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ABSTRACT 

Linear governing equations are formulated for 
the depth decay of the pressure and velocity 
variations associated with propagating surface 
gravity waves. These governing equations come 
from combining Bernoulli’s equation for steady 
frictionless flow along a streamline and the cross- 
stream force balance involving gravity, the cen- 
trifugal force and a pressure gradient. Qualitative 
solutions show that the pressure decreases down- 
ward faster than the velocity does and at a rate 
that is probably not the normal exponential de- 
crease, which does not agree with the classical 
result. The radius of curvature of the streamlines 
is a non-constant coefficient in these equations 
and it needs to be supplied, either from meas- 
urements or another theory, in order to complete 
the solution of the derived governing equations. 
There is no sensitivity of the solution to the ex- 
act path the radius of curvature takes between 
its minimum value at the surface of a crest and 
trough and infinity at great depth. In the future 
measurements, perhaps streak photographs, will 
be needed to distinguish between the new and 
old theories. 
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1. INTRODUCTION 

The finite depth of wave influence for the surface 
gravity wave has been recognized since the 1600s when, 
in a diving bell on the bottom of the English Channel, 
Edmond Halley described how he could work on salvag-
ing sunken treasure undisturbed by the waves at the sur-
face [1]. Now, submarines can ride out a storm at sea in 
comfort while submerged at a depth greater than or equal 
to about one typical wavelength. 

A mathematical explanation of this phenomenon has 
been available since the 1800s in which both the pressure 

and the velocity variations decay exponentially with in-
creasing depth away from the mean free surface and at 
the same decay rate, or e-folding scale that is propor-
tional to the wavelength [2]. 

In 1942 there came a purely physical explanation due 
to Sverdrup [3]. Since the vertical acceleration of the 
fluid is downward at a crest and upward at a trough, 
pressure variations at a fixed depth due to the combined 
effects of the acceleration of gravity and of the vertical 
fluid acceleration, will vanish when the fixed depth is 
sufficiently large. Part of this explanation also involves 
the realization that a vertical column of water raised to 
the surface from the fixed depth of constant pressure is 
larger under a crest than under a trough, and by an 
amount equal to the wave height, in fact. 

Sverdrup’s idea has a certain innate beauty because it 
can be contained in a nutshell and it is about as elemen-
tary as can be in this business. However, some sticking 
points are left out. For example, there is a presumption 
that at the depth where the wave pressure variations van-
ish, the velocity variations also vanish. It is not a priori 
obvious that this should be so. Also no guidance is pro- 
vided for how to relate this “depth of wave influence” to 
any other wave property, such as the wavelength. In 
other words, the idea itself is very interesting, but it ap- 
parently needs to be combined with ancillary information 
in order to become more useful [4]. In addition, the rate 
of decay of the wave properties with increasing depth is 
not specified. 

What is attempted below is to give a simple physical 
explanation for the depth decay rate for pressure and 
velocity variations. It is found, in contrast to the classical 
mathematical results, that the pressure and velocity 
variations decay at different rates, the pressure decaying 
faster than the velocity. And neither decay rate is the 
normal exponential one in all probability. 

One well-known example has existed for a consider-
able time, probably starting with Newton, in the field of 
steady fluid flow whereby pressure and velocity do not 
decrease at the same rate: solid body rotation inside a 
rigid cylinder oriented vertically with gravity acting down- 
ward [5]. This is sometimes called the problem of the  
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spinning bucket of water. Amazing is the controversy the 
spinning bucked problem has endured over the 300 years, 
which is related to the controversy surrounding the cen-
trifugal force in the minds of most physicists. At any rate, 
the velocity decays linearly inward from the cylinder’s 
surface to its center whereas the pressure decays quad-
ratically inward, as indicated by the parabolic shape of 
the air/water interface. Apparently this example did not 
generate any wider search within fluid dynamics for dis-
parate decay rates for pressure and velocity in other 
steady flows. 

However, Bernoulli’s equation has been there patiently 
waiting to point the way. In a single equation Bernoulli’s 
law combines terms the mathematician would designate 
as zeroth, first and second order. It would be a shame to 
destroy this wonderful equation by making a set of equa-
tions, each one of which contains only terms of the same 
order, but that is what the perturbation expansion tech-
nique is capable of doing. 

2. CALCULATION 

In order to approach answering the question of the de- 
cay rate of the wave properties with depth, two elemen- 
tary pieces of physics are put together: Bernoulli’s equa- 
tion for steady frictionless flow along a streamline and 
the balance between two equal but opposite forces on the 
curved flow below the crest of a wave, for example. 
Helpful for visualization here is the so called steady ref- 
erence frame in which the wave form is fixed in position 
and the fluid flows past the observer under the crest and 
trough in a sinusoidal pattern. 

As the fluid flows under the crest there is a upward 
centrifugal force acting on it due to the curvature of the 
fluid particle trajectory. The tendency of the centrifugal 
force is to tear water away from the top of the crest and 
fling it into the air. Since this is not observed to happen 
in most cases, the centrifugal force must be balanced by 
an equal but opposite force acting downward. Otherwise 
turbulence or chaos would result. In this situation the 
counter-balancing force has to be a pressure gradient plus 
the force of gravity. For small wave slopes gravity is the 
smaller of the two forces opposing the centrifugal force 
at the crest. However, no small slope assumption needs 
to be made in what follows. Just wave breaking must not 
take place in order to maintain steady motion. 

