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ABSTRACT 

Domain analysis is essential to core assets development in software product line engineering. Most existing approaches, 
however, depend on domain experts’ experience to analyze the commonality and variability of systems in a domain, 
which remains a manual and intensive process. This paper addresses the issue by proposing a model-driven approach 
to automating the domain requirements derivation process. The paper focuses on the match between the use cases of 
existing individual products and the domain functional requirements of a product line. By introducing a set of linguistic 
description dimensions to differentiate the sub-variations in a use case, the use case template is extended to model 
variability. To this end, a transformation process is formulated to sustain and deduce the information in use cases, and 
to match it to domain functional requirements. This paper also presents a prototype which implements the derivation as 
a model transformation described in a graphical model transformation language MOLA. This approach complements 
existing domain analysis techniques with less manual operation cost and more efficiency by automating the domain 
functional requirements development. 
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1. Introduction 

Software product line engineering (SPLE) has emerged 
as one of the most promising software development 
paradigms for production of a set of closely related 
products. It reduces development costs, shortens time to 
market, improves product quality, and helps to achieve 
greater market agility [1,2]. Some organizations make a 
transition from conventional single-system engineering 
to SPLE in order to enable mass customization and 
maintain their market presence. They systematically re- 
use legacy systems and existing products which embody 
their domain expertise to develop the core assets base of 
product lines [3,4]. 

Domain analysis is a process by which information 
used in developing software systems is identified, cap- 
tured, and organized with the purpose of making it reus- 
able when creating new systems [5]. Its essential active- 
ties include analysis of commonalities and variabilities 
from the similar existing products and elicitation of do-
main requirements. Many domain analysis techniques 
[6-10] have been used to identify and document the 
commonalities and variabilities of systems constituting 
the product line. These techniques, however, mostly de- 

pend on domain experts’ experience [2,11,12], and lack 
automated support [2,4,11]. When existing products have 
a significant amount of commonalities and also consis- 
tent differences among them, it is possible to extract the 
product line from them. If domain requirements, together 
with other systems artifacts, can be automatically rea- 
soned and extracted from requirements of existing prod- 
ucts, the amount of effort will be reduced significantly. 

In this paper, we focus on functional requirements, and 
propose a model-driven approach to deriving domain 
functional requirements (DFRs) from use cases of exist- 
ing products. Use cases are a widely used technique for 
requirements specification, but there is no generally ac- 
cepted formalism to explicitly represent the variations of 
scenarios in a use case [13]. Using the metamodeling [14] 
and the model transformation techniques [15,16], the use 
case template [17] is adapted for variability modeling in 
order to derive DFRs for product lines. By introducing a 
set of linguistic description dimensions into use cases to 
differentiate the sub-variations, the use case template is 
extended to model the variability. Further, we analyze 
the correlation between the tailored use cases and the 
DFRs, and present a model-driven framework to derive 
DFRs from use cases. We also presents a prototype which 
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implements the derivation as a model transformation 
described in a graphical model transformation language 
MOLA [18]. Our approach reduces the manual operation 
cost and complements existing domain analysis tech-
niques by introducing an automated process of common-
ality and variability analysis. 

The remainder of this paper is organized as follows. 
Section 2 defines the metamodels of use cases and DFRs 
and analyzes their correlation. Section 3 proposes a mo- 
del-driven framework for DFRs derivation and presents a 
model transformation definition in MOLA. Section 4 
discusses related work. Section 5 concludes this paper 
with future work. 

2. The Underlying Metamodels 

2.1. Use Cases 

Use cases have been a means to understand, specify, and 
analyze user requirements that is rather often used [19]. 
They are widely adopted to capture functional require- 
ments from an outside or users point of view. A use case 
describes the actions of an actor when following a certain 
task while interacting with the system to be described. It 
also describes a system’s behavior as it responds to a 
request that originates from outside of the system. Use 
cases are often recorded by following a template. Al- 
though there are no standard use case templates, most of 
them describe more or less the same issues, e.g., the sys- 
tem to be described, the use cases within the system, the 
actors outside the system, and the relationships between 
actors and use cases or in between use cases [20]. 

