
J. Software Engineering & Applications, 2010, 3, 875-881
doi:10.4236/jsea.2010.39102 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

875

Model-Driven Derivation of Domain Functional
Requirements from Use Cases

Jianmei Guo1, Zheying Zhang2, Yinglin Wang1

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; 2Department of Computer
Sciences, University of Tampere, Kanslerinrinne, Finland.
Email: {guojianmei, ylwang}@sjtu.edu.cn, Zheying.Zhang@cs.uta.fi

ABSTRACT

Domain analysis is essential to core assets development in software product line engineering. Most existing approaches,
however, depend on domain experts’ experience to analyze the commonality and variability of systems in a domain,
which remains a manual and intensive process. This paper addresses the issue by proposing a model-driven approach
to automating the domain requirements derivation process. The paper focuses on the match between the use cases of
existing individual products and the domain functional requirements of a product line. By introducing a set of linguistic
description dimensions to differentiate the sub-variations in a use case, the use case template is extended to model
variability. To this end, a transformation process is formulated to sustain and deduce the information in use cases, and
to match it to domain functional requirements. This paper also presents a prototype which implements the derivation as
a model transformation described in a graphical model transformation language MOLA. This approach complements
existing domain analysis techniques with less manual operation cost and more efficiency by automating the domain
functional requirements development.

Keywords: Software Product Lines, Domain Analysis, Model Transformation, Use Cases, Functional Requirements

1. Introduction

Software product line engineering (SPLE) has emerged
as one of the most promising software development
paradigms for production of a set of closely related
products. It reduces development costs, shortens time to
market, improves product quality, and helps to achieve
greater market agility [1,2]. Some organizations make a
transition from conventional single-system engineering
to SPLE in order to enable mass customization and
maintain their market presence. They systematically re-
use legacy systems and existing products which embody
their domain expertise to develop the core assets base of
product lines [3,4].

Domain analysis is a process by which information
used in developing software systems is identified, cap-
tured, and organized with the purpose of making it reus-
able when creating new systems [5]. Its essential active-
ties include analysis of commonalities and variabilities
from the similar existing products and elicitation of do-
main requirements. Many domain analysis techniques
[6-10] have been used to identify and document the
commonalities and variabilities of systems constituting
the product line. These techniques, however, mostly de-

pend on domain experts’ experience [2,11,12], and lack
automated support [2,4,11]. When existing products have
a significant amount of commonalities and also consis-
tent differences among them, it is possible to extract the
product line from them. If domain requirements, together
with other systems artifacts, can be automatically rea-
soned and extracted from requirements of existing prod-
ucts, the amount of effort will be reduced significantly.

In this paper, we focus on functional requirements, and
propose a model-driven approach to deriving domain
functional requirements (DFRs) from use cases of exist-
ing products. Use cases are a widely used technique for
requirements specification, but there is no generally ac-
cepted formalism to explicitly represent the variations of
scenarios in a use case [13]. Using the metamodeling [14]
and the model transformation techniques [15,16], the use
case template [17] is adapted for variability modeling in
order to derive DFRs for product lines. By introducing a
set of linguistic description dimensions into use cases to
differentiate the sub-variations, the use case template is
extended to model the variability. Further, we analyze
the correlation between the tailored use cases and the
DFRs, and present a model-driven framework to derive
DFRs from use cases. We also presents a prototype which

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

876

implements the derivation as a model transformation
described in a graphical model transformation language
MOLA [18]. Our approach reduces the manual operation
cost and complements existing domain analysis tech-
niques by introducing an automated process of common-
ality and variability analysis.

The remainder of this paper is organized as follows.
Section 2 defines the metamodels of use cases and DFRs
and analyzes their correlation. Section 3 proposes a mo-
del-driven framework for DFRs derivation and presents a
model transformation definition in MOLA. Section 4
discusses related work. Section 5 concludes this paper
with future work.

