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Abstract—In this paper, we present a technique to redistribute car flows, described by a fluid dynamic model, on a portion 
of the Caltanissetta city, in Italy, when critical situations, such as car accidents, occur. Using a decentralized approach, a cost 
functional, that describes the asymptotic average velocity of emergency vehicles, is maximized with respect to distribution 
coefficients at simple junctions with two incoming roads and two outgoing ones. Then, in order to manage critical situations 
in high traffic conditions, local optimal coefficients at each node of the network are used. The overall traffic evolution is 
studied via simulations, that confirm the goodness of the optimization results. It is also proved that optimal coefficients allow 
a fast transit of emergency vehicles on assigned routes on the network.  
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1. Introduction 
Road networks are always characterized by a high car 

density and congestions, leading to queues formations, 
difficulties in forecasting travel times, pollution problems, 
etc. Heavy traffic levels often produce car accidents, with 
consequent problems for the emergency management. In 
such a context, some techniques for managing road traffic in 
emergency cases represent a topic of great importance. The 
aim of this paper is to use some optimization results on a 
portion of Caltanissetta urban network, Italy, in order to 
redistribute traffic flows in such a way that emergency 
vehicles can travel at the maximum allowed speed along 
assigned roads. 

A fluid dynamic model is used: the evolution of car 
densities is described on each road by a conservation law 
([4], [7], [8]), while dynamics at junctions of n m�  type ( n  
incoming roads and m  outgoing ones) is uniquely solved 
using rules for the traffic distributions at nodes and right of 
ways (if >n m ). Considering the distribution coefficients as 
control parameters, we propose to redirect traffic at 2 2�  
junctions in order to face emergency situations. In particular, 
assuming that emergency vehicles will cross assigned roads 
([6]), it is considered a cost functional = >,W C D , measuring, for 
2 2�  junctions, the average velocities of such vehicles on 
the incoming road IC , � �1,2C � , and the outgoing road ID , 

� �3,4D � . The optimization results give the values of the 
distribution coefficients, which maximize the functional, 
allowing a fast transit of emergency vehicles to reach car 
accident’s place and hospital. 

As the analysis of = >,W C D  on a whole network is very 
complex, a decentralized approach is considered, namely: 

the asymptotic behaviour (for large times) is assumed and an 
exact solution of = >,W C D  is found at a single 2 2�  junction. 
Then, we propose a global (sub)optimal solution for the 
whole network, simply obtained applying at each junction of 
2 2�  type the computed local optimal solution. A similar 
decentralized procedure has been studied for different types 
of road junctions and various functionals in [2], [3], and [5]. 

The optimization results are tested by simulations. Two 
choices of distribution coefficients are evaluated: optimal 
values given by the optimization algorithm, and random 
values, i.e. at the beginning of the simulation process, 
random values of traffic parameters are kept constant during 
all simulations. For the case study of a portion of the 
Caltanissetta urban network in Italy, it is proved that the 
choice of optimal distribution coefficients at 2 2�  junctions 
allows better performances on the network. Moreover, on the 
basis of an algorithm described in [1] for tracing car 
trajectories on networks, some simulations are run to test 
how the distribution coefficients influence the total 
travelling time of emergency vehicles. It is shown that the 
time for covering a path of a single emergency vehicle 
decreases when optimal parameters are considered. 

The paper is organized as follows. In Section II, the 
model for car traffic is introduced. Section III deals with the 
definition of the cost functional for emergency vehicles and 
the optimization of traffic coefficients. Simulations for the 
case study are presented in Section IV. The paper ends with 
conclusions in Section V. 

