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ABSTRACT 

Currently, Granger-Geweke causality models have 
been widely applied to investigate the dynamic direc-
tion relationships among brain regions. In a previous 
study, we have found that the right hand finger-tap- 
ping task can produce relatively reliable brain resp- 
onse. As an extension of our previous study, we devel- 
oped an algorithm based on the classical Granger- 
Geweke causality model to further investigate the ef- 
fective connectivity of three brain regions (left prim- 
ary motor cortex (M1), supplementary motor area 
(SMA) and right cerebellum) that showed the most 
robust brain activations. Our computational results 
not only confirm the strong linear feedback among 
SMA, M1 and right cerebellum, but also demonstrate 
that M1 is the hub of these three regions indicated by 
the anatomy research. Moreover, the model predicts 
the high intermediate node density existing in the 
area between SMA and M1, which will stimulate the 
imaging experimentalists to carry out new experim- 
ents to validate this postulation. 
 
Keywords: Granger-Geweke Causality Model; Time Se- 
ries; Computational Neuroscience; fMRI; Finger-tapp- 
ing; Hand Movement; Math Modeling 
 
1. INTRODUCTION 

Recently, effective connectivity methods have been wi- 
dely applied on the functional Magnetic Resonance Im-
aging (fMRI) data set to investigate the dynamic direc-
tional relationships among brain regions [1-5]. In parti- 
cular, in generating the testable hypothesis regarding the 
function of human brain networks, directional informa-
tion obtained from Granger-Geweke causality model [6- 

12] has played a pivotal role. The Granger-Geweke cau-
sality model[7,13,14], which is a well-developed statis-
tical measure based on the concept of time series fore-
casting [5,6,11,15-18], has been proposed for multivari-
ate time series analysis to investigate the linear causal 
relationships among a set of univariate time series vari- 
ables. For instance, Lin et al.[11] and Chen et al. [6] 
employed Granger–Geweke Causality model to investi-
gate the interictal spike propagation and the effective 
connectivity of supplementary motor areas, respectively. 

In a previous fMRI study, we [19] investigated the 
test-retest reliability of electroacupuncture stimulation, a 
mode of sensory stimulation and finger-tapping task. We 
found that compared with electroacupuncture stimulat- 
ion, finger-tapping task can generate significant and reli- 
able fMRI signal increases across different experimental 
sessions. Thus, in this study, we propose to reanalyze the 
finger-tapping data set (six subjects each repeated in 6 
identical experimental sessions) using Granger-Geweke 
causality model to elucidate the effective connectivity 
among the key regions involved in the finger tapping. 
These three regions are left primary motor area (M1), 
medial supplementary motor area (SMA) and right cere-
bellum. Several reasons motivated selection of the data 
sets. First, right hand finger tapping task can produce 
robust and reliable fMRI signal increase; secondly, the 
brain regions involved in finger-tapping and their inter-
action are relatively clear.  

The fMRI technology provides different types of time 
series for brain research, either stationary or non-station- 
ary time series, but the classical Granger–Geweke Cau-
sality model can only process the stationary time series. 
For this reason, the aim of this research is developing a 
general algorithm developed from the Granger–Geweke 
Causality model to analyze the various types of fMRI 
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time series, such as our previous experimental data [19]. 
This algorithm is briefly described as follows. First, 
since fMRI will provide us a stationary or nonstationary 
time series, the augmented Dickey-Fuller (ADF) unit 
root test [20-22] will be implemented to test the station-
arity of raw data. If the data are nonstationary, the plot 
of autocorrelation function will be applied to check the 
patterns and choose an appropriate smoothing technique 
to transform the raw data to stationary data. Next, the 
approximation to the critical values of Schwarz’s 
Bayesian information criterion (SBIC) is computed by 
ARFIT algorithm [23] to determine the order of auto- 
regressive equation of the Granger–Geweke Causality 
model. Consequently, a time series autoregressive model 
with appropriate order will be developed to fit smoothed 
fMRI data. Lastly, the confidence intervals will be con-
structed for the measures of feedback. In the study, the 
results of the model not only agree with our previous 
experimental findings [19] that there are strong correla-
tions among SMA, M1 and cerebellum, but also match 
the observations of the anatomy [24] that both SMA and 
cerebellum project to M1. 