One of the most commonly used use case templates is 
suggested by Cockburn [21]. According to Cockburn’s 
template, a use case is described with its name, goal in 
context, scope, level, trigger, pre- and postconditions, 
main success scenario, extensions, sub-variations, and 
other characteristics [17]. The main success scenario 
describes what the use case actually does. It is the main  

part in a use case description, and often described as a 
sequence of steps or several alternatives to steps, such as 
extensions and sub-variations. Extensions specify changes 
in the course of execution of the main success scenario, 
and sub-variations give the further details of a step’s 
manner or mode that will cause eventually bifurcation in 
the scenario. The main success scenario, together with 
extensions and sub-variations, describes a use case be-
havior, and also implies a set of fine-grained functional 
requirements. As is shown in Figure 1, the step is a basic 
object to capture a use case behavior. It has attributes 
such as step #, name, description, use case name, actor, 
and trigger. The attributes step # and name can be used 
to identify a step. A step could have sub-variations, and 
can be extended to another (set of) step(s) based on a 
given condition. Instances of step form the main success 
scenario. 

To derive DFRs from use cases, common and variable 
requirements have to be identified and analyzes. The 
above use case description includes the specifications of 
sub-variations and extensions, but still lacks the formal- 
ism to model variability and to support domain analysis. 
In order to add the formalism to support variability mod- 
eling for the product line, we extend the existing use case 
metamodel by adding the attribute ProductSite and a set 
of dimensions for the steps described in the main success 
scenario, as shown in Figure 1. The attribute “Product- 
Site” records the owner of the step, which clarifies the 
existing product to which the step belongs, and help to 
analyze the commonality and variability in the course of 
defining the product line scope. The dimensions structure 
the specification of the sub-variations for the steps. They, 
are deduced according to the linguistic characteristics of 
functional requirements [4] and present the different 
perspectives of sub-variations. The dimensions include 
agentive, attributive, locational, temporal, process, and 
purpose. 

 

 

Figure 1. The extended use case metamodel.  
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Agentive defines the agent(s) whose activities will 

bring about the state of affairs implied by the step, e.g., 
“{author}Agentive submits an article”. Attributive defines 
the attributes of the agentive or of the object associated 
with the action implied by the step, e.g., “submit a {re-
search, review}Attributive article”. Locational defines the 
spatial location(s) where the activity implied by the step 
is supposed to take place, e.g., “submit an article {at of-
fice, at home}Locational”. Temporal defines the duration or 
frequency of the activity implied by the step, e.g., “sub-
mit an article {every week, every month}Temporal”. Proc-
ess defines the instrument, the means and the manner by 
which the activity is performed, e.g., “submit an article 
by {email, submission system}Process”. Purpose defines 
the purpose that the agentive carries out the activity or 
that the objective is affected by the activity implied by 
the step, e.g., “submit an article for {propagating the 
knowledge}Purpose”. 

The extended use case metamodel mainly involves the 
steps, the sub-variations and the extensions because these 
elements from Cockburn’s template have the direct rela-
tionship with functional requirements. It also models the 
variability through introducing a set of linguistic descrip-
tion dimensions to differentiate the sub-variations. The 
product site of each step is added for further analyzing 
the commonality and variability of DFRs. 

2.2. Domain Functional Requirements 

DFRs specify the common and variable requirements for 
all foreseeable applications of the product line. Accord-
ing to the Orthogonal Variability Model (OVM) [2], we 
define the variability model of DFRs in Figure 2. 

Besides the essential attributes of a DFR, i.e. name and 
description, a DFR shall document its variability. Vari-
ability comprises the variability subject and the variabil-
ity object. A variability subject is a variable item or a 
variable property of such an item [2]. If a DFR or its  

property has the tendency to change, it is a variability 
subject. The property with tendency to change can be 
further defined as a variation point. A DFR could have 
one or more variation points. In general, a variation point 
of a DFR expresses a variable semantic concern of the 
DFR. To present different semantic concerns of a DFR, 
we also define a set of types for the variation points of 
DFRs according to the linguistic characteristics of func-
tional requirements [4], i.e. agentive, attributive, loca-
tional, temporal, process, and purpose.  

