load of the vehicle in such 
way the load must not exceed the vehicle capacity. 
         

3. Heterogeneous Fleet Vehicle Routing 
Problem with Selection of Inter-Depots – 
Problem Formulation  

The model was in general introduced by authors in [13]. 
Problem is useful for company dealing with one central 
warehouse (edge v1 denotes localization of the central 
warehouse) and n – 1 delivery points. The large capacity 
vehicles L are available in the central warehouse. The 
small capacity vehicles S are available at the endpoints 
and also at the central warehouse. Transportation costs 
per unit are known for both types of vehicles. It is as-
sumed the known demand of all delivery points. All the 
orders have to be delivered in full. Each of the  n – 1 
delivery point can be used as a inter-depot, so demand of 
other delivery point can be can be met from the in-
ter-depot by vehicle S. The route of vehicle S can be fi-
nished also in other than starting inter-depot, (either cen-
tral warehouse can be assumed to serve as inter-depot), 
but the number of incoming and outcoming vehicles of 
type S must be identical. 
 
Parameters 
D – matrix of minimal distances between all the pairs of 
nodes  
b – vector of demands 
gL – capacity of the vehicle L 
gS – capacity of the vehicle S 
cL – cost per unit of the vehicle L  
cS – cost per unit of the vehicle S . 

 

4. Heterogeneous Fleet Vehicle Routing 
Problem with Selection of Inter-Depots – 
Model 

Variables 
{ }0,  1ijx ∈ , ,  1,  2,  . . .i j n=  - binary variables, that 

represent the use of corresponding edge by vehicle L: If 
the edge (i,j) is on the route of the vehicle L 1ijx = , oth-
erwise 0ijx = . 

{ }0,  1ijy ∈ , ,  1,  2,  . . .i j n=  - binary variables, that 
represent the use of corresponding edge by vehicle S: If 
the edge (i,j) is on the route of the vehicle S 1ijy = , 
otherwise 0ijy = . 

0ijyy ≥ , ,  1,  2,  . . .i j n=  - non-negative variables, that 
represent the cumulative amount of unloaded goods 
transported on the edge (i,j).  
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0iu ≥ , 1,  2,  ...i n=  - non-negative variables, that 
represent the cumulative demand of the individual nodes 
on the route of vehicle L (including eventual distribution 
with a vehicles S from corresponding node).  

0iz ≥ , 1,  2,  ...i n=  - non-negative variables, that 
represent the cumulative demand of the individual nodes 
on the route of vehicle S. 

0iw ≥ , 2,  3,  ...i n=  - non-negative variables, that 
represent the quantity of goods that is distributed from 
corresponding node by vehicle S. 

0iq ≥ , 1,  2,  ...i n=   - non-negative variables, that 
represent the quantity of imported goods to the corres-
ponding node by a vehicle L. 
Starting values of variables 

11 1x =           
0iix = , 2,  3,  ...i n=        

1 0u =           
1 0z =           

The model can be interpreted as follows:  

( )
1 1 1 1

, min
n n n n

L ij ij S ij ij
i j i j

f c d x c d y
= = = =

= + →∑∑ ∑∑X,Y,YY,u,z w,q  

Objective function ensures minimization of total trans-
portation costs for vehicles L and vehicles S. 

1
1

n

ij
i

x
=

≤∑ , 2,  3,  ...j n= , i j≠  

The equations represent that the vehicle L comes to each 
node (except the centre) no more than once.  

1
1

n

ij
j

x
=

≤∑ , 2,  3,  ...i n= , i j≠  

The equations represent that the vehicle S leaves to each 
node (except the centre) no more than once.  

1 1

n n

ij ji
j j

x x
= =

=∑ ∑ , 1,  2,  ...i n= , i j≠  

The equations represents that the number of arrivals and 
exits of vehicle L into and from the node is identical. 
( ) . 0i j j iju q u x+ − = , 1,  2,  ...i n= , 2,  3, ...j n= , i j≠  
The equations provide the accumulation of the load of 
the vehicle L.  

i Lu g≤ , 2,  3,  ...i n=  
The equations represent that the capacity of vehicle L 
must not be exceeded. 