2. MATERIALS AND METHODS 

2.1. Experimental Material and Methods 

In the present study, we reanalyzed the data from a prev- 
ious study (experimental details described in the original 
paper). In summary, 6 healthy right hand subjects were 
included in this study. All experiments were conducted 
with the written consent of each subject and approved by 
the Massachusetts General Hospital’s Institutional Re-
view Board. 

2.2. Experimental Procedures 

Each subject participated in 6 identical fMRI scanning 
sessions. Sessions 1 and 2 were separated by 20-30 min-
utes. Sessions 2 and 3 were separated by 3-6 days. After 
Session 3, the interval between subsequent sessions was 
7-21 days. The block design was applied. The fMRI scan 
started with 30s baseline, four 30s blocks of stimulation 
(ON, right finger-tapping), were separated by four rest 
periods (OFF) of 30s, 60s, 30s and 30s respectively (ple- 
ase see Figure 1(a) in our previous paper [19] for more 
detailed experimental paradigm). 

2.3. fMRI Data Acquisition and Analysis 

All brain imaging was performed with a 3-axis gradient 
head coil in a 3 Tesla Siemens MRI System (Erlagen, 
Germany) equipped for echo planar imaging. After aut- 
omated scout and shimming procedures, functional MR 
images were acquired using gradient echo T2*-weighted 
sequence with TR 2000 ms, TE 40 msec and a flip angle 
of 90 degrees. Thirty slices (4 mm thick, 1 mm skip) ori- 

ented parallel to the AC-PC plane were collected to pro-
vide whole brain coverage. A high resolution 3D MP- 
RAGE sequence was also collected. Pre-processing and 
statistical analysis were performed using SPM2 software 
(Wellcome Department of Cognitive Neurology). Pre- 
processing began with motion correction. All functional 
runs were realigned to the first volume acquired in the 
scan session. We set a movement threshold of 2 mm wi- 
thin a scan to eliminate subjects with excessive head mo- 
vement. However, none of the subjects had head move-
ments that exceeded this threshold. Thus, all data were 
used for this analysis. All functional runs were normal-
ized to MNI stereotactic space and spatially smoothed 
with an 8mm Gaussian kernel. A separate general linear 
model (GLM) for each session was specified across each 
subject with regressors for the difference from baseline 
[25]. Global signal scaling was applied. Low-frequency 
noise was removed with a high-pass filter applied with 
default values (120 second) to the fMRI time series at 
each voxel. For each individual session, a threshold of p 
< 0.005 uncorrected with 10 contiguous voxels was used 
for finger-tapping; then for each predefined ROI, left M1, 
SMA and right cerebellum, we performed Granger cau-
sality analysis on the average time courses of voxels in 3 
distinct regions, with each region defined by extracting a 
sphere of radius 3mm around the peak activation voxel. 

3. MATHEMATICAL MODEL 

3.1. Granger-Geweke Causality Model 

In this study, the Granger–Geweke Causality model is 
employed as the major tool to analyze the fMRI imaging 
data and to reveal the relationships among those brain 
regions of interest. Consider two zero-mean vector time- 
series X and Y. The time-indexed observations are de-
noted as t  and t , where  is the time index. 
X, Y can be modeled as autoregressive (AR) processes of 
order p as 
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where i , i1 , , , , are coefficients of 
AR models, and t , t , t ,  are the zero-mean 
residuals. Their variances are , , 2 , 2 , re-
spectively. Let , , ,  be the re-
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spective residual matrix of Eq.1 through 4, the varianc- 
es can be estimated by ordinary least squares (OLS) 
method, such that ,  /nUUΣ T

111  /nVVΤ T
111  2Σ  

, 22 . Then the measure of linear 
feedback is computed by Eq.5 and 6. 
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in Eq.9: 

YXXYYXYX FFFF  ,           (9) 

Typically, a time series can be described as either sta-
tionary or non-stationary, depending on the constancy of 
its statistical properties [26-28]. The stationary time series 
should have constant mean and variance over time as 
well as covariance which is a function of time difference 
only. The non-stationary time series may have either 
non-constant means, or non-constant variance or both, 
which results in spurious regression; [29, 30]. This poses 
a very serious problem for the estimation, and over- re-
jects hypothesis with T (true) or F (false) test statistics. 
Since Granger-Geweke Causality model focuses on the 
stationary purely nondeterministic multiple time series, 
the raw fMRI imaging data is confirmed to be stationary. 
If non-stationary, differencing method is employed to 
transform the non-stationary data to stationary data. For 
this reason, a general procedure to employ Granger- 
Geweke Causality model is presented and described by 
Figure 1. Next, we will illustrate each step in detail. 