A variability object is a particular instance of a vari-
ability subject [2]. It is represented as a variant. A variant 
represents a single option of the semantic concern that 
the variation point expresses, and a variation point may 
have one or more variants. 

A DFR could come from one or more product sites in 
a product line. Such product sites can be used to calculate 
the CV ratio (Commonality/Variability ratio). A CV ratio 
records the frequency a DFR appears in a domain. Engi-
neers can use the CV ratios to decide whether a DFR is 
common or optional. Generally, a DFR is common if it 
has a CV ratio “100%”. 

A DFR constraint documents a relationship between 
two DFRs, between a variant and a DFR, or between two 
variants. There are two types of relationship, i.e. requires 
and excludes. Each DFR constraint has a domain and a 
range. A domain of a constraint is the constraint’s sub-
ject that possesses the constraint relation; a range of a 
constraint is the constraint’s object that is affected by the 
constraint relation. For example, a constraint “A requires 
B” expresses the constraint relation “requires” between 
its domain “A” and its range “B”. A domain or a range 
also has its “name” and its “type”. 

2.3. Correlation between Use Cases and Domain 
Functional Requirements 

Steps presented in our prior metamodel describe the  
 

 

Figure 2. The domain functional requirement metamodel.  
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fine-gained functional requirements of a use case. The 
same requirements can be specified as a DFR for a prod-
uct line. Since different products could have the same, 
the similar, or the different functional requirements, the 
DFRs can be obtained by merging the same and the 
similar functional requirements and distinguishing the 
variable ones. We conclude the correlation between use 
cases and DFRs as follows, which grounds the model 
transformation for DFR derivation. 

2.3.1. Identifying Requirements 
Steps with different ProductSite value is mapped into a 
DFR if their identity has the same value, i.e., the same 
attribute name. Then, the sub-variations of a step are 
mapped into the variants of the DFR according to their 
same names. The dimensions of the sub-variations are 
also mapped into the variation points of the DFR 
according to their same types. 

2.3.2. Analyzing Commonality and Variability 
The commonality and variability can be analyzed by 
calculating the CV ratio. The productSite of the same 
step, together with the total number of products of the 
product line, forms the input of the calculation. 

2.3.3. Identifying the Constraints 
The relationships between and within the use cases shall 
be mapped correctly into the constraints of DFRs in 
terms of the same domain and the same range. Some 
constraints are straightforward and can be identified 
easily. For example, the extensions and the triggers of the 
steps can be mapped into the “requires” constraints of 
DFRs, i.e. “a trigger of a step” can be represented as “the 
step requires the trigger”. The “precondition” of a use 
case can be mapped into the “requires” constrains of the 
DRF derived from the step numbered Step 1 in the use 
case. However, some more complex relationships in use 
cases are not identified in this paper. For example, 
according to Cockburn’s template, a step also represents 
another use case (subordinate use case). Thus, a complete 
use case could have different “levels”. These levels form 
the hierarchical relationship between the steps. In 
addition, the conditional relationship and the sequential 
relationship of the steps are also simplified. These 
complex relationships will be explored in our future  

work. 

3. The Derivation Process 

3.1. Framework 

Based on the proposed metamodels and their correlation, 
it is feasible to derive the DFRs from the use cases of a 
set of closely related products in the same domain. We 
propose a model-driven framework for DFRs derivation 
from use cases in Figure 3. 

The figure shows the scenario of model transformation 
from multiple source models (use cases) into a target 
model (DFR model). Both the source model and the tar- 
get model are instantiated from their respective meta- 
models, i.e., the use case metamodel and the DFR meta- 
model. A model transformation definition is defined 
based on these metamodel specifications. The transfor- 
mation definition is executed on concrete models by a 
transformation engine. 

