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ABSTRACT 

Wigmore’s charts and Bayesian networks are used to represent graphically the construction of arguments and to evalu-
ate them. KAOS is a goal oriented requirements analysis method that enables the analysts to capture requirements 
through the realization of the business goals. However, KAOS does not have inbuilt mechanism for evaluating these 
goals and the inferring process. This paper proposes a method for evaluating KAOS models through the extension of 
Wigmore’s model with features of Bayesian networks. 
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1. Introduction 

The alignment of requirements analysis to business goals 
and objectives is essential for the return of investment of 
any project. KAOS is a goal driven requirements analysis 
method that defines a goal tree with parent and sub goals. 
KAOS assumes that achieving all sub goals of a parent 
goal will guide to the achievement of the parent goal. 
The inferring process in KAOS is informal, due to the 
nature of deduction in KAOS, which is based on the as-
sumption that the completion of sub goals leads deci-
sively to the parent goal. However, there is no guarantee 
that the previous assumption is always valid. The lack of 
precise assessment for KAOS goals requires further con-
sideration. Usually, in realty some sub goals does not 
lead to the parent goal due to some contextual knowledge 
that was not measured completely in KAOS representa-
tion. Another cause of the uncertainty of goals originates 
from the possibility of assigning multiple values to one 
goal rather than only two possible values (true or false), 
which is the only option taking into account in the cur-
rent features of KAOS. For instance, if one of the sub 
goals was completed partially, there is no feature to 
measure the impact of this sub goal to the parent goal. 

This paper takes into account the possibility of failures 
in achieving the ultimate goals in KAOS models. This 
paper will propose a new graphical representation model, 
which can absorb KAOS models to be represented 
through it. The new model enables analysts to provide 
measurable ultimate goals accompanied with probability 
to give analysts statistical results. These results will fa-
cilitate the evaluation process of the whole KAOS model. 
The new Model will formalize the inferring process to be 

mathematically valid. 

2. KAOS 

KAOS is a goal oriented requirements analysis method, 
developed by University of Oregon and university of 
Louvain. KAOS stands for Knowledge Acquisition in 
automated Specification [1]. The main advantage of 
KAOS over other requirements analysis methods, which 
are not part of the goal analysis family, is its ability to 
align requirements to business goals and objectives. This 
alignment increases the chances that the new develop-
ment will add value to business. 

KAOS focus on realizing and indicating the business 
goals, then specifying the requirements that infer to the 
business goals. “Each goal (except the leaves, the bottom 
goals) is refined as a collection of sub goals describing 
how the refined goal can be reached” [2]. The structure 
of the various connected requirements and goals is rep-
resented hierarchically in graphical notation in an up-
wards direction. The top goals are strategic objectives for 
the business. As low as the diagram level reaches as 
closer to the low level requirements. The root of the dia-
gram is the ultimate business goals. Then, the analysts 
must identify the penultimate goals followed by the 
lower goals and so on. The previous step is recurring 
until the analysts reach the basic goals. The lower goals 
are linked with the parent goals through union. The union 
indicates that the completion of the lower goal success-
fully will definitely cause the completion of their parent 
goal. Figure 1 shows an example of a simplified KAOS 
model. KAOS main focus is on the business require-
ments, disregarding if this requirement is part of the     
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Figure 1. An example of KAOS. 
 
computer system requirements or not. Each goal is ac-
companied with obstacles and the stakeholders involving 
in this goal. A limitation of KAOS is the lack of any in-
ference evaluation capabilities. The achievement of sub 
goals does not imply the achievement of their parent 
goals in all cases. The next section presents a review of 
two candidate approaches to solve this issue. 

3. Related Work 

In this section, two graphical representation models will 
be studied as possible methods to evaluate KOAS models. 
The features of these approaches will be examined to 
check the suitability of them to enclose KAOS models. 