2 ,            (5) 

,             (6) 

where XY  indicates the strength of time series Y 
Granger-causing X , and YX  indicates the strength of  
time series X Granger-causing Y. The measure of instan-
taneous linear feedback is computed by Eq.7. 
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where Г in Eq.8 is the covariance matrix 
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and C denotes the covariance of t , t . The measure 
of linear dependence is the sum of the measures of the 
three types of linear feedback, which is referred as   

u
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Figure 1. A general procedure to employ Granger-Geweke Causa- 
lity model to investigate the relations among the interesting re-
gions of the brain. 
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3.2. Check if the Dataset are Stationary or 

Non-Stationary 

The augmented Dickey-Fuller (ADF) unit root test [20, 
21] and the plot of autocorrelation function (ACF) [28, 
31] are most two common methods to test whether the 
dataset is stationary or non-stationary. 

The ADF test statistics a numeric indicator such that 
the more negative it is, the stronger the rejection of the 
null hypothesis that there is a unit root (Data is not sta-
tionary) at some level of confidence. The ADF test mo- 
del, referred as a random walk, is described by Eq.10, 

t
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j
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where k  is the lag order, tx , 1tx jtx  are respective 
observations at time jttt,   ,1 , ,k,j 2 , in the 
time series X,   is the constant drift, t  is the time- 
trend term,  ,   are coefficients, and t  is the noise 
with mean zero and constant variance. Since the well-de- 
veloped auto regression (AR) models of Granger-Ge-
weke causality model have neither time trend nor drift 
processes, the current ADF test model can be simplified 
as Eq.11, 
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The number of lags is determined by the sampling 

frequency. If the sampling frequency is large, k should 
be small [32]. Because the time frequency of the f MRI 
experiments is 2 seconds long, we have to set k to 1, 
smallest lag number in this case. And then the unit root 
test is carried out under the null hypothesis 1  aga- 
inst the alternative hypothesis of 1 . Once a value for 
the test statistic, Eq.12 is computed, which can be com- 
pared to the relevant critical value derived in Monte 
Carlo study [22] 

)(/)1(

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If the test statistic is smaller (this test is non symmetri- 
cal so we do not consider an absolute value) than the cri- 
tical value at α significant level, then the null hypothesis 
of γ = 1 is rejected and no unit root is present which 
means the data are stationary. Once the test results (Ta-
ble 1) show that all fMRI time series are non-stationary, 
the next step is to choose the appropriate smoothing 
technique by ACF plot. 

The ACF plot is a powerful graphical tool to measure 
the correlation between observations at different dis-
tances apart, to check the randomness of data and to find 
re- peating pattern in them. Given the time series X 
given in Eq.1, the ACF between its observations  
and  is defined as 

tx

t-ix
2

i-tt, /),cov( xitt xx            (13) 

 
Table 1. ADF test results for time series M1, SMA and cerebellum. 