2. The Underlying Metamodels

2.1. Use Cases

Use cases have been a means to understand, specify, and
analyze user requirements that is rather often used [19].
They are widely adopted to capture functional require-
ments from an outside or users point of view. A use case
describes the actions of an actor when following a certain
task while interacting with the system to be described. It
also describes a system’s behavior as it responds to a
request that originates from outside of the system. Use
cases are often recorded by following a template. Al-
though there are no standard use case templates, most of
them describe more or less the same issues, e.g., the sys-
tem to be described, the use cases within the system, the
actors outside the system, and the relationships between
actors and use cases or in between use cases [20].

One of the most commonly used use case templates is
suggested by Cockburn [21]. According to Cockburn’s
template, a use case is described with its name, goal in
context, scope, level, trigger, pre- and postconditions,
main success scenario, extensions, sub-variations, and
other characteristics [17]. The main success scenario
describes what the use case actually does. It is the main

part in a use case description, and often described as a
sequence of steps or several alternatives to steps, such as
extensions and sub-variations. Extensions specify changes
in the course of execution of the main success scenario,
and sub-variations give the further details of a step’s
manner or mode that will cause eventually bifurcation in
the scenario. The main success scenario, together with
extensions and sub-variations, describes a use case be-
havior, and also implies a set of fine-grained functional
requirements. As is shown in Figure 1, the step is a basic
object to capture a use case behavior. It has attributes
such as step #, name, description, use case name, actor,
and trigger. The attributes step # and name can be used
to identify a step. A step could have sub-variations, and
can be extended to another (set of) step(s) based on a
given condition. Instances of step form the main success
scenario.

To derive DFRs from use cases, common and variable
requirements have to be identified and analyzes. The
above use case description includes the specifications of
sub-variations and extensions, but still lacks the formal-
ism to model variability and to support domain analysis.
In order to add the formalism to support variability mod-
eling for the product line, we extend the existing use case
metamodel by adding the attribute ProductSite and a set
of dimensions for the steps described in the main success
scenario, as shown in Figure 1. The attribute “Product-
Site” records the owner of the step, which clarifies the
existing product to which the step belongs, and help to
analyze the commonality and variability in the course of
defining the product line scope. The dimensions structure
the specification of the sub-variations for the steps. They,
are deduced according to the linguistic characteristics of
functional requirements [4] and present the different
perspectives of sub-variations. The dimensions include
agentive, attributive, locational, temporal, process, and
purpose.

Figure 1. The extended use case metamodel.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

877

Agentive defines the agent(s) whose activities will

bring about the state of affairs implied by the step, e.g.,
“{author}Agentive submits an article”. Attributive defines
the attributes of the agentive or of the object associated
with the action implied by the step, e.g., “submit a {re-
search, review}Attributive article”. Locational defines the
spatial location(s) where the activity implied by the step
is supposed to take place, e.g., “submit an article {at of-
fice, at home}Locational”. Temporal defines the duration or
frequency of the activity implied by the step, e.g., “sub-
mit an article {every week, every month}Temporal”. Proc-
ess defines the instrument, the means and the manner by
which the activity is performed, e.g., “submit an article
by {email, submission system}Process”. Purpose defines
the purpose that the agentive carries out the activity or
that the objective is affected by the activity implied by
the step, e.g., “submit an article for {propagating the
knowledge}Purpose”.

The extended use case metamodel mainly involves the
steps, the sub-variations and the extensions because these
elements from Cockburn’s template have the direct rela-
tionship with functional requirements. It also models the
variability through introducing a set of linguistic descrip-
tion dimensions to differentiate the sub-variations. The
product site of each step is added for further analyzing
the commonality and variability of DFRs.

2.2. Domain Functional Requirements

DFRs specify the common and variable requirements for
all foreseeable applications of the product line. Accord-
ing to the Orthogonal Variability Model (OVM) [2], we
define the variability model of DFRs in Figure 2.