3.1. Bayesian Networks 

Bayesian Network (BNs) is a general statistical tool that 
can be applied to various applications. BNs are helpful to 
assess the weight or the influences of premises, to deter-
mine the strong inference links. [3] Bayesian Network is 
a graphical representation tool using symbols, numbers 
and arrows to enable analysts to reason logically far from 
doubt. It is an appropriate tool to gather and analyze evi-
dences, in order to produce strong arguments. There are 
two components to construct BNs. First, nodes are rep-
resenting the noticed evidential facts, propositions and 
variables. Second, arrow that connects between various 
nodes in the diagram. These arrows indicate the depend-
ency probabilities. The value or the weight of each node 
is affected by the value of the nodes influencing this 
node and linked with it. The final conclusion of the net-
work is affected by the probabilities of each proposition 
and inference. (See Figure 2) 

Bayesian Network is a method to reason logically and 

rationally using probabilities. The simplest way to under-
stand the goals of BNs is to think of a circumstance you 
need to “model a situation in which causality plays a role 
but where our understanding of what is actually going on 
is incomplete, so we need to describe things probabilisti-
cally” [4]. There, BNs allow analysts to compute the 
overall probability of the final conclusion. By, computing 
the probability of propositions connected directly, then 
the higher connections, then the higher and so on. The 
benefits from BNs are obvious in the prediction of out-
comes in doubtful cases. Also, the benefits are apparent 
in the detection of the causes of certain results. The in-
fluencing relations are not decisive but probabilistic; the 
precise probability is assigned for each node and relation. 
BNs are a Directed Acyclic Graph. BNs are constructed 
from nodes and directed links. Arrows that connect vari-
ous propositions are accompanied with the probabilistic 
information required to define the probability distribution 
all over the network. To achieve that, initial probability 
value should be assigned to the nodes with no earlier 
nodes. Then, calculate the provisional probability for the  
 

 

Figure 2. Simple bayesian network. 
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rest of the nodes and for all possible combinations of 
nodes and their antecedents. BNs permit the computation 
of the provisional probabilities of every node, bearing in 
mind that the value of some of the nodes has been speci-
fied before that computation took place. The diagrams’ 
direction of Bayesian Network is downwards. In brief, 
the strength of the final argument is affected by the 
probability calculations of the supporting evidences and 
facts. The connections in the network represent the direct 
inference probabilities. The structure of the network il-
lustrates the probabilistic dependency between various 
variables in a case. Each node is accompanied with a 
conditional probabilistic table of that node. The mixture 
of values for the nodes' ancestors will be provided. 
[5].The main incompatibility between Bayesian Net-
works and KAOS modeling is the fact that the direction 
of BNs is downwards which contradicts with the deduc-
tion process of KAOS. However, the probabilities feature 
is an important aspect to be added to the evaluation 
process. 

3.2. Wigmore’s Chart 

Wigmore’s chart (WC) was created by John Henry Wig-
more (1913) to help lawyers. [6] Wigmore’s chart acts as 
a legal reasoning diagramming method. Wigmore’s chart 
considered as an argument diagramming techniques to 
demonstrate the structure of reasoning and inferring for 
an argument in a legal case. The diagram as a whole 
identifies the logic, structure and grounds behind the 
reasoning of arguments in legal cases. WC is a tool 
which enables the creation of arguments followed by the 
examination of those arguments, then the recreation of 
those arguments. WC is valuable in cases surrounded 
with doubt and uncertainty. In order to create WC, ana-
lysts of legal cases must identify the connections in all 
steps of the arguments. Then, the analysts should break-
down the argument into propositions and facts. After that, 
the analysts should connect these facts and propositions 
together towards inferring the final conclusion of that 
argument. The chart method of Wigmore has a number 
of symbols to represent the different types of proposi-
tions and evidences. These symbols are connected with 
arrows to specify the direction, influence and weight of 
the inference. The final conclusions of the chart illustrate 
the logical deduction of the propositions and facts that 
assemble the inference. One of the main characteristics 
of WC is the production of key lists. The key list con-
tains a list of all propositions, facts, evidences and as-
sumptions, which are used to build the final conclusion 
of the arguments presented. In addition, inference maps 
show the gathering and linking process of evidences, this 
validates the argument construction procedure. The chart 
direction is upwards from facts to assumptions. The chart 

contains symbols, numbers and arrows only, but, will be 
accompanied with a key list clarifying the statement of 
each proposition or evidence (see Figure 1). There are 
five main symbols required for the construction of the 
Chart Method of Wigmore according to Schum [7] (See 
Figure 3). 

Wigmore’s chat properties can be used to evaluate the 
deduction process of KAOS models. But, the lack of 
measurable results affects the reliability of the evaluation 
process of KAOS models. 

3.3. Comparison 

Bayesian networks and Wigmore’s chart have valuable 
features, which can aid the needed evaluation of KAOS 
models. However, their weakness does not provide a 
sufficient method for evaluation. The following table 
compare the two models. 
 