Subject Session M1 SMA cerebellum Subject Session M1 SMA cerebellum 

S1 0.6283 0.6988 0.7338 S1 0.6256 0.8848 0.8332 

S2 0.8834 0.7967 0.8406 S2 0.6981 0.7002 0.842 

S3 0.6915 0.7164 0.6593 S3 0.7063 0.7429 0.9074 

S4 0.6321 0.524 0.6405 S4 -0.113 -0.27 -0.1072 

S5 0.5759 0.8567 0.8247 S5 0.8579 0.7953 0.7811 

1 

S6 0.7728 0.7533 0.9337 

4 

S6 0.7594 0.9034 0.8619 

S1 0.7697 0.6838 0.7179 S1 0.7073 0.7633 0.7659 

S2 0.5857 0.6571 0.6015 S2 0.8368 0.8408 0.8512 

S3 0.7462 0.7352 0.7248 S3 0.6926 0.8152 0.8125 

S4 0.6697 0.7857 0.7402 S4 0.7143 0.7667 0.7999 

S5 0.6079 0.585 0.7134 S5 0.6698 0.7242 0.6612 

2 

S6 0.6473 0.6664 0.8495 

5 

S6 0.8022 0.8728 0.8255 

S1 0.7059 0.8223 0.8381 S1 0.5849 0.8409 0.6631 

S2 0.6882 0.7747 0.7634 S2 0.807 0.7644 0.84 

S3 0.6972 0.8879 0.7782 S3 0.6915 0.7164 0.6593 

S4 0.8751 0.782 0.6341 S4 0.7688 0.5515 0.8083 

S5 0.6204 0.7089 0.6091 S5 0.6908 0.6905 0.7162 

3 

S6 0.7709 0.8331 0.8759 

6 

S6 0.7811 0.8398 0.8479 
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where  is the covariance of t  and t-i , 
and 

)(cov itt ,xx 
2
x

x x
  is the variance of the series [13,21]. If the auto- 

correlation dies out quickly in the plot (with autocorrela-
tions on the y axis and the different time lags on the x 
axis), the series should be considered as stationary [14, 
33]; especially if the autocorrelations are close to zero, 
the data are considered as white noise. Otherwise, the data 
will be considered as non-stationary time series [34]. 

3.3. Data Preprocessing 

Differencing is a classical tool to transform the dataset 

from non-stationary to stationary. The first-order differ-
ence of a time series is the one that changes from one 
period to the next, that is, at time period t the first order 
difference of series X is  denoted by t . Here, 
we only list the ACF plots (Figure 2) for the subject 1 at 
Section 1 (see Table 1) restricted to the page limit. The 
rest of the ACF plots are very similar to Figure 2. Since 
Figure 2 shows seasonal trends for each time series, the 
differencing method is adopted to remove these trends 
from the time series. 

1t-t xx  Δx
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Figure 2. The ACF plot of observations within each brain area for the subject 1 in Session 1. The x axis represents the number of 
lag; the y axis represents the autocorrelation. 
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Therefore, the Eq.1 through Eq.4 can be rewritten as 
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After the first-order difference, ADF test is employed 
again of t  to evaluate whether the treated dataset is 
stationary or non-stationary. If it is still non-stationary, 
the second-order difference ( 21 ) 
should be applied. However, if the series need different- 
ing more than twice we should use other methods, such 
as log transformation. In the results section of the study, 
we are going to discuss the data preprocessing result in 
detail. 

Δx

2 2   tttt xxxx

3.4. Model Selection 

After the stationary data set is generated, the order of the 
Eq.14 to 17 by computing the approximation to the cri-
teria values of Schwarz's Bayesian information criterion 
(SBIC) is identified with ARFIT algorithm [23,35]. SBIC 
is an information criterion used for goodness-of-fit mod- 

el selection for fixed effects models with different num-
ber of parameters at some significance level, and the one 
with lower SBIC fits the data better. The SBIC is descry- 
bed as Eq.18. 

nkLSBIC lnln2         (18) 

where n is the number of observations, k is the number 
of free parameters to be estimated, and L is the maxim- 
ized value of the likelihood function for the estimated 
model. 

3.5. Linear Feedback Calculation 

After the order of AR models is determined, the linear feed- 
back for each pair of brain regions by Eq.5 and 6 is 
computed. Then, the conventional large-sample distribu-
tion theory is used to test the null hypothesis that a given 
measure of feedback zero. As indicated by Geweke’s 
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residual matrix , . And p is the lag of autor- knU 1 lnV 1

egressive models. With respect to this null hypothesis 
test, we can have the following eight relations 
(Eqs.19.1-19.8) between two series X and Y [36] de-
scribed by Figure 3. 