2. A Model for Car Traffic on Networks
A road network is described by a couple = >,I J , where 

I  is the set of roads, modelled by intervals 8 9,i ia b RE , 
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= 1,...,i N , and J  is the collection of junctions. Indicating 
by = > 8 9max= , 0,t x? ? ?�  the density of cars, max?  the 
maximal density, = > = >=f v? ? ?  the flux with = >v ?  the 
average velocity, the traffic dynamics is described on each 
road by the conservation law (Lighthill-Whitham-Richards 
model, [7], [8]): 

 = > = 0.t x f? ?F  F  (1)   

We assume that: (F) f  is a strictly concave 2C  function 
such that = > = >max0 = = 0f f ? . Considering a decreasing 
velocity function: 

 = > = > 8 9max max max= 1 / ,  0, ,v v? ? ? ? ?� �     (2) 

and setting max max= = 1v ? , a flux function fulfilling (F) is: 

 = > = > 8 9= 1 ,  0,1 ,f ? ? ? ?� �     (3) 

which has a unique maximum = 1/ 2" . Dynamics at 
junctions is described solving Riemann Problems (RPs), 
Cauchy Problems with a constant initial datum for each 
incoming and outgoing road. 

Fix a junction J  of n m�  type ( n  incoming roads ,IC  
= 1,...,nC , and m  outgoing roads, ,ID  = 1,...,n n mD   ) 

and an initial datum = >0 1,0 ,0 1,0 ,0= ,..., , ,...,n n n m? ? ? ? ?  . A 
Riemann Solver (RS) for the junction J  is a map 

8 9 8 9 8 9 8 9: 0,1 0,1 0,1 0,1n m n mRS � � �  that associates to 0?  a 

vector = >1 ,0 1= ,..., , ,...,n n n m? ? ? ? ?   so that the solution on 

an incoming road ,IC  = 1,..., nC , is the wave = >,0 ˆ,C C? ?  
and on an outgoing one ,ID  = 1,...,n n mD    is the wave 

= >,0ˆ ,D D? ? . We require the following conditions hold true: 

(C1) = >= > = >0 0= ;RS RS RS? ?  (C2) on each incoming road, 

the wave = >,0 ˆ,C C? ?  has negative speed, while, on each 

outgoing road, the wave = >,0ˆ ,D D? ?  has positive speed. 

If m n� , a possible RS at J  is defined by the 
following rules (see [4]): (A) traffic is distributed at J  
according to some coefficients, collected in a traffic 
distribution matrix = >,= ,A D C�  = 1,..., ,nC  

= 1,...,n n mD   , ,0 < < 1,D C�  ,= 1
= 1n m

j n D C�

! . The 

C � th column of A  indicates the percentages of traffic that, 
from the incoming road IC , distribute to the outgoing roads; 
(B) respecting (A), drivers maximize the flux through J . 

If >n m , a further rule (a yielding criterion) is 
necessary: (C) Assume that not all cars can enter the 
outgoing roads, and let Q  be the amount that can do it. 
Then, p QC  cars come from the incoming road IC , where 

9 80,1pC �  is the right of way parameter of road ,IC  

= 1,...,nC , and 
=1

= 1n pCC! . 

Focus on a junction J  of 2 2�  type (incoming roads 1I  
and 2I , and outgoing roads 3I  and 4I ). We indicate the 
cars density on incoming and outgoing roads, respectively, 
by = > 8 9, 0,1t xC? � , = >,t x R IC

� � , = 1,2C , 

= > 8 9, 0,1t xD? � , = >,t x R ID
� � , = 3,4.D  From condition 

(C2), fixing the flux function  and assuming 
= >0 1,0 2,0 3,0 4,0= , , ,? ? ? ? ?  as the initial datum of an RP at J , 

the maximal flux values on roads are defined by: 

 
= >
= >

,0 ,0max

,0

1/ 2,  0 ,
=  = 1,2,

1/ 2 ,  1/ 2 1,

f if

f if
C C

C
C

? ?
� C

?

� � ��
�

� ���
 (4)  

 
= >
= >

,0max

,0 ,0

1/ 2 ,  0 1/ 2,
=  = 3,4.

,  1/ 2 1,

f if

f if
D

D
D D

?
� D

? ?