3.2. Model Transformation Process 

We present a prototype that implements the derivation of 
DFRs as a model transformation described in a graphical 
model transformation language MOLA [18]. MOLA 
provides an easy readable graphical transformation lan- 
guage by combining traditional structured programming 
in a graphical form with pattern-based rules. It clearly 
distinguishes what is from source models, what is from 
target models, and what is the mapping association be- 
tween them. It is suitable for representing loops, which 
makes the time complexity analysis clearer. 

A program in MOLA is a sequence of statements. A 
statement is a graphical area delimited by a rounded rec- 
tangle. The statement sequence is shown by dashed ar- 
rows. Thus, a MOLA program actually is a sort of a 
“structured flowchart”. The simplest kind of statement is 
a rule that performs an elementary transformation of in- 
stances. A rule contains a pattern that is a set of elements 
representing class and association instances (links) and is 
built in accordance with the source metamodel. A rule 
has also the action that specifies new class instances to 
be built, instances to be deleted, association instances to 
be built or deleted, and the modified attribute values. The 

 

 

Figure 3. Model-driven framework for DFRs derivation. 
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semantics of a rule is standard, i.e., locating a pattern 
instance in the source model and apply the actions. 

The new elements, instances, and links, are shown 
with dotted lines. The mapping associations prefix the 
association name by the “#” character. The mapping as- 
sociations link instances corresponding to different 
metamodels; they typically set the context for next sub- 
ordinate transformations and trace instances between 
source models and target models in the model transfor- 
mation. 

The most important statement type in MOLA is the 

loop. Graphically a loop is a rectangular frame, contain- 
ing a sequence of statements. This sequence starts with a 
special loop head statement. The loop head is also a pat- 
ter but with the loop variable highlighted (by a bold 
frame). The reference notation prefixes an instance name 
by the “@” character to show that the same instance se- 
lected by the loop head is used. The semantics of a loop 
is natural, i.e., performing the loop for any loop variable 
instance which satisfies the conditions specified by the 
pattern. 

As is shown in Figure 4, the model transformation  
 

 

Figure 4. Model transformation definition in MOLA.  
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from use cases to DFRs contains three nested loops. The 
outer loop is executed for each step instance. The next 
statement is a rule building a DFR from a set of steps 
according to their same names. The mapping association 
“#dfrFORst” records which DFR from which step actu- 
ally has been generated and can be reused in the follow- 
ing statements. Thus, all input steps with the same name 
will be merged as one DFR. Meanwhile, the rule also 
identifies these steps’ product sites to build the DFR’s 
product sites. Next, the extensions and the trigger of the 
step are transformed into the “requires” DFR constraints. 

The middle-level loop is executed for each dimension 
of the steps. Its rule builds the variation points from the 
dimensions according to their same types. Its pattern ref- 
erences the “#dfrFORst” mapping association built by 
the previous statement. The loop head “dim:Dimension” 
is combined with building actions. Thus, all the dimen- 
sions, having the same type and belonging to a set of 
steps with the same names, will be merged as one varia- 
tion point of the DFR that is generated by the set of steps. 

The inner loop is executed for each sub-variation of 
some dimension of some step. Its rule builds a variant 
through merging a set of sub-variations with the same 
name. 

Note that the CV ratios of DFRs will be calculated 
according to the product sites of DFRs after the model 
transformation process. For those steps without sub- 
variations, only the outer loop will be executed for ana-
lyzing their commonality and variability. 

4. Related Work and Discussion 

Some researchers have studied how to extend use cases 
with variability. They exploit and extend the use cases 
for product lines in different perspectives and by differ- 
ent means. For example, Jacobson et al. [8] introduce 
variation points into use case diagrams and use them to 
describe different ways of performing actions within a 
use case. Gomaa [22] and John and Muthig [13] intro- 
duce stereotypes, such as <<variant>>, <<kernel>> and 
<<optional>> for use cases for modeling families of sys- 
tems. Most research remains the documentation of vari- 
abilities, but ignores the principle of SPLE, i.e. proactive 
reuse. Topics such as how to systematically reuse exist- 
ing requirements to derive domain requirements lack 
enough research. In this paper, we extend use cases with 
a multi-dimensional structure for modeling the variability, 
and record the product site of each step in use cases. 
These extensions support systematic reuse of domain 
knowledge by deriving domain requirements from exist- 
ing use cases, and analyzing the commonality and vari- 
ability. 