 

Relations Sign equation

X and Y are independent, if . 0, YXF (x, y) (19.1)

Instantaneous causality only without direction, if 0,0,0,   YXXYYX FFF . (x − y) (19.2)

X causes Y, with instantaneous causality, if 0,0,0,   YXXYYX FFF  (x → y) (19.3)

X causes Y, without instantaneous causality, if 0,0,0,   YXXYYX FFF  (x => y) (19.4)

Y causes X, with instantaneous causality, if 0,0,0,   YXXYYX FFF  (x ← y) (19.5)

Y causes X, without instantaneous causality, if 0,0,0,   YXXYYX FFF  (x <= y) (19.6)

Feedback with instantaneous causality, if 0,0,0,   YXXYYX FFF   (x ↔ y) (19.7)

Feedback without instantaneous causality 0,0,0,   YXXYYX FFF   (x  y) (19.8)

 
4. RESULTS 

Stationary check for the dataset: Table 1 shows the ADF 
test results for time series M1, SMA, and cerebellum. It 
indicates that each time series is non-stationary at 10% 
significant level. Figure 2 shows the ACF plots of each 
time series for subject 1 at session 1 and the ACF plots 
of the rest of persons are similar with Figure 2. For this 

reason, we should employ differencing method to trans-
form the dataset from non-stationary to stationary time 
series. 

Data transformation from non-stationary to stationary 
time series: Table 2 shows ADF test results for time ser- 
ies M1, SMA, and cerebellum after the first-order differe- 
ncing method is applied. Now each time series is stationary 
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Figure 3. The relations between two time series. 

 
Table 2. ADF test results for first-order differenced time series M1, SMA and cerebellum. 

Subject Session M1 SMA cerebellum Subject Session M1 SMA cerebellum 

S1 -6.2401 -5.1229 -5.0559 S1 -7.0335 -5.207 -3.9694 

S2 -4.3975 -4.481 -4.7884 S2 -4.8556 -7.1719 -3.3872 

S3 -5.1525 -5.4316 -4.5684 S3 -5.7965 -5.4341 -3.1331 

S4 -7.2745 -7.9421 -6.2819 S4 -11.284 -10.8797 -12,0458 

S5 -6.7513 -3.1335 -5.3833 S5 -5.1912 -4.3987 -4.286 

1 

S6 -4.4235 -5.7843 -3.0588 

4 

S6 -10.9812 -8.8644 -6.8167 

S1 -4.613 -7.0375 -5.0471 S1 -4.8346 -5.3248 -4.772 

S2 -6.8688 -6.883 -6.3738 S2 -2.8913 -3.9684 -2.2962 

S3 -4.4981 -4.0534 -5.9015 S3 -4.6129 -4.6122 -3.9287 

S4 -4.916 -5.6706 -4.2594 S4 -4.4593 -4.5542 -5.1556 

S5 -7.5981 -6.8371 -6.4166 S5 -4.4734 -6.0808 -6.0491 

2 

S6 -7.4277 -8.4613 -3.4288 

5 

S6 -2.9585 -2.5292 -3.6465 

S1 -4.2132 -4.5137 -2.3973 S1 -3.9059 -5.5496 -4.4626 

S2 -3.0548 -4.6281 -4.3999 S2 -4.3165 -5.5688 -3.4785 

S3 -4.066 -3.7752 -5.0195 S3 -5.1525 -5.4316 -4.5684 

S4 -3.848 -4.8816 -6.1045 S4 -4.0086 -5.6379 -4.9253 

S5 -5.6978 -4.8186 -5.2083 S5 -6.7513 -3.1335 -5.3833 

3 

S6 -2.8161 -4.5713 -2.4998 

6 

S6 -3.2064 -3.5299 -3.2231 
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and the Hochberg’s [37] step-up multiple test procedure 
is implemented. This procedure is based on the individ-
ual P-value (Table 3) calculated by ADF test and con-
cluded that the stationarity assumption has been satisfied. 
Figure 4 describes the ACF plot of these time series for 
subject 1 in session 1and the ACF plots of the rest of 
persons are similar with Figure 4. Figure 4 shows that 
seasonal trend has been removed from time series for 
subject 1 in session 1 after first-order differencing. Our 
results show that ACF plots for the remaining subjects 

are similar. 
Order selection for the Geweke-Granger causality mo- 

del: By Eq.18, we evaluated the order p of the Geweke- 
Granger models with smallest SBIC values. With respect 
to the time interval of the previous fMRI experiments (2 
seconds) [19], the candidate order p is limited from 1, 2 
and 3. And the results in Table 4 show when p = 1, for 
most of sessions, Geweke-Granger model will receive 
minimum SBIC value. Therefore, we choose p = 1 as the 
order of the model. 