Bayesian Networks Wigmore Chart 

Based on statistics, using prob-
abilities calculation for prem-
ises and relations  

Based on the natural logic of 
rea-soning. In addition to the 
skills and knowledge of the chart 
creators 

The network direction is down- 
wards 

The chart direction is upwards 

Not extendable notations, BN is 
a Directed Acyclic Graph 

Extendable notations, richer se- 
mantics and it has some under-
standing of what it represents 

Applicable to wide range of 
domains, used in various ap-
plications 

Designed for law domain, but 
can be applied to other domains 
only if it can be extended  

Produce supportive probabilis-
tic arguments for the final con- 
clusion 

Enable the production of argu-
ment in favour and disfavour of 
the desired outcome 

More Complex generation Less complex generation 

Top down approach 
Enable Top down and Bottom 
up approaches 

Measurable results, not decisive
Either for or against the intended 
outcome 

The perspective of the creators 
does not play any role in the 
outcome of the network 

The Chart Method of Wigmore 
allows the occurrence of multi-
ple evaluations and considera-
tions of same evidences in legal 
cases, from various perspec-
tives. 

The information flow from the 
basic fact or variable to the final 
outcome or goal 

The information flow from the 
final outcome or goal to the basic 
fact or variable  

 
As shown in the earlier comparison, the need to combine 

selected features from these two approaches could prove 
to be beneficial in terms of producing valuable method to 
evaluate KAOS models, as explained in the next section. 



Requirements Analysis: Evaluating KAOS Models 

Copyright © 2010 SciRes.                                                                                 JSEA 

872 

 

Figure 3. An example of wigmore chart. 
 

4. Extending Wigmore’s Chart 

Bayesian networks and Wigmore’s chart have number of 
practical and valuable features. The integration of some 
of these features will offer a model with superior capa-
bilities and usage. The offered model will encapsulate 
several characteristics from both earlier models that do 
not contrast with each other. The extended model has to 
capture the properties, which are compatible with each 
other. This will allow the production of useful model, 
which facilitates the graphical representation of various 
tasks. 

The suggested model extracts most of its properties 
from the chart method of Wigmore with the inclusion of 
one property of Bayesian networks and other external 
aspects. The model has to include additional aspects in 
order to address the gaps, which are not fulfilled com-
pletely by BNs and WC. The new model has several fea-
tures. First, it enables both Top down and Bottom up 
Approaches, in order to facilitate the generation of mod-
els starting from the basic premises or starting from the 
desired conclusion. Second, the new model allows the 
production of measurable results to provide more accu-
rate and reliable representation, through the introduction 
of probabilistic calculations. The third feature states that 
the new model should be extendable to be applicable to 
various domains. This is related to the notations of the 
models and the observation of contextual knowledge. 
Fourth, the new model eases the creation of representa-
tion supporting the desired goal, and against the desired 
goals. Finally, the new model will eliminate the com-
plexity and ambiguity raised from representing the mul-
tilayered nature of cases or similar repetitive patterns. 
This multilayered nature could cause high complexity as 
stated by Hepler “If all these features are represented in 
one diagram, the result can be messy and hard to inter-
pret” [8]. Another cause of complexity is the reappear-

ance of a similar pattern of evidences and relations be-
tween facts and propositions, within the same case or in 
similar cases. And it would be “wasteful to model these 
all individually” [8]. It allows any network to contain an 
instance of another network without showing the detailed 
structure until requested. Moreover, it authorizes the 
creation of general networks that contains repeated pat-
terns of evidences and relations, which can be reused 
after few amendments to customize the structure to the 
current case. This feature can be represented in the dia-
gram as a special symbol. This model aims to simplify 
the creation of probabilistic graphical models and to 
convert the presentation into more efficient and under-
standable form.  

There are six main symbols required for the construc-
tion of the new model. The five foremost symbols are 
derived from Wigmore’s chart in a generalized manner to 
make them applicable to various domains. The last sym-
bol is to represent the new feature of representing a re-
peated pattern or inclusive diagram.  First, white circles 
are representing the directly related propositions or goals. 
Second, the black circle is a symbol of the directly re-
lated facts. Third, white squares stand for the subsidiary 
propositions. Fourth, the Black squares, which corre-
sponds to the subsidiary facts. Fifth, arrows are showing 
the flow of relations between propositions and facts. Ar-
rows are used to clarify the inference logic or flow in the 
arguments. Finally, the black rectangle illustrates the 
presence of repetitive pattern or another inclusive dia-
gram. The number inside the rectangle will refer to the 
final conclusion of the repeated pattern or inclusive dia-
gram. The diagram direction is upwards. Every symbol 
will be accompanied with the probability calculation 
function, which will calculate the provisional probability 
of each node based on the probabilities of the precedent 
directly connected nodes. The black circles and squares 
will be assigned with initial probability values.  

