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ABSTRACT 

We investigate the teleportation between two relatively accelerating partners undergoing the phase flip, bit flip and 
bit-phase flip channels. We find that: 1) the fidelity decreases by increasing the acceleration of accelerated observer; 2) 
the dynamic evolution of the fidelity is different for various channels if the acceleration is fixed; and 3) the fidelity is 

always symmetric about 2 1

2
   where   is a parameter of the transmission state. 
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1. Introduction 

In recent years, quantum mechanics and quantum infor- 
nmation science have developed rapidly. As one of the 
significant characteristics of quantum mechanics [1], the 
quantum entanglement has been attracted much attention 
[2] and its momentous application is quantum teleporta- 
tion proposed by Bennett et al. [3]. This application in- 
volves many attractive theoretical features and shows a 
bran-new way unlike classical teleportation [4-8]. How- 
ever, the early study was confined to the inertial frame. 
About ten years ago, P. M. Alsing et al. considered the 
teleportation with an uniformly accelerated partner [9,10], 
which firstly extended the quantum information to the 
non-inertial frames. Since then, many authors focus on 
this interdiscipline [11-16]. Moreover, some of them 
studied the teleportation in some kinds of black hole 
spacetimes and discussed how the Hawking effect affects 
the entanglement and teleportation [17-21]. It is not 
doubtful that these studies will makes the theories more 
complete, not only for quantum information theory, but 
also for relativistic quantum mechanics and quantum 
field in curved spacetime. 

It is well known that the interaction between quantum 
system and surrounding environment is inevitably in our 
real world, and then the dynamic evolution of the quan- 
tum system is non-unitary (although the whole system 
including the quantum system and surrounding environ- 
ment evolves in an unitary fashion), so it becomes more 
complex. Generally, this interaction can be viewed as the  

interchange of information between quantum system and 
surrounding environment. It plays a fundamental role in 
the description of the quantum-to-classical transition 
[22,23] and has been successfully applied in some im- 
portant places such as the cavity QED [24] and ion trap 
experiments [25]. So studying teleportation between two 
relatively accelerated partners in open system is an inter- 
esting topic, which not only makes the theory of the 
quantum teleportation more complete, but also is helpful 
for us to understand how the surrounding environment 
affects the quantum teleportation. In this paper, we will 
discuss teleportation for fermionic resources with one of 
the EPR partners accelerated undergoing the environ- 
ment, such as the bit flip, the phase flip, and the phase-bit 
flip channels. 

The outline of this paper is as follows. In Section 2 we 
analyse the entangled state shared by two relatively ac- 
celerated partners. In Section 3 we introduce the dy- 
namics of the system interacting with the environment. In 
Section 4 we investigate how the environment effects the 
fidelity of the teleportation when teleportation undergoes 
environment. And we summarize and discuss conclu-
sions in the last section. 

2. Entangled State between Alice and Rob 

We assume that an unknown state is teleported from Al- 
ice who stays rest to Rob who moves with uniform ac- 
celeration, and all our work is confined to Dirac field. As 
shown in Refs. [26-29], the corresponding Unruh spinor 
basis states can be described by a superposition of Unruh  *Corresponding author. 
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where the subscripts I and II represent Rindler regions I 
and II, 

speed of light in vacuum. 
Considering Alice and Rob initially share the maxi- 

mally entangled Bell state  

 1
0 0 1 1 ,

2 A R A R
           (3) 

then Alice stays stationary, while Rob moves with an 
uniform acceleration. To describe the state shared by 
them, we must rewrite the initial state (3). Using Equa- 
tion (2), the state can also be represented as  

 1 22πcos e 1c ar    ,  is Rob’s acceleration, a
  is the frequency of the Dirac particle, and  is the  c
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As we all known, the regions I and II of Rindler space- 

time are causally disconnected, and our accelerated ob- 
server must remain in either region I or II. Thus, for Rob 
who stays in region I we must trace over the modes in 
region II where he can’t access. After taking the trace, 
Equation (4) in terms of matrix turns to be  
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3. Environment 

We discuss the local channel, in which each subsystem 
interacts with its own environment and has no commu- 
nication with others. Then the total evolution of state s  
can be expressed as [30]  

1 1( ) ,N
s SM M M M  

 
         N

    (6) 

where iM   are the Kraus operators, N is the number of 
the subsystems interacted with the environment. In clas- 
sical computation, the bit flip  is the only error 
that will occur. However, there are the bit flip, the phase 
flip and the phase-bit flip in quantum computation be- 
cause of the possibility of the superposition. And the 
Kraus operators for the three channels are given by [30]  

0  1

0 11 2 1, 2i
iM p M p ,          (7) 

where i = x gives us the bit flip, i = z the phase flip, and i 
= y the phase-bit flip. 

4. Teleportation in an Open System 

Our teleportation model can be described as follow: Al- 
ice and Rob share an entangled state at the beginning,  

then Alice stays stationary, while Rob accelerates uni- 
formly. Meanwhile, the whole system undergoes the 
same environment, but each subsystem only interacts 
with its own environment. And a client wants to send a 
qubit state from Alice to Rob. 

From above discussion we know that we can described 
the evolved state of two particles undergoing local envi- 
ronment as [31]  

         † †

,

,A R R A
AR i j AR i j

i j

              (8) 

where  are the Kraus operators that de- 
scribe the noise channels interacted with A and R. Now, 
we will discuss the phase flip, bit flip and bit-phase flip 
channels, respectively. 