1 1

n n

i i
i i

q b
= =

=∑ ∑  

The equation represents that the demand of all nodes 
have to be met. 

1
1 . , 2,3,...

n

ij i i
j

x b z i n
=

 
− ≤ = 

 
∑  

The equations provide the balance of variables (starting 
values for a vehicle S) in the case node serves as an in-
ter-depot. 

1 1
0, 2,3,...

n n

ij ji
i i
i j

x y j n
= =
≠

 
  − + ≥ =     

 
∑ ∑  

The equations represent the self-service of the node, in 
the case the node is on the route of a vehicle L.  

1
1

n

ij
j

y
=

≥∑ , 1,  2,  ...i n=  

The equations represent that each node must be served. 

1 1

n n

ij ji
j j

y y
= =

=∑ ∑ , 1,  2,  ...i n= , i j≠  

The equations represent that the number of incoming and 
the number of outcoming routes in and out of the node is 
identical.   

( )
1

. .(1 ) 0
n

j i i ij sj
s

z b z y x
=

+ − − =∑ , 1,  2,  ...i n= ,

2,  3, ...j n= , i j≠   
The equations provide the accumulation of the load of 
the vehicle S.   

i Sz g≤ , 1,  2,  ...i n=  
The equations represent that the capacity of vehicle S 
must not be exceeded 

1

n

i i i ij
j

w q b x
=

= − ⋅∑ , 2,  3,  ...i n=  

The equations represent the balance of quantity of goods 
of vehicle S. 

1 1
.

n n

ji ij j
i i

i j

yy x w
= =

≠

=∑ ∑ , 2,  3,  ...j n=  

The equations provide that the amount of goods for ve-
hicles S cannot exceed the quantity of goods that is 
transported into the node by a vehicle L. 

.ji ji iyy y z= , ,  1,  2,  . . .i j n= , i j≠  
The equations provide the balance of cumulative number 
of unloaded goods transported on the edge (i, j). 

{ }0,  1ijy ∈ , ,  1,  2,  . . .i j n=  

{ }0,  1ijx ∈ , ,  1,  2,  . . .i j n=  
0ijyy ≥ , ,  1,  2,  . . .i j n=  

0iu ≥ , 1,  2,  ...i n=  
0iw ≥ , 2,  3,  ...i n=  
0iz ≥ , 1,  2,  ...i n=  
0iq ≥ , 1,  2,  ...i n=  

5. Empirical Results 
The principle of heterogeneous fleet vehicle routing 
problem with selection of inter-depots is illustrated on 
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three demonstrative instances. Firstly, cost per vehicle L 
and vehicle S were considered in proportion ten to six, 
L (10), S (6). Later, in order to demonstrate the model 
functionality, it was considered to set significantly higher 
costs per vehicle L, (value 100) and to set significantly 
lower costs per vehicle S (value 1). This should lead to 
preference of vehicles S (if it is possible to fulfill the de-
mands due to the restriction limit of the vehicle). In the 
third case, high cost for vehicle S (100) and low cost for 
vehicle L (1) were preferred, which should essentially 
results in the preference of vehicle L, i.e. the model 
works as classical CVRP. 
  