� ���
�

� ���
 (5)  

In this case, the traffic distribution matrix A  has the 
coefficients 3,1� , 3,2� , 4,1 3,1= 1� �� , 4,2 3,2= 1� �� , and the 
assumption 3,1 3,2� �.  is made to guarantee the uniqueness 
of solutions. From rules (A) and (B), it follows that the flux 
solution to the RP at J , = >1 2 3 4= , , ,� � � � � , is found as 
follows: the incoming fluxes Ĉ� , = 1,2,C  are solutions of 

the problem max = >1 2 ,� �  with max0 ,C C� �� �  
max

,1 1 ,2 20 ,D D D� � � � ��  �  = 1,2,C  = 3,4D . The outgoing 
fluxes D̂� , = 3,4,D  are simply given by 

,1 1 ,2 2=D D D� � � � � . Once �̂  is known, ?̂  is found as 
follows: 

 
� � = >
8 9

,0 ,0 ,0

,0

,1 ,   0 1/ 2,
ˆ  = 1, 2,

1/ 2,1 ,                         1/ 2 1,

if

if
C C C

C

C

? � ? ?
? C

?

� ( (G � �� * *��
� ���

(6) 

 
8 9
� � = >

,0

,0 ,0 ,0
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where 8 9 8 9: 0,1 0,1� �  is the map such that 

= >= > = > 8 9=   0,1 ,f f� ? ? ?@ �  

= > 8 9 � �  0,1 \ 1/ 2� ? ? ?. @ � . 

3. Optimization of Traffic Coefficients
Assume that a car accident occurs on a road of an urban 

network and that some emergency vehicles have to the reach 
the place of the accident, or a hospital. We define the 
velocity function for such vehicles as: 

 = > = >= 1 ,v� ? � � ?�   (8)  

with 0 < < 1�  and = >v ?  as in . Since = >max = 1 > 0,� ? ��  
it follows that the emergency vehicles travel with a higher 
velocity with respect to cars. For a junction J  of 2 2�  type 
(incoming roads 1I  and 2I ; outgoing roads 3I  and 4I ), 

given the initial datum = >1,0 2,0 3,0 4,0, , ,? ? ? ? , the cost 

functional = > = >,W tC D , which indicates the average velocity 

of emergency vehicles crossing the incoming road IC , 

� �1,2C � , and the outgoing road ID , � �3,4D � , is defined 
as: 

 = > = > = >= > = >= >, := , , .
I I

W t t x dx t x dxC DC D
C D
� ? � ?� �     (9) 

For the case = 1C  and = 3D , we have the following 
theorem, proved in [6] (for other combinations of C  and D , 
the statement is similar).  

Theorem III-1. Consider a junction J , with incoming 
roads 1I and 2I , and outgoing roads 3I and 4I . For 

= >> 0t T , the parameters 3,1� and 3,2� , which maximize 

the cost functional = > = >1,3W t , are 
max
4

3,1 max
1

= 1opt �
�

�
� ,

max
4

3,2 max
1

0 < 1opt �
�

�
� � , with the exception of the following 

cases, where the optimal values do not exist and are 
approximated: for 1 and 2 small, positive and such that 

1 2  . , if max max
1 4� �� , 3,1 1=opt�  , 3,2 2=opt�  ; otherwise, if 

max max max
1 3 4>� � � , then 

max
3

3,1 1max max
3 4

=opt �
�  

� �
�


and 

max
3

3,2 2max max
3 4

=opt �
�  

� �
�


. 

4. Simulations
The validity of the optimization results stated in 

Theorem III-1 is studied considering different control 

procedures, applied locally at each junction, on the global 
behaviour of a real network. Such analysis is completed by 
computing the travelling time of an emergency vehicle on 
assigned paths. 