Many domain analysis methods, such as FODA (Fea- 

ture-Oriented Domain Analysis) [6], FORM (Fea- 
ture-Oriented Reuse Method) [7], SCV (Scope, Com-
monality, and Variability) [10], RSEB [8] and Fea- 
tuRSEB [9], identify and document the commonalities 
and variabilities of related systems in a domain. Never- 
theless, these typical domain analysis techniques mostly 
depend on domain experts’ knowledge and experience to 
manually acquire commonalities and variabilities. In ad- 
dition, Braganca and Machado [23] and Wang et al. [24] 
propose automated approaches to transformation between 
feature models and use cases. Our approach comple- 
ments the existing domain analysis techniques by pro- 
viding automated support for developing DFRs from use 
cases. 

Manual effort is yet indispensable in our approach. 
First, analysts must scope domain requirements and for- 
mulate domain terminology. Second, each use case must 
be specified with the predefined use case metamodel and 
unified domain terminology, which helps uncover the 
incompleteness and inconsistency of existing require- 
ments to a certain degree. Although NLP techniques 
could be incorporated into DFRs development to mini- 
mize the manual operation cost [4], their accuracy can 
not yet be guaranteed sufficiently. Third, a comprehend- 
sive analysis of variability dependencies must be done by 
analysts in terms of domain context. In summary, domain 
experts still play an essential role in the DFRs develop- 
ment. 

5. Conclusions 

In this paper, we propose an automated approach to 
DFRs derivation using the metamodeling and model 
transformation techniques. The main contribution is to 
present a model-driven approach to domain requirements 
analysis. The approach complements the existing domain 
analysis techniques by reducing the manual operation 
cost and improving the efficiency in DFRs development, 
which further enhances the transition process from sin- 
gle-system engineering to SPLE. In addition, the model 
transformation definition documents the traceability in- 
formation between DFRs and use cases, which helps 
manage domain requirements and trace their rationale for 
decision making in SPLE. 

Our future work is twofold. First, we will further im- 
prove our current approach, especially exploring how to 
handle the complex constraint dependency. Second, we 
will verify our approach through an in-depth experiment- 
tal study. 

6. Acknowledgements 

This work is supported by the National Natural Science 
Foundation of China (NSFC No. 60773088), the National 



Model-Driven Derivation of Domain Functional Requirements from Use Cases 

Copyright © 2010 SciRes.                                                                                 JSEA 

881

High-tech R & D Program of China (863 Program No. 
2009AA04Z106), and the Key Program of Basic Res- 
earch of Shanghai Municipal S & T Commission (No. 
08JC1411700). 

REFERENCES 

[1] P. Clements and L. Northrop, “Software Product Lines: 
Practices and Patterns,” Addison Wesley, Boston, 2001. 

[2] K. Pohl, G. Bockle and F. van der Linden, “Software 
Product Line Engineering: Foundations, Principles and 
Techniques,” Springer Verlag, Heidelberg, 2005. 

[3] C. W. Krueger, “Easing the Transition to Software Mass 
Customization,” Proceedings International Workshop on 
Product Family Engineering, Bilbao, 2001, pp. 282-293. 

[4] N. Niu and S. Easterbrook, “Extracting and Modeling 
Product Line Functional Requirements,” Proceedings 
RE’08, Barcelona, 2008, pp. 155-164. 

[5] R. Prieto-Diaz, “Domain Analysis for Reusability,” Pro- 
ceedings 11th Annual International Computer Software 
and Applications Conference, Tokyo, 1987, pp. 23-29. 

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. 
S. Peterson, “Feature-Oriented Domain Analysis (FODA) 
Feasibility Study,” Technical Report CMU/SEI-90-TR- 
021, Software Engineering Institute, Canadian Mennonite 
University, 1990. 