Besides the essential attributes of a DFR, i.e. name and
description, a DFR shall document its variability. Vari-
ability comprises the variability subject and the variabil-
ity object. A variability subject is a variable item or a
variable property of such an item [2]. If a DFR or its

property has the tendency to change, it is a variability
subject. The property with tendency to change can be
further defined as a variation point. A DFR could have
one or more variation points. In general, a variation point
of a DFR expresses a variable semantic concern of the
DFR. To present different semantic concerns of a DFR,
we also define a set of types for the variation points of
DFRs according to the linguistic characteristics of func-
tional requirements [4], i.e. agentive, attributive, loca-
tional, temporal, process, and purpose.

A variability object is a particular instance of a vari-
ability subject [2]. It is represented as a variant. A variant
represents a single option of the semantic concern that
the variation point expresses, and a variation point may
have one or more variants.

A DFR could come from one or more product sites in
a product line. Such product sites can be used to calculate
the CV ratio (Commonality/Variability ratio). A CV ratio
records the frequency a DFR appears in a domain. Engi-
neers can use the CV ratios to decide whether a DFR is
common or optional. Generally, a DFR is common if it
has a CV ratio “100%”.

A DFR constraint documents a relationship between
two DFRs, between a variant and a DFR, or between two
variants. There are two types of relationship, i.e. requires
and excludes. Each DFR constraint has a domain and a
range. A domain of a constraint is the constraint’s sub-
ject that possesses the constraint relation; a range of a
constraint is the constraint’s object that is affected by the
constraint relation. For example, a constraint “A requires
B” expresses the constraint relation “requires” between
its domain “A” and its range “B”. A domain or a range
also has its “name” and its “type”.

2.3. Correlation between Use Cases and Domain
Functional Requirements

Steps presented in our prior metamodel describe the

Figure 2. The domain functional requirement metamodel.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

878

fine-gained functional requirements of a use case. The
same requirements can be specified as a DFR for a prod-
uct line. Since different products could have the same,
the similar, or the different functional requirements, the
DFRs can be obtained by merging the same and the
similar functional requirements and distinguishing the
variable ones. We conclude the correlation between use
cases and DFRs as follows, which grounds the model
transformation for DFR derivation.

2.3.1. Identifying Requirements
Steps with different ProductSite value is mapped into a
DFR if their identity has the same value, i.e., the same
attribute name. Then, the sub-variations of a step are
mapped into the variants of the DFR according to their
same names. The dimensions of the sub-variations are
also mapped into the variation points of the DFR
according to their same types.

2.3.2. Analyzing Commonality and Variability
The commonality and variability can be analyzed by
calculating the CV ratio. The productSite of the same
step, together with the total number of products of the
product line, forms the input of the calculation.

2.3.3. Identifying the Constraints
The relationships between and within the use cases shall
be mapped correctly into the constraints of DFRs in
terms of the same domain and the same range. Some
constraints are straightforward and can be identified
easily. For example, the extensions and the triggers of the
steps can be mapped into the “requires” constraints of
DFRs, i.e. “a trigger of a step” can be represented as “the
step requires the trigger”. The “precondition” of a use
case can be mapped into the “requires” constrains of the
DRF derived from the step numbered Step 1 in the use
case. However, some more complex relationships in use
cases are not identified in this paper. For example,
according to Cockburn’s template, a step also represents
another use case (subordinate use case). Thus, a complete
use case could have different “levels”. These levels form
the hierarchical relationship between the steps. In
addition, the conditional relationship and the sequential
relationship of the steps are also simplified. These
complex relationships will be explored in our future

work.

3. The Derivation Process

3.1. Framework

Based on the proposed metamodels and their correlation,
it is feasible to derive the DFRs from the use cases of a
set of closely related products in the same domain. We
propose a model-driven framework for DFRs derivation
from use cases in Figure 3.