We focus on a portion of the urban network of 
Caltanissetta, Italy, see Fig. 1. The network consists of: 8 
roads, identified by 51 segments (see Table I), whose eight 
ones are incoming roads (1, 5, 23, 27, 35, 39, 46, 51), and 
nine ones are outgoing roads (2, 4, 8, 22, 25, 34, 37, 44, 49); 
25 nodes of different types: 2 2� , identified as iA , 

= 1,...,11i ; 2 1� , labelled by iB , = 1,...,6i ; 1 2� , 
indicated by iC , = 1,...,7i ; 1 1� , 1D . 

 
Fig. 1. Topology of a portion of Caltanissetta network 

 
TABLE I CORRESPONDENCE AMONG ROADS AND NUMBERS IN FIG. 1  

Real roads Graph road/segments
Via Giuseppe Mulè 1, 2 
Via Luigi Monaco 3 – 21 
Via della Regione 22, 23 
Via Due Fontane 24 – 33 

Via SD1 34, 35 
Via Leone XIII 36 – 43 
Via Luigi Russo 44, 45, 46 

Via Poggio S. Elia 47 – 51 
 

We assume that emergency vehicles follow the path 
1 2 3 4=P 
 G
 G
 G
 , with 
� �1 = 23,47,48,50,19,45,15
 , � �2 = 16,3,6,7,17,24,26
 , 

� �3 = 28,30,31,38,40,42,13
  and 

� �4 = 14,20,21,43,32,33,35
 . Hence, we analyze the 

behaviour of the cost functional = > = > = > = >,,
= ,J t W tC DC D �$!  

with = > = >,W tC D  defined as in  and 

= > = > = > = > = > = >
= > = > = > = > = > = >

23,47 , 48,50 , 50,19 , 19,45 , 3,6 , 7,17 ,
:=

24,26 , 28,30 , 31,38 , 20,21 , 43,32 , 33,25
� :� �$ � ;
� �� <

. 

Traffic flows simulations are made using the Godunov 
method with = 0.01x& , = / 2t x& &  in a time interval 
8 90,T , with = 150T  min. Initial conditions and boundary 
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data for densities have been chosen approaching max = 1? , 
with the aim of simulating a congestion scenario on the 
network, and are the following: initial datum equal to 0.8 for 
all roads; boundary data 0.9 for roads 1, 5, 23, 27 and 35; 
0.95 for roads 39, 46, and 51; 0.8  for roads 2, 4, 18, 22 and 
25; 0.85 for roads 34, 37, 44 and 49. According to measures 
on the real network, we set, for junctions iB , = 1,...,6i , the 
following right of way parameters: 12 26= = 0.2p p , 

46 = 0.3p , 6 35= = 0.4p p , 38 39= = 0.5p p , 5 30= = 0.6p p , 

45 = 0.7p , 42 27= = 0.8p p ; for junctions iC , = 1,...,7i , the 
following distribution coefficients: 49,47 22,13= = 0.3� � , 

8,15 33,32= = 0.4� � , 41,40 = 0.2� , 

2,16 3,16 10,9 11,9= = = = 0� � � � , 42,40 = 0.8� , 

16,15 29,32= = 0.6� � , 48.47 14,13= = 0.7� � . Moreover, 
= 0.5�  is considered. 

We analyze two different simulation cases: locally 
optimal distribution coefficients (optimal case) at each 
junction iA , = 1,...,11i , i. e. parameters according to 
Theorem III-1; random parameters (random case), namely 
the distribution coefficients are taken randomly for each 
junction iA , = 1,...,11i , when the simulation starts and then 
are kept constant. 

In Fig. 2, the behaviour of the cost functional = >J t  is 
represented. The optimal simulation is indicated by a 
continuous line, while random cases by dashed curves. As 
expected, random simulations lines of = >J t  are always 
lower than the optimal one. In fact, when optimal parameters 
are used, junctions of 2 2�  type are interested by a 
congestion reduction, due to the flows redistribution on 
roads. Even if right of way parameters of junctions iB , 

= 1,...,6i , and distribution coefficients of junctions iC , 
= 1,...,7i , are optimized using the results in [2] and [3], 

traffic conditions are almost unaffected. 

