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ABSTRACT 

In this work we consider a stochastic volatility model, commonly used in financial time series studies, to analyse ozone 
data. The model considered depends on some parameters and in order to estimate them a Markov chain Monte Carlo 
algorithm is proposed. The algorithm considered here is the so-called Gibbs sampling algorithm which is programmed 
using the language R. Its code is also given. The model and the algorithm are applied to the weekly ozone averaged 
measurements obtained from the monitoring network of Mexico City. 
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1. Introduction 

We are going to split this section into two parts. One 
containing a general literature review and another fo- 
cussing on the description of what happens in Mexico 
City. 

1.1. General Literature Review 

It is a well know fact that when exposed to high levels of 
pollution, human beings may present serious health is- 
sues (see for instance [1-3]). In particular, if ozone con- 
centration levels stay above 0.11 parts per million (0.11 
ppm) for a long period of time, then a very sensitive part 
of the population may present a deterioration in their 
health (see for instance [4-7]). 

Since exposure to high levels of pollution can cause 
serious damage to people’s health as well as the envi- 
ronment in general, there are several works in the litera- 
ture that deal with the problem of modelling the behav- 
iour of pollutants in general and in particular, ozone. 
Among them, we may quote the early work [8] consider- 
ing extreme value theory. We also have [9] using time 
series analysis; [10] and [11] considering Markov chain 
models; [12] with an analysis of the behaviour the maxi- 
mum measurements of ozone with an application to the 
data from Mexico City; [13,14] using homogeneous Poi- 
sson processes, and [15,16] using non-homogeneous 
Poisson processes (for several Markov and Poisson mod- 
els applied to air pollution problems see for instance  

[17]). [18-20] present studies that analyse the impact on 
air quality of the driving restriction imposed in Mexico 
City. 

Besides keeping track of the level of the daily maxi- 
mum concentration of a pollutant and checking for a de- 
creasing trend in the measurements, it might also be of 
importance for the environmental authorities to keep 
track of the degree of variability of the pollutant’s con- 
centration. That is important because, for instance, it