The figure shows the scenario of model transformation
from multiple source models (use cases) into a target
model (DFR model). Both the source model and the tar-
get model are instantiated from their respective meta-
models, i.e., the use case metamodel and the DFR meta-
model. A model transformation definition is defined
based on these metamodel specifications. The transfor-
mation definition is executed on concrete models by a
transformation engine.

3.2. Model Transformation Process

We present a prototype that implements the derivation of
DFRs as a model transformation described in a graphical
model transformation language MOLA [18]. MOLA
provides an easy readable graphical transformation lan-
guage by combining traditional structured programming
in a graphical form with pattern-based rules. It clearly
distinguishes what is from source models, what is from
target models, and what is the mapping association be-
tween them. It is suitable for representing loops, which
makes the time complexity analysis clearer.

A program in MOLA is a sequence of statements. A
statement is a graphical area delimited by a rounded rec-
tangle. The statement sequence is shown by dashed ar-
rows. Thus, a MOLA program actually is a sort of a
“structured flowchart”. The simplest kind of statement is
a rule that performs an elementary transformation of in-
stances. A rule contains a pattern that is a set of elements
representing class and association instances (links) and is
built in accordance with the source metamodel. A rule
has also the action that specifies new class instances to
be built, instances to be deleted, association instances to
be built or deleted, and the modified attribute values. The

Figure 3. Model-driven framework for DFRs derivation.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

879

semantics of a rule is standard, i.e., locating a pattern
instance in the source model and apply the actions.

The new elements, instances, and links, are shown
with dotted lines. The mapping associations prefix the
association name by the “#” character. The mapping as-
sociations link instances corresponding to different
metamodels; they typically set the context for next sub-
ordinate transformations and trace instances between
source models and target models in the model transfor-
mation.

The most important statement type in MOLA is the

loop. Graphically a loop is a rectangular frame, contain-
ing a sequence of statements. This sequence starts with a
special loop head statement. The loop head is also a pat-
ter but with the loop variable highlighted (by a bold
frame). The reference notation prefixes an instance name
by the “@” character to show that the same instance se-
lected by the loop head is used. The semantics of a loop
is natural, i.e., performing the loop for any loop variable
instance which satisfies the conditions specified by the
pattern.

As is shown in Figure 4, the model transformation

Figure 4. Model transformation definition in MOLA.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

880

from use cases to DFRs contains three nested loops. The
outer loop is executed for each step instance. The next
statement is a rule building a DFR from a set of steps
according to their same names. The mapping association
“#dfrFORst” records which DFR from which step actu-
ally has been generated and can be reused in the follow-
ing statements. Thus, all input steps with the same name
will be merged as one DFR. Meanwhile, the rule also
identifies these steps’ product sites to build the DFR’s
product sites. Next, the extensions and the trigger of the
step are transformed into the “requires” DFR constraints.

The middle-level loop is executed for each dimension
of the steps. Its rule builds the variation points from the
dimensions according to their same types. Its pattern ref-
erences the “#dfrFORst” mapping association built by
the previous statement. The loop head “dim:Dimension”
is combined with building actions. Thus, all the dimen-
sions, having the same type and belonging to a set of
steps with the same names, will be merged as one varia-
tion point of the DFR that is generated by the set of steps.

The inner loop is executed for each sub-variation of
some dimension of some step. Its rule builds a variant
through merging a set of sub-variations with the same
name.

Note that the CV ratios of DFRs will be calculated
according to the product sites of DFRs after the model
transformation process. For those steps without sub-
variations, only the outer loop will be executed for ana-
lyzing their commonality and variability.