Suppose that an emergency vehicle travels along a path 
in a network. Its position = >=x x t  is obtained solving the 
Cauchy problem: 

 
= >= >

= >0 0

= , ,

= ,

x t x

x t x

� ?��
�
��

�
 (10) 

where 0x  is the initial position at the initial time 0t . Using 
numerical methods, described in [1], it is possible to 
estimate the travelling time of the emergency vehicle. First, 
we compute the trajectory along road 45 and the time 
needed for covering it in optimal case and random cases; 
then, we consider the path P and study the exit time 
evolution versus the initial travel time 0t  (the time in which 
the emergency vehicle enters into the network). 

 

 
Fig. 2. Evolution of ( )J t  in 8 90,60  using optimal distribution coefficients 

(continuous line) and random choices (dashed lines) 

 

In Fig. 3, we assume that the emergency vehicle starts 
its own travel at the beginning of road 45 at the initial time 

0 = 40t  and compute the trajectories ( )x t  along road 45, in 
optimal (continuous line) and random cases (dashed lines). 

 
Fig. 3. Trajectory ( )x t  for an emergency vehicle along road 45 with 

0 = 40,t  optimal coefficients (continuous line) and random choices 
(dashed lines) 

 

The evolution ( )x t  in the optimal case has always a 
higher slope with respect to trajectories in random cases 
because traffic levels are low. When random distribution 
coefficients are used, shocks propagating backwards 
increase the density values on the whole network; the 
velocity for the emergency vehicles is reduced and exit 
times from road 45 become longer. In Table II, assuming 

0 = 40t  we report the time instants outt  in which the 
emergency vehicle goes out of road 45, either for the 
optimal values of distribution coefficients (opt) or random 
choices ( ir , = 1,.., 4i ). 

 
TABLE II. TIMES outt , ASSUMING 0 = 40t  

Simulations opt 1r 2r 3r 4r

outt  45.70 51.34 49.94 47.84 46.42 
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The exit time 0 0( ) =exit outT t t t�  from road 45 versus the 
initial time 0t , assuming that the emergency vehicle starts 
its path from the beginning of the road, is depicted in Fig. 4. 
Notice that the choice of optimal coefficients (continuous 
line) allows to obtain an exit time lower than the other cases 
(dashed lines), due to decongestion effects. The exit time 
becomes stable after a certain initial time value ( 0 9.45t 	  
for the optimal distribution choice, unlike the random cases, 
for which 0 5.1t 	 , 0 5.3t 	 , 0 6.3t 	  and 0 7.4t 	 ). 

In Fig. 5, we report the exit time 0( )exitT t  from the 
chosen path P versus the initial times 0t . When optimal 
parameters are not used, 0( )exitT t  is the lowest curve, as 
expected, because the network is not congested. 
Furthermore, 0( )exitT t  never tends to infinity as the 
emergency vehicle has a higher velocity with respect to cars, 
hence it is able to reach its own destination although some 
roads of the chosen path are completely blocked. The steady 
value of 0( )exitT t  is reached at time 0 6.9t 	 . 

 
Fig. 4. Exit time from road 45 vs 0t  in 8 90,30 ; optimal coefficients 

(continuous line) and random choices (dashed lines). 
 

 
Fig. 5.  Exit time from the path P vs 0t  in 8 90,40 ; optimal coefficients 

(continuous line) and random choices (dashed lines) 

5. Conclusions
In this paper, it is presented an optimization study to 

manage emergency situations on road networks. Optimal 

distribution coefficients at road junctions with two 
incoming roads and two outgoing ones have been computed 
maximizing a cost functional, that measures the average 
velocity of emergency vehicles. Simulations have been 
made on a real urban network. It has been proved, through a 
numerical evaluation of emergency vehicles trajectories, 
that fast transits are possible also in cases of high 
congestions.   
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