 
Table 3. The p-value of ADF test. 

Subject Session M1 SMA cerebellum Subject Session M1 SMA cerebellum 

S1 4.88·10-9 9.79·10-7 1.32·10-6 S1 8.18·10-11 6.71·10-7 0.000115 

S2 2.15·10-5 1.53·10-5 4.23·10-6 S2 3.17·10-6 3.92·10-11 0.000917 

S3 8.57·10-7 2.40·10-7 1.07·10-5 S3 4.3·10-8 2.38·10-7 0.00211 

S4 2.26·10-11 5.86·10-13 3.96·10-9 S4 <2·10-16 <2·10-16 <2·10-16 

S5 <2·10-16 2.07·10-9 <2·10-16 S5 7.2·10-7 2.14·10-5 3.37·10-5 

1 

S6 1.94·10-5 4.45·10-8 0.00266 

4 

S6 <2·10-16 3.32·10-15 2.61·10-10 

S1 8.87·10-6 8·10-11 1.37·10-6 S1 <2·10-16 4.56·10-16 <2·10-16 

S2 <2·10-16 <2·10-16 <2·10-16 S2 9.3·10-12 2.83·10-15 7.28·10-12 

S3 1.43·10-5 8.34·10-5 2.59·10-8 S3 9.88·10-16 2.09·10-13 2.22·10-15 

S4 2.44·10-6 7.84·10-8 3.74·10-5 S4 <2·10-16 4.65·10-15 <2·10-16 

S5 3.91·10-12 2.3·10-10 2.01·10-9 S5 2.29·10-15 <2·10-16 <2·10-16 

2 

S6 9.88·10-12 3.17·10-14 0.000797 

5 

S6 1.4·10-10 2.89·10-10 3.97·10-13 

S1 4.49·10-5 1.34·10-5 0.0178 S1 3.06·10-14 <2·10-16 2.6·10-16 

S2 0.0027 8.33·10-6 2.13·10-5 S2 6.07·10-11 <2·10-16 3.22·10-13 

S3 7.94·10-5 0.000235 1.55·10-6 S3 <2·10-16 <2·10-16 <2·10-16 

S4 0.00018 2.83·10-6 9.58·10-9 S4 1.83·10-12 <2·10-16 2.43·10-16 

S5 6.89·10-8 3.71·10-6 6.67·10-7 S5 1.04·10-12 8.9·10-12 4.93·10-12 

3 

S6 0.00556 1.06·10-5 0.0136 

6 

S6 2.06·10-14 1.24·10-9 <2·10-16 

 
Table 4. The order of AR model for equations 14 to 17. 

Subject Session M1 SMA cerebellum Subject Session M1 SMA cerebellum

S1 1 1 1 S1 2 1 1 

S2 1 1 2 S2 1 1 1 

S3 1 1 1 S3 1 1 1 

S4 1 2 1 S4 3 1 2 

S5 1 1 1 S5 1 1 1 

1 

S6 1 1 1 

4 

S6 1 1 1 

S1 1 2 1 S1 1 1 1 

S2 1 1 1 S2 1 1 1 

S3 1 1 1 S3 1 1 1 

S4 1 1 1 S4 1 1 1 

S5 1 1 1 S5 1 1 1 

2 

S6 2 2 1 

5 

S6 1 1 1 

S1 1 1 1 S1 2 2 1 

S2 1 1 1 S2 1 1 1 

S3 1 1 1 S3 1 1 1 

S4 1 1 1 S4 1 1 1 

S5 1 1 1 S5 1 1 1 

3 

S6 1 1 1 

6 

S6 1 1 1 
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Figure 4. The ACF plot of first-order differenced observations within each brain area for the subject 1 in 
session 1. The x axis represents the number of lag; the y axis represents the autocorrelation. 