4. Related Work and Discussion

Some researchers have studied how to extend use cases
with variability. They exploit and extend the use cases
for product lines in different perspectives and by differ-
ent means. For example, Jacobson et al. [8] introduce
variation points into use case diagrams and use them to
describe different ways of performing actions within a
use case. Gomaa [22] and John and Muthig [13] intro-
duce stereotypes, such as <<variant>>, <<kernel>> and
<<optional>> for use cases for modeling families of sys-
tems. Most research remains the documentation of vari-
abilities, but ignores the principle of SPLE, i.e. proactive
reuse. Topics such as how to systematically reuse exist-
ing requirements to derive domain requirements lack
enough research. In this paper, we extend use cases with
a multi-dimensional structure for modeling the variability,
and record the product site of each step in use cases.
These extensions support systematic reuse of domain
knowledge by deriving domain requirements from exist-
ing use cases, and analyzing the commonality and vari-
ability.

Many domain analysis methods, such as FODA (Fea-

ture-Oriented Domain Analysis) [6], FORM (Fea-
ture-Oriented Reuse Method) [7], SCV (Scope, Com-
monality, and Variability) [10], RSEB [8] and Fea-
tuRSEB [9], identify and document the commonalities
and variabilities of related systems in a domain. Never-
theless, these typical domain analysis techniques mostly
depend on domain experts’ knowledge and experience to
manually acquire commonalities and variabilities. In ad-
dition, Braganca and Machado [23] and Wang et al. [24]
propose automated approaches to transformation between
feature models and use cases. Our approach comple-
ments the existing domain analysis techniques by pro-
viding automated support for developing DFRs from use
cases.

Manual effort is yet indispensable in our approach.
First, analysts must scope domain requirements and for-
mulate domain terminology. Second, each use case must
be specified with the predefined use case metamodel and
unified domain terminology, which helps uncover the
incompleteness and inconsistency of existing require-
ments to a certain degree. Although NLP techniques
could be incorporated into DFRs development to mini-
mize the manual operation cost [4], their accuracy can
not yet be guaranteed sufficiently. Third, a comprehend-
sive analysis of variability dependencies must be done by
analysts in terms of domain context. In summary, domain
experts still play an essential role in the DFRs develop-
ment.

5. Conclusions

In this paper, we propose an automated approach to
DFRs derivation using the metamodeling and model
transformation techniques. The main contribution is to
present a model-driven approach to domain requirements
analysis. The approach complements the existing domain
analysis techniques by reducing the manual operation
cost and improving the efficiency in DFRs development,
which further enhances the transition process from sin-
gle-system engineering to SPLE. In addition, the model
transformation definition documents the traceability in-
formation between DFRs and use cases, which helps
manage domain requirements and trace their rationale for
decision making in SPLE.

Our future work is twofold. First, we will further im-
prove our current approach, especially exploring how to
handle the complex constraint dependency. Second, we
will verify our approach through an in-depth experiment-
tal study.

6. Acknowledgements

This work is supported by the National Natural Science
Foundation of China (NSFC No. 60773088), the National

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

881

High-tech R & D Program of China (863 Program No.
2009AA04Z106), and the Key Program of Basic Res-
earch of Shanghai Municipal S & T Commission (No.
08JC1411700).

REFERENCES

[1] P. Clements and L. Northrop, “Software Product Lines:
Practices and Patterns,” Addison Wesley, Boston, 2001.

[2] K. Pohl, G. Bockle and F. van der Linden, “Software
Product Line Engineering: Foundations, Principles and
Techniques,” Springer Verlag, Heidelberg, 2005.

[3] C. W. Krueger, “Easing the Transition to Software Mass
Customization,” Proceedings International Workshop on
Product Family Engineering, Bilbao, 2001, pp. 282-293.

[4] N. Niu and S. Easterbrook, “Extracting and Modeling
Product Line Functional Requirements,” Proceedings
RE’08, Barcelona, 2008, pp. 155-164.

[5] R. Prieto-Diaz, “Domain Analysis for Reusability,” Pro-
ceedings 11th Annual International Computer Software
and Applications Conference, Tokyo, 1987, pp. 23-29.