   ,k
i k A R  

4.1. Phase Flip Channel 

The phase flip channel is a quantum noise process with 
loss of quantum information but without loss of energy 
[31-33]. For this channel, the Kraus operators are given 
by [30-33]  
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where     0A R A Rp p 1   is parameterized time in the 
channel  A R

p p

. For simplicity, we consider the special 
situation that the decoherence rate is the same in both 
channels, i.e. A R p  . 

Because Rob moves with an uniform acceleration, and 
the whole system undergoes the phase flip channel, using 
Equations (5) and (8), we obtain the evolved state  

Copyright © 2012 SciRes.                                                                                 JQIS 



M. H. XIANG, J. L. JING 105

 22

2

2

cos 0 0 1 cos

1 0 sin 0 0
.

2 0 0 0 0

( 1) cos 0 0 1

I

evo
AR

r p

r

p r



 

  

r 


 





 (9) 

If we assume that the client wants to send the state 
0

teleportation is: firstly Alice performs CNOT and Ha- 
damard gate operation on the first two qubits, i.e., 

; 
then she measures the two qubits in Z-basis. The total 
state, after her measurement, will collapse to  

      † †
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Iij ij   with the probability of  

  1

4Iij ARp Tr ij ij   1     to Rob, considering the three subsys- 
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to evo
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I  are given by  
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finally Alice sends the results of the measurement (i and j) 
to Rob by a classical information channel. According to 
these information, Rob performs the corresponding  

quantum gate   1j i i jX Z Z



ij i j ij

X  on the qubit in his  

possession, and gets i.e.,   †
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Then, the fidelities  ij

ij IF Tr     can be cal- culated analytically as  
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From Equation (12), it is clear that the fidelities of the 
teleportation depend on the channel parameter p, accel- 
eration parameter r and state parameter  . In addition, 
the suitable value of the fidelity should be the minimum 
of the 0iF  and 1iF  since in reality Alice will not know 
the result of the measurement as the quantum state. 
Hereafter we take the minimum fidelity and plot them in 
Figures 1 and 2.  

Figure 1 shows that the fidelity decreases monoto- 
nously as p increases, i.e., the transmission capacity con- 
sistently weakened for this channel. Especially, when  

2 1

2
   and , the fidelity 1p 

1

2
F  , which means  

that the fidelity will converge if the time of the interact- 
tion between the system and environment is long enough, 
and the information would never completely disappear.  

However, when 
1

3
   and 

3

2
  , the fidelities  

don’t gather even the environment interacts for infinite  

time. 
Figure 2 shows that the fidelity of the teleportation 

has a symmetric point 2 1 2  . It is interest to note that 
the fidelity is independent on  when p 2 0   or 

2 1  , which means that as the transmitted state is a 
single bit the environment has no effect on the teleporta- 
tion. 

4.2. Bit Flip Channel 

For the bit flip channel, the Kraus operators are  

   0 diag 1 2, 1 2 1A
Rp p       

   
1 2 1A A

x Rp     

   0 1 diag 1 2, 1 2R
A p p      

and    
1 1 1 2R R

A p x     [30-33]. By using Equa-

tions (5) and (8), the initial state evolves to 
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Figure 1. Fidelity as a function of  with some fixed acceleration parameters p  0r  (blue curve),  π 8r  (red curve) and 
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Then the fidelities ijF  are  
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We plot the fidelity in Figures 3 and 4. From Figure 3, 
we know that when  

2 1

2
   the fidelity is independent on the environment  
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The rebound process of the fidelity results from the 
teraction between Unruh radiation and the quantum 

e
in
d coherence. It is interesting to note that when  

2 1 1 1 3
, ,

4 2 2 4
       

   
 

the fidelity, provided  is chosen appropriately, will 
increases consistently by increasing , which means  

that the environment effect will improve the ability of the 
transmission for this special case.  

In Figure 4, it is obvious that the fidelity is also sym-  

metric around the point 

r
p

2 1

2
  , and the fidelity for  

2 1

2
   is always the biggest. Moreov r, for single bit  e
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For this channel, the Kraus operators are  
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The fidelities ijF  are  
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We plot the fidelity of the teleportation in Figures 5  

and 6. We can see from Figure 5 that different fidelities 
corresponding to different acceleration parameters r will  

finally converge to the point with the value of 
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It is worthy to point that the turning point could close 

to but never reach it with any acceleration. 
Figure 6 also shows that the fidelity is symmetric  

ar

0p   

ound the axis 2 1

2
  . And we are interested to note 

that th 
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environment is long enough, both the initial state and 
Rob’s acceleration doesn’t affect the fidelity any more, it  

is always 

e fidelity, when 1p , is invariant for any β and r, 
., when the time of interaction between subsystem and  
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5. Summary 

The quantum teleporta etween two relatively accel  tion b
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provided r  is c  approp ly, the fidelity  

p

2 1 1 1 3
, ,

4 2 2 4
    

   
; And 3) for the phase-bit channel,    

ities coall the fidel nverge to one point 
1

F   for any  
2

acceleration and any transmission state parameter   if 
the time of the interaction between the system and the 
environment is long enough. The fidelity is also mo-  

notonously decreasing when  2 1

2
   or the acceleration  

is zero in this channel. 
In addition to that,  

ronment the fidelity is always symmetric about 

 undergoing any of the three envi- 
2 1

2
    

as it is a function of the transmission state parameter  . 
And it, as 2 0   or 2 1  , is constant for the p se  

flip channel, while it is constant with 

ha

2 1   for the bit  
2
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flip channel, which indicates that there are the different 
characters between these environments. 
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