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh, 
“FORM: A Feature-Oriented Reuse Method with Do-
main-Specific Reference Architectures,” Annals of Soft- 
ware Engineering, Vol. 5, No. 1, 1998, pp. 143-168. 

[8] I. Jacobson, M. Griss and P. Jonsson, “Software Reuse: 
Architecture Process and Organization for Business Suc-
cess,” Association for Computing Machinery Press, 1997. 

[9] M. L. Griss, J. Favaro and M. D. Alessandro, “Integrating 
Feature Modeling with the RSEB,” Proceedings of Inter- 
national Conference on Steel Rolling’98, Victoria, 1998, 
pp. 76-85. 

[10] J. Coplien, D. Hoffman and D. Weiss, “Commonality and 
Variability in Software Engineering,” IEEE Software, Vol. 
15, No. 6, 1998, pp. 37-45. 

[11] M. Moon, H. S. Chae and K. Yeom, “An Approach to 
Developing Domain Requirements as a Core Asset Based 
on Commonality and Variability Analysis in a Product 
Line,” IEEE Transactions on Software Engineering, Vol. 
31, No. 7, 2005, pp. 551-569. 

[12] E. de Almeida, J. Mascena, A. Cavalcanti, A. Alvaro, V. 
Garcia, S. de Lemos Meira and D. Lucrédio, “The Do- 
main Analysis Concept Revisited: A Practical Approach,” 
Proceedings of International Conference on Steel Roll-
ing’06, Turin, 2006, pp. 43-57. 

[13] I. John and D. Muthig, “Tailoring Use Cases for Product 
Line Modeling,” Proceedings of Requirements Engineer-
ing for Product Lines’02, Essen, 2002, pp. 26-32. 

[14] Z. Zhang, “Model Component Reuse-Conceptual Foun- 
dations and Application in the Metamodel-Based Systems 
Analysis and Design Environment,” Ph.D. dissertation, 
Jyvaskyla Studies in Computing 39, University of Jy-
vaskyla, 2004. 

[15] A. G. Kleppe, J. B. Warmer and W. Bast, “MDA Ex- 
plained: The Model Driven Architecture: Practice and 
Promise,” Addison Wesley, Longman Publishing Co., Inc., 
Boston, 2003. 

[16] S. Sendall and W. Kozaczynski, “Model Transformation: 
The Heart and Soul of Model-Driven Software Develop- 
ment,” IEEE Software, Vol. 20, No. 5, 2003, pp. 42-45. 

[17] A. Cockburn, “Basic Use Case Template,” 2010. http:// 
alistair.cockburn.us/Basic+use+case+template. 

[18] A. Kalnins and J. B. E. Celms, “Model Transformation 
Language MOLA,” Proceedings of Working Conference 
on Model Driven Architecture: Foundations and Applica- 
tions (MDAFA’04), Linköping, 2004, pp. 62-76. 

[19] I. Jacobson, “Object-Oriented Software Engineering: A 
Use Case Driven Approach,” Addison Wesley, Woking- 
ham, England, 1992. 

[20] Object Management Group, “Unified Modeling Language 
(UML), version 2.2,” 2010. http://www.omg.org/techno- 
logy/documents/formal/uml.htm. 

[21] A. Cockburn, “Writing Effective Use Cases,” Addison 
Wesley, Boston, 2001. 

[22] H. Gomaa, “Object Oriented Analysis and Modeling for 
Families of Systems with UML,” Proceedings of Inter- 
national Conference on Steel Rolling’00, Vienna, 2000, 
pp. 89-99. 

[23] A. Braganca and R. J. Machado, “Automating Mappings 
between Use Case Diagrams and Feature Models for 
Software Product Lines,” Proceedings of Southern Pover- 
ty Law Center’07, Kyoto, 2007, pp. 3-12. 

[24] B. Wang, W. Zhang, H. Zhao, Z. Jin and H. Mei, “A Use 
Case Based Approach to Feature Models’ Construction,” 
Proceedings RE’09, Atlanta, Georgia, 2009, pp. 121-130. 

 

 