Friction is neglected in what follows. Constant density, 
or incompressibility, is adopted for convenience. Far 
below the wave surface the velocity of the fluid is con-
stant in magnitude, U, and direction, in accordance with 
observations. Normal to the mean flow and at the top of 
the crest the z-axis points up (the zero value is taken at 
the top of the crest). 

Bernoulli’s equation for steady frictionless flow along 
a streamline is 
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Where p is the pressure, V the speed of flow, ρ is the 
constant fluid density and g is the acceleration of gravity. 
For simplicity the constant in Eq.1 will be assumed to be 
the same for all streamlines. 

The force balance at the top of the crest is 
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Where R is the radius of curvature of the streamlines 
at and below the crest, and it is a function of z. 

Between Eq.1 and Eq.2 the pressure can be eliminated 
by first taking the z derivative of Eq.1 and then combin-
ing that with Eq.2, which produces 
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Unlike either equation it came from, Eq.3 is linear and 
therefore can be solved. It is also a first order ordinary 
differential equation. The only potential difficulty is that 
there is a non-constant coefficient, R (z), which informa-
tion needs to be supplied before the solution of Eq.3 can 
be completed. Observations might be used to delineate 
the radius of curvature function, for example. In any case, 
linearity is such an advantage for an equation over the 
usual nonlinearity in surface gravity wave problems that 
it is a worthwhile starting point while a search is taking 
place for a way around the difficulty of the non-constant 
coefficient. 

To see what can be learned without specifying the 
curvature function, separate variables in Eq.3 to get 
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Then each side of Eq.4 can be integrated separately 
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where V0 is a constant. Now both sides of Eq.5 can be 
raised to the exponential power to find 
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Go back to the starting point of Eq.1 and Eq.2 and 
eliminate V between them to get the pressure equation. 
What will be found is an equation very similar to Eq.4, 
with p replacing V, except for one important difference: a 
factor of 2 on the RHS in the numerator. That factor of 2 
translates to a factor of 2 in the exponent of the pressure 
solution analogous to Eq.6. The disparity in decay rates 
between pressure and velocity stems from this factor of 2, 
and it can then be deduced that pressure variations decay 
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only the one theory existed, apparently there was no 
strong impulse to check the exponential decay rate with 
careful observations of pressure and velocity, and no 
reported discrepancies or agreements with theory have 
been published, as far as I am aware. Exponential decay 
has been swallowed whole in the past. 

faster than velocity variations with increasing distance 
down from the crest, without even knowing what the 
exact curvature function is. 

In general Eq.6 should have another constant term 
following the integration, which for the present purposes 
is not needed. One constraint that helps evaluate the con-
stants in Eq.6 is the fact that at great depth below the 
wave surface the velocity is constant. 

An application of the above method can be made to 
the problem of calculating the decay rate of the steady 
flow past a cylinder, and it is even a bit simpler because 
to start with the gravity term in Eqs.1 and 2 can be 
dropped out. What will be found is that the pressure 
variation decays faster above (and below) the top of the 
cylinder than does the velocity variation. Again, this re-
sult appears to be a new one in fluid dynamics. And at 
least one text book has a streak photograph from which 
the radius of curvature function might be estimated. 

Even without specific knowledge of the radius of cur-
vature function it can be guessed that the odds are very 
small that the velocity and pressure in will turn out to 
have a typical exponential decay rate. Another feature of 
the solutions is that the pressure and velocity variations 
are not sensitive to the particular path R (z) takes be- 
tween its minimum value at the surface and infinity at 
great depth due to the integrations involved on the RHS 
of these equations. 

4. CONCLUSION 
3. DISCUSSION A qualitative prediction is made for the depth decay 

rates of the pressure and velocity variations associated 
with surface gravity waves. Pressure should decay down- 
ward faster than velocity and neither decay rate should 
have the standard exponential form. The prediction is 
based upon two elementary pieces of physics: Bernoulli’s 
equation for steady frictionless flow along a streamline 
and the cross-stream force balance involving three forces, 
centrifugal, gravity and a pressure gradient. Pressure and 
velocity variations are governed by linear first order or- 
dinary differential equations and are therefore solvable, 
either analytically or numerically. There is a non-con- 
stant coefficient that needs to be supplied to these equa-
tions from measurements (or some other theory): the 
radius of curvature of the streamlines as a function of 
depth. The solutions will not be sensitive to the actual 
path the radius of curvature takes between its minimum 
value at the surface and infinity at great depth. Observa-
tions will eventually decide which theoretical picture is 
more correct, the present one or the classical one. 

In the above calculation the z-axis was picked to have 
its origin at the top of a crest. There is no reason why the 
position of the z-axis could not have been placed in the 
center of a trough, because then a very similar calcula-
tion is easily constructed. After doing that the constant V0 
can be determined by conserving mass between two ver-
tical cross-sections, one at a crest and the other an adja-
cent trough. Then the constant p0 can be found also. 

Further development of the above calculation depends 
critically on the radius of curvature function, R (z), which 
is not known yet from data or a priori from theory. In the 
steady reference frame streak photographs will undoubt-
edly show that the radius of curvature of the streamlines 
monotonically increases from the minimum value at a 
crest, for example, to infinity at depths exceeding ap-
proximately one wavelength. If such streak photographs 
do not exist already, it may not be too difficult of an ex-
perimental job to produce them. Then an algebraic func-
tion, which closely imitates the observed curvature func-
tion, can be inserted into the governing equations for 
pressure and velocity and the solution obtained analyti-
cally. Even if the curvature function is better expressed 
numerically, the governing equations are readily solvable 
because they are linear. 
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