Model input data, used in all three demonstrative in-
stances:  
n – number of nodes = 10 
b – vector of demands = (0, 5, 2, 2, 20, 10, 6, 3, 9, 10) 
gL – capacity of the vehicle L = 50 
gS – capacity of the vehicle S = 15 
D – matrix of minimal distances between all the pairs of 
nodes (Table 1) 
Table 1 

 
For each demonstrative instance the input data were 
modified in different cost adjustments: 
 
1) Proportional costs adjustment:  
cL  – cost per unit of the vehicle L = 10 
cS  – cost per unit of the vehicle S = 6 
2) The higher cost of operating a large capacity vehicle  
compared to a small capacity vehicles: 
cL  – cost per unit of the vehicle L = 100 
cS  – cost per unit of the vehicle S = 1 
3) The higher cost of operating a small capacity vehicles 
compared to a large capacity vehicle: 
cL  – cost per unit of the vehicle L = 1 
cS  – cost per unit of the vehicle S = 100 
 
Proposed problems were solved using software GAMS. 
 
 
 
 
Solutions of the model for various demonstrative in-
stances:  
1. Instance with proportional cost values (cL = 10, cS = 

6). Computed value f = 9103.8. Solution is depicted 
on Figure 1, dashed lines represent the transportation 

by vehicle L, and full line represents the route of ve-
hicles S. 

 

 
Figure 1 
 
2. Instance with significantly higher cost of operating 

vehicle L (cL = 100, cS = 1). Computed value f = 
17757.5. Solution is depicted on Figure 2, dashed 
lines represent the route of vehicle L and full lines 
represent the route of vehicles S. The value of objec-
tive function f  has significantly increased. It is 
caused by the fact that delivery cannot be made only 
by vehicle type S because of the demand of node 5 
exceeds the capacity of the vehicle S. At the same 
time, assumption that the vehicle S can finish its 
route in other as in starting inter-depot is met, how-
ever the number of incoming and outgoing vehicles 
of type S must be identical (node 1 and 5).  

 

Figure 2 
 
3. Case with significantly higher cost of operating ve-

hicles S (cL = 1, cS = 100). Computed value f = 
1152.2. Solution is depicted on Figure 3. Dashed 
lines represent the transportation by L type vehicle, 

D 1 2 3 4 5 6 7 8 9 10
1 0 111 48.5 216.7 82.5 207.8 40.8 182.5 105.1 118.8
2 111 0 77.5 301.6 33.5 125.9 151.8 80 78.9 121.9
3 48.5 77.5 0 265.2 67 169.2 89.3 137.5 132.2 145.9
4 216.7 301.6 265.2 0 273.1 424.5 182.1 374.5 259.1 272.8
5 82.5 33.5 67 273.1 0 151.4 123.3 105 79.1 93.4
6 207.8 125.9 169.2 424.5 151.4 0 248.6 91.5 184.4 228.1
7 40.8 151.8 89.3 182.1 123.3 248.6 0 223.3 145.9 159.6
8 182.5 80 137.5 374.5 105 91.5 223.3 0 117.9 161.6
9 105.1 78.9 132.2 259.1 79.1 184.4 145.9 117.9 0 46.2

10 118.8 121.9 145.9 272.8 93.4 228.1 159.6 161.6 46.2 0
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the vehicles S are not in use (as in classical CVRP).   
 

 
 

 
 

 

 
 
 
 
 
Figure 3 

6. Conclusion 
The paper is focused on the heterogeneous fleet vehicle 
routing problem with selection of inter-depots. It in-
volves not only optimization of distribution on two stag-
es, but also the choice between two types of vehicles  
based on cost optimization. The model deals with one 
central warehouse and n – 1 delivery points (each of 
them can serve as an inter-depot). In the central ware-
house, large capacity vehicles L are available. Small ca-
pacity vehicles S are available at the endpoints and also 
at the central warehouse.  
The solution was presented on three demonstrative in-
stances. The first case is close to real ratio of vehicle 
costs (proportional cost per vehicle L (10) and vehicle S 
(6)). Furthermore, also specific cases with extreme cost 
ratios have been considered, which should verify a "rea-
sonable" behavior of the model. Obtained results confirm 
the feasibility of usage of the model which allows utili-
zation of the existing storage capacities at delivery points 
(inter-depots), and could lead to a more efficient distri-
bution. 
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