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Abstract In this paper, we give a description of the derived category of a tubular algebra by calculating the dimension 
vectors of the objects in it. 
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1. Introduction
Let 

  be a basic connected algebra over an algebraically 
closed field k. We denote by mod 

  the category of all 
finitely generated right 

 -modules and by ind 

  a full 
subcategory of mod 

 containing exactly one 
representative of each isomorphism class of 
indecomposable 

 -modules. For a 

 -module M,  we 
denote the dimension vector by dim M. The bounded 
derived category of mod 

  is denoted by Db( 

 ). We 
denote the Grothendieck group of 

 by  K0( 

 ), Auslander-
Reiten translation by �� , the Cartan matrix by C



. Let �

  

be the repetitive algebra of 

 , mod �

  the stable module 
category. When the global dimension of  

  is finite, C



 is 

invertible by [1], and Db( 

 ) is equivalent to mod �

  as 
triangulated categories  by [2]. 
     By [1], a tubular extension A of a tame-concealed 
algebra 
of extension type T = (2, 2, 2, 2), (3, 3, 3), (4, 4, 2) or (6, 3, 
2) 
is called a tubular algebra. For example, the canonical 
tubular algebras of T  (2, 2, 2, 2) is  determined by the 
following quiver with relations. 
   
 
 
 
 
 
 
 
 

 
By [1], global dimension of a tubular algebra A is 2, then 

Db(A) is equivalent to mod �A . And tubular algebras of the 
same extension type are tilt-cotilt equivalent, see [3]. Then 
we only consider the derived categories of canonical tubular 
algebras, whose structures are given in [4]. 

( )  b
rr Q

D A T
�

	 m  

where (1) for any r Q, r is the standard stable P1(k)- 
tubular family of type T; 
(2) for any r Q, r is separating  ss r

T
�
m  from  ur u

T
�
m . 

Based on the results above, we give a description of the 
derived category of a canonical tubular algebra by 
calculating the dimension vectors of the objects in it. 
 

2. Description of The Derived 
Categories of Tubular Algebras In 
Terms Of Dimension Vectors

 
In this section, let A be a canonical tubular algebra of 

type T. 
Definition 1.1. ([1]) Let n be the rank of Grothendieck 

group K0(A), 
AC  the Cartan matrix of A. Then 

(1) The Coxeter matrix 
AY  is defined by T

A AC C��  

(2) The quadratic form AU  in n�  is defined by 

11( ) ( )
2

T T
A A AC CU � � �� �	 � 
  

for any �  in n� . 

(3) Let 0 ,h h� be the positive generators of rad AU . For an 

A module M, define 

0 (dim )( )
(dim )

l Mindex M
l M�

	 �  

where  

0 0(dim ) (dim ) ,

(dim ) (dim ) .

T T
A

T T
A

l M h C M
l M h C M

�

�
� �

	

	
 

In particular, for any 

0 0rad ,  ,A r h r h� U � � �� 	 
 where 

0
0

, .  Then, index( ) .rr r
r

� �
� � 	�  
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(4) rad A� U�  is called a real (respectively, imaginary) 
root, 

if 11( ) ( ) 1
2

T T
A A AC CU � � �� �	 � 
 	  (respectively, = 0). 

It is well known that there exists a ”minimal ” imaginary 
root �  such that rad .AU �	 �   

Now we recall some results in [4]. Let 
  be a finite 

dimensional k algebra and �
  the repetitive algebra. 
Denote 
by �( )P 
  the subgroup of  �

0 ( )K 
  generated by the 

dimension vectors of indecomposable projective �

modules. 

Lemma 1.2. � �
0 0( ) ( ) ( ).K K P
 	 
 
 


Definition 1.3. Let �
0 0: ( ) ( )K K-
 
 � 
 be the 

projective morphism. Define �
0dim : mod ( )K
 
 � 
  

where for any �
 -module X, dim (dim ).X X-


	

Lemma 1.4. Let 
Y be the Coxeter matrix of 
 ,  �� the 

Auslander-Reiten translation of �
 . Then  

                     dim (dim ) .X X�


	 Y�  

Note that if 
  has finite global dimension, we have a 

triangulated equivalence: �: ( ) modbDK 
 � 
 . For an 

object ( ),  define dim ( 1) dim .b i i

i
X D X X� 
 	 �!� �  

Then we have 

Lemma 1.5. dim dim ( ).X XK
	� �   
By representation theory of Auslander-Reiten quivers in 

[5] 
and the results above, we have a method to describing the 
derived category of a canonical tubular algebra in terms of 
dimension vectors. 

Theorem 1.6. Let A be a canonical tubular algebra of 
type 
T, the rank of 0 ( )K A be n. Then  

(1) Let ��  be the minimal imaginary root in �
0 ( )K A  

corresponding  the P1(k)- tubular family rT , and let 

�dim ( ).A� �	  Then  � is determined by ( ) 0.AU � 	  
(2) Let X be an object in the bottom of a tube of rank r in 

rT . Then dimA X is determined by the following: 

1

1

1(dim ) dim ( )(dim ) 1
2( )

dim (dim ) (dim ) .

A A AT T
A A A

A A A r
A A

X X C C X

X X X

U

�

� �

�

� 	 � 
 	�M �
� 
 Y 
 
 Y 	� �

Proof. (1) By [4], 0 0 rad ,Ar h r h� U� �	 
 � and thus 

( ) 0.AU � 	  Since 
0

index( ) ,r
r

� �	 ��  where 

0 , ,r r� ��  and  0( , ) 1,r r� 	 it suffices to calculating 

0  and .r r�  
(2) Directly from Lemma 1.4 and 1.5.  
 