 
Causality among different brain regions: The Table 5 

lists the directions among different brain regions by ses-
sion. The sign is introduced by the Eqs.19.1-19.8. It re- 
veals the following emergent phenomenon. 

1) Most of the relations are instantaneous causality 
only without direction, X causes Y with instantaneous 
causality (X → Y) and Y causes X with instantaneous 
causality (Y → X). In the rest of the discussion, we de- 
note the directed relation as X causes Y with instantane- 
ous causality and Y causes X with instantaneous causality. 

2) There should be strong directed relations between 
M1 and cerebellum, because we detect sixteen signals 
between these regions regarding to thirty six experim- 

ents as well as ten times the direction is from cerebellum 
to M1 and six times from M1 to cerebellum. 

3) There should be strong directed relations between 
M1 and SMA because we detect ten signals between the- 
se regions regarding to thirty six experiments as well as 
five times the direction is from cerebellum to M1 and five 
times from M1 to cerebellum. 

Table 6 lists the directions among different brain re-
gions by subject, which explores the following emergent 
phenomena. 

1) It shows that all the subjects responded to the 
stimulation during right finger-tapping task. 

2) Except one subject, the rest of the five subjects ha- 
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ve similar response pattern to the stimulation. 
3)As we discussed in Eq.9, the sum of the measure of 

linear dependence is the sum of directed linear feed- 
back YX and X as well as the instantaneous lin-
ear feedback ( ). In our study, the instantaneous lin-
ear feedback ( ) accounts for highest percentage of 
the sum of the measure of linear dependence . In 
most cases, the percentage is more than 90%. 

YXF ,

YF 

Y

Y

F 

X

X

F
F

YXF ,

5. DISCUSSION AND CONCLUSION 

This study applied Granger-Geweke Causality model to 
investigate the effective connectivity of M1, SMA and ce- 
rebellum during the finger-tapping task. Eq.9 shows that 
linear dependence YX  has three components, i.e., 
instantaneous linear feedback ( YX ), directed linear 
feedback ( YX and XY ). Especially, instantaneous 
linear feedback ( ) describes the impact between 

F ,

F 

YX 

F 

F 

F

 
Table 5. The relations between multivariate brain areas investigated by fMRI sort by sessions. (S1,S2, S3 S4,S5, S6 represent the 
number of sessions). 

 subject M1,SMA M1, cerebellum SMA, cerebellum  subject M1,SMA M1, cerebellum SMA, cerebellum

1 − → − 1 − − − 

2 − − − 2 − − − 

3 − ← − 3 − − − 

4  ← → 4 ← ← − 

5 ← ← − 5 − ← ← 

S1 

6 − − − 

S4

6 ← − ← 

1 → → − 1 − − − 

2 − − − 2 − − − 

3 − ← ← 3 − − − 

4 − − − 4 →  − 

5 − ← − 5 − − − 

S2 

6 → → − 

S5

6 ← → → 

1 − − − 1 − ← ← 

2 − − − 2 − − − 

3 ← → → 3 − ← − 

4 − ← − 4 − − ← 

5 − − − 5 → − − 

S3 

6 − → − 

S6

6 → − − 

 
Table 6. The relations between multivariate brain areas investigated by fMRI sort by subjects. The number in the paragraph shows the 
ratio of . YXYX FF ,/

subject  M1,SMA M1, cerebellum SMA, cerebellum subject  M1,SMA M1, cerebellum SMA, cerebellum

S1 − →(99.5%) − S1  ←(95.4%) →(95.4%) 

S2 →(96.1%) →(92.4%) − S2 − − − 

S3 − − − S3 − ←(96.1%) − 

S4 − − − S4 ←(67.9%) ←(24.5%) − 

S5 − − − S5 →(91.6%)  − 

1 

S6 − ←(96.7%) ←(97.7%) 

4 

S6 − − ←(93.3%) 

S1 − − − S1 ←(96.6%) ←(99.7%) − 

S2 − − − S2 − ←(97.7%) − 

S3 − − − S3 − − − 

S4 − − − S4 − ←(96.3%) ←(95.4%) 