There are a series of sequential steps to construct the 
new model representation. First, the analysts should start 
by identifying the ultimate goal from the analysis. Sec-
ond, the analysis team should realize and assign the final 
conclusion of the model usage, the penultimate proposi-
tions which support the final conclusion and the middle 
propositions that support the higher propositions. The 
previous step could be repeated recursively. Third, the 
analysis team have to define the provisional facts and 
evidences that support all of the propositions in the chart. 
This can happen by indicating the scenario behind the 
construction for or against the goal of the analysis team 
in this case. Fourth, the analysts have to list all key 
premises and inference links to simplify the construction 
process. Fifth, analysts should commit to the appropriate 
construction of the model, by using the accurate symbols 
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and right features. Numbers will be assigned to each 
symbol indicating the correct proposition or fact from the 
key list. Finally, after the existence of real arguments, the 
evaluation process should start. The analysis team should 
assess the arguments and evidences behind them. The 
analysts have to assign the initial probability values then 
calculate the provisional probabilities for the whole dia-
gram. Afterwards, the joint probability for the whole 
diagram must be calculated, according to the probability 
computations rules. By this, the evaluation process could 
be emphasized. This will help to generate measurable 
outcomes to solve various issues. Figure 4 presents the 
usage of the new models symbols. The next section will 
provide a glimpse about the significant of using our new 
model. 

5. Evaluation KAOS 

This section will show how the new extended model 
could be used to evaluate KAOS. The extended model 
will enclose KAOS goals and provide a measurable 
evaluation of the possibility of achieving the final out-
come. Figure 5 shows a basic KAOS model with three 
goals. 

The constructed KAOS model could be evaluated by 
transferring the current goals and requirements in this 
KAOS model to the new models’ graphical representa-
tion. This step is quite simple. The new model is simi-
larly upwards. Each goal will be in the same position in 
the diagram as it was. The direct goals and requirements 
are represented as white and black circles. All nodes in 
KAOS tree will be represented as circles, the basic re-
quirements with no earlier nodes are black and the goals 
are white. The accessory goals and requirements corre-
spond to white and black squares. In the new model, 
analysts will be allowed to represent partially related 
goals and their requirements as squares, the basic related 
requirements are black and the related goals are white. 
Unions inside the KAOS model can be represented as 
arrows in the model. The constraints within KAOS 
model can be represented as a rectangle, which can 
symbolize the contextual knowledge or any compound 
model that involves repeated pattern or another model 
structure.  

Figure 6 shows how to enclose the previous KAOS 
model into the new model. Then, the initial probability 
values have to be assigned to the nodes in the diagram. 
After that, analysts have to calculate and assign the pro-
visional probability to all goals. These provisional prob-
abilities will be produced by computation functions as-
signed with the inference process, which will calculate 
the provisional probability of each node based on the 
probabilities of the precedent directly connected nodes. 
This function should be following the acknowledged 

probability rules. 

6. Conclusions 

This paper proposed an extension of Wigmore’s chart 
model, intended for evaluating the inference process 
among goals in KAOS models. Additionally, it provided 
a mechanism to measure the possibility of achieving a 
parent goal if its sub goals are achieved. 
 

 

Figure 4. An example of the new model with sample prob-
abilities. 
 

 

Figure 5. A basic KAOS model. 
 

 

Figure 6. An example of the new model with the accompa-
nied provisional probabilities. 
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Both Wigmore’s chart and Bayesian networks were 
reviewed before an extended Wigmore’s chart could be 
proposed. The new model provides a mathematical eva- 
luation of KAOS, increasing the chances of constructing 
the right model. The new model presents a method for 
producing measurable results of the overall goals.  

The main obstacle of the proposed evaluation ap-
proach is that it is not always feasible to know and assign 
the possibility of the inference from the leaves to the 
parent node. The proposed model suggested the use of a 
new separate model rather than extending KAOS model. 
This is to avoid adding complexity to KAOS models, in 
addition to the standardization grounds.  

This work can be extended by building on the mathe-
matical properties of the extended Wigmore’s chart and 
by identifying advanced means for assigning the initial 
probability values. 
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