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A.
S. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Canadian Mennonite
University, 1990.

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh,
“FORM: A Feature-Oriented Reuse Method with Do-
main-Specific Reference Architectures,” Annals of Soft-
ware Engineering, Vol. 5, No. 1, 1998, pp. 143-168.

[8] I. Jacobson, M. Griss and P. Jonsson, “Software Reuse:
Architecture Process and Organization for Business Suc-
cess,” Association for Computing Machinery Press, 1997.

[9] M. L. Griss, J. Favaro and M. D. Alessandro, “Integrating
Feature Modeling with the RSEB,” Proceedings of Inter-
national Conference on Steel Rolling’98, Victoria, 1998,
pp. 76-85.

[10] J. Coplien, D. Hoffman and D. Weiss, “Commonality and
Variability in Software Engineering,” IEEE Software, Vol.
15, No. 6, 1998, pp. 37-45.

[11] M. Moon, H. S. Chae and K. Yeom, “An Approach to
Developing Domain Requirements as a Core Asset Based
on Commonality and Variability Analysis in a Product
Line,” IEEE Transactions on Software Engineering, Vol.
31, No. 7, 2005, pp. 551-569.

[12] E. de Almeida, J. Mascena, A. Cavalcanti, A. Alvaro, V.
Garcia, S. de Lemos Meira and D. Lucrédio, “The Do-
main Analysis Concept Revisited: A Practical Approach,”
Proceedings of International Conference on Steel Roll-
ing’06, Turin, 2006, pp. 43-57.

[13] I. John and D. Muthig, “Tailoring Use Cases for Product
Line Modeling,” Proceedings of Requirements Engineer-
ing for Product Lines’02, Essen, 2002, pp. 26-32.

[14] Z. Zhang, “Model Component Reuse-Conceptual Foun-
dations and Application in the Metamodel-Based Systems
Analysis and Design Environment,” Ph.D. dissertation,
Jyvaskyla Studies in Computing 39, University of Jy-
vaskyla, 2004.

[15] A. G. Kleppe, J. B. Warmer and W. Bast, “MDA Ex-
plained: The Model Driven Architecture: Practice and
Promise,” Addison Wesley, Longman Publishing Co., Inc.,
Boston, 2003.

[16] S. Sendall and W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Develop-
ment,” IEEE Software, Vol. 20, No. 5, 2003, pp. 42-45.

[17] A. Cockburn, “Basic Use Case Template,” 2010. http://
alistair.cockburn.us/Basic+use+case+template.

[18] A. Kalnins and J. B. E. Celms, “Model Transformation
Language MOLA,” Proceedings of Working Conference
on Model Driven Architecture: Foundations and Applica-
tions (MDAFA’04), Linköping, 2004, pp. 62-76.

[19] I. Jacobson, “Object-Oriented Software Engineering: A
Use Case Driven Approach,” Addison Wesley, Woking-
ham, England, 1992.

[20] Object Management Group, “Unified Modeling Language
(UML), version 2.2,” 2010. http://www.omg.org/techno-
logy/documents/formal/uml.htm.

[21] A. Cockburn, “Writing Effective Use Cases,” Addison
Wesley, Boston, 2001.

[22] H. Gomaa, “Object Oriented Analysis and Modeling for
Families of Systems with UML,” Proceedings of Inter-
national Conference on Steel Rolling’00, Vienna, 2000,
pp. 89-99.

[23] A. Braganca and R. J. Machado, “Automating Mappings
between Use Case Diagrams and Feature Models for
Software Product Lines,” Proceedings of Southern Pover-
ty Law Center’07, Kyoto, 2007, pp. 3-12.

[24] B. Wang, W. Zhang, H. Zhao, Z. Jin and H. Mei, “A Use
Case Based Approach to Feature Models’ Construction,”
Proceedings RE’09, Atlanta, Georgia, 2009, pp. 121-130.