S5 − − − S5 − − − 

2 

S6 − − − 

5 

S6 →(95.8%) − − 

S1 − ←(96.9%) − S1 − − − 

S2 − ←(93.5%) ←(94.6%) S2 →(96.9%) →(97.5%) − 

S3 ←(94.1%) →(96.7%) →(96.7%) S3 − →(97.2%) − 

S4 − − − S4 ←(99.2%) − ←(96.5%) 

S5 − − − S5 ←(92.3%) →(92.9%) →(92.2%) 

3 

S6 − ←(95.7%) − 

6 

S6 →(96.9%) − − 
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time series X and Y at current time point. Directed linear 
feedback ( YX or XY ) describes how the effect of 
time series X or Y in previous t-1 time steps affects time 
series Y or X at time point t. Actually, the relation between 
two time series could include more than one type of lin-
ear feedback simultaneously. Therefore, Kirchgässner 
and Wolters [36] classified these linear feedbacks to eight 
relations (Eqs.19.1-19.8), which are not independent of 
each other. 

F  F 

The current results show (Table 5) that most of the 
pairwise relations between the brain regions are instanta- 
neous causality only without direction (Eq.19.2). X ca- 
uses Y with instantaneous causality (Eq.19.3) and Y ca- 
uses X with instantaneous causality (Eq.19.5). The rest 
relation such as feedback without instantaneous causality 
(Eq.19.8) only appears twice (Table 5). We denote the 
relations like X causing Y with instantaneous causality 
(Eq.19.3) and Y causing X with instantaneous causality 
(Eq.19.5) as the directed relation in the rest of the discus-
sion. Table 6 shows instantaneous causality only with- 
out direction (Eq.19.2) is the most favorite relation in 
the results. More importantly, the most popular relation, 
instantaneous linear feedback ( YX ) component, takes 
highest percentage (mostly more than 90% (Table 6)) of 
the sum of the linear dependency ( YX , ). The phenom-
ena imply that neurology response time period should be 
shorter than the fMRI time interval (2 seconds). Next, the 
directed relations among these brain regions were inves-
tigated. Figure 5 describes the directed relations between 
each pair of the brain regions. It shows strong directed 
relations between M1 and cerebellum, M1 and SMA, 
because there are sixteen and ten directed signals trans-
ductions occurred between the pair of these regions, re-
spectively. Additionally, if we consider each region as a 
node of the brain network, Figure 6 demonstrates that 
M1 should be a busy node, since it is involved 26 direct- 
ed signal transductions. Particularly, this finding match- 
es the anatomical observations [24] that the both SMA 
and Cerebellum project to M1. Furthermore, Figure 5  

F 

F

 

 

Figure 5. The directed relation between every two brain areas. 
The arrow indicates the direction of causality. The label of ea- 
ch link indicates the number of the directed signals. 
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Figure 6. The number of directed signal transductions for each 
brain regions, M1, cerebellum and SMA. 

 

 
Figure 7. The directed relation between every two brain areas. 
The label of each link indicates the numbers of subject out of six 
have the relation between these two regions. 

 
shows that SMA and cerebellum are the regions which 
have less directed signal transductions. Due to that, we 
consider the number of intermediate nodes between SMA 
and cerebellum should be less than others which will not 
cause many latency of the signal transduction between 
these regions. Figure 7 shows the directed simulation 
response is stable and believable, since five out of six 
subjects showed the directed relations. 

In summary, the results demonstrate strong linear fee- 
dback among SMA, M1 and cerebellum as our previous 
study. Especially, the instantaneous linear feedback pla- 
ys the very important role. Also, strong directed relations 
were found between M1 and cerebellum, M1 and SMA. 
It derives that M1 should be the hub of these three re-
gions and such findings agree with the study of anatomy 
that both SMA and Cerebellum project to M1. Also, as 
indicated in the anatomy field [24], the distance between 
SMA and M1 is the shortest, but a number of directed 
signals were detected (Figure 5), which implies a high 
intermediate node density existing in the area between 
these two regions. On the other hand, the distance between 
SMA and cerebellum is much longer than SMA and M1, 
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but very few directed relations between them can be 
obtained. We postulate that there are not many interme-
diate nodes in the area between SMA and cerebellum 
compared to the area between SMA and M1. 
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