Example 1.7. Now let A be a canonical tubular algebra of 
type T(2, 2, 2, 2). The Cartan matrix and Coxeter matrix are 
as following:  

1 1 1 1 1 2 1 1 1 1 1 2
0 1 0 0 0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1

, .
0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1

A AC

� � � � � �5 2 5 2
3 0 3 0�3 0 3 0
3 0 3 0�

	 Y 	3 0 3 0
�3 0 3 0

3 0 3 0�
3 0 3 03 0 3 0
4 1 4 1

 

For each object �mod ,X A�  denote 

1 2 6dim ( , , , ),A X x x x	 �   

Then  
25

1 6

2
(dim ) ( ) .

2
A

A i
i

x xX xU
	



	 �!  

(1) Description of the minimal imaginary root � . 
Case 1. If 0 1(mod 2)r r�
 I  

1 0 0 0 0 0(2 , , , , , 2 ).r r r r r r r r r r� � � � � �	 
 
 
 
  

Case 2. If 0 0(mod 2)r r�
 I  

0 0 0 0
2 0( , , , , , ).

2 2 2 2
r r r r r r r rr r� � � � �

�


 
 
 

	  

(2) Description of dimA X where X is an object in the 
bottom of a tube of rank 2.  

  If 1 0, that is 1(mod 2),r r� � �	 
 I  ( ) in Theorem 
1.6 should be as follows: 

6 5 5
2

1 6 1 6
1 2 2

5

6 0
2

5

1 6 0
2

5

1
2

2 1

2 2

2 2

i i i
i i i

i
i

i
i

i
i

x x x x x x x

x x r

x x x r r

x x r

	 	 	

	

�
	

�
	

� � � 
 	�
�
�

� 	��
�
� � � 	 

�
�
� � 	��

! ! !

!

!

!

 

Then, 
25

0

2
( ) 1.

2i
i

r rx �

	



� 	!  

case 1. We have four different tubes of rank 2. 
(i)
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0 0
0

0 0

1 1d im ( , , ,
2 2
1 1               , , )

2 2

A r r r rX r

r r r r r

� �

� �
�


 � 
 �
	


 
 
 

 

0 0
0

0 0

1 1d im ( , , ,
2 2
1 1               , , )

2 2

A r r r rX r

r r r r r
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� �
�


 
 
 

	


 � 
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�
 

 
 
(ii)

0 0
0

0 0

1 1dim ( , , ,
2 2
1 1               , , )

2 2

A r r r rX r

r r r r r

� �

� �
�


 � 
 

	


 � 
 

 

0 0
0

0 0

1 1dim ( , , ,
2 2
1 1               , , )

2 2

A r r r rX r

r r r r r
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� �
�


 
 
 �
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�
 

(iii)

0 0
0

0 0

1 1dim ( , , ,
2 2
1 1               , , )

2 2

A r r r rX r

r r r r r

� �

� �
�


 � 
 

	


 
 
 �
 

0 0
0

0 0

1 1dim ( , , ,
2 2
1 1               , , )

2 2

A r r r rX r

r r r r r
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� �
�


 
 
 �
	


 � 
 


�
 

(iv)

0 0
0

0 0

1 1d im ( 1, , ,
2 2

1 1               , , 1)
2 2

A r r r rX r

r r r r r

� �

� �
�


 
 
 

	 



 
 
 




 

0 0
0

0 0

1 1d im ( 1, , ,
2 2

1 1               , , 1)
2 2

A r r r rX r

r r r r r
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� �
�


 � 
 �
	 �


 � 
 �
�

�
 

If 2 ,� �	  ( ) in Theorem 1.6 should be as follows: 

6 5 5
2

1 6 1 6
1 2 2

5

6 0
2

5
0

1 6
2

5

1
2

2 1

2

2

2

i i i
i i i

i
i

i
i

i
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x x x x x x x

x x r
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Then, 
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0

2
( ) 1.
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i
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case 2. When r0+r1 2 (mod 4), we have four different 
tubes of rank 2. 
 
 
 
(i)

0 0 0

0 0

1 2 2dim ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� �

� � �

� 
 
 
 �
	


 � 
 � �
 

0 0 0

0 0

1 2 2dim ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� � �
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 � 
 

	


 
 
 
 


�
 

(ii)

0 0 0

0 0

1 2 2dim ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� �
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� 
 � 
 

	


 � 
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0 0 0

0 0

1 2 2dim ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� � �
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 �
	


 
 
 
 


�
 

(iii)

0 0 0

0 0

1 2 2d im ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� �
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� 
 � 
 �
	


 
 
 � �
 

0 0 0

0 0

1 2 2d im ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� � �
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 � 
 
 


�
 

(iv)
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0 0 0

0 0

1 2 2d im ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� �
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� 
 � 
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 � 
 
 �
 

0 0 0

0 0

1 2 2d im ( , , ,
2 4 4

2 2 1               , , )
4 4 2

A r r r r rX

r r r r r

� � �
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 � 
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case 3. When r0+r1 0 (mod 4), we have four different 
tubes of rank 2. 
(i)

0 0 0

0 0

1d im ( , , ,
2 4 4

4 1               , , )
4 4 2

A r r r r rX

r r r r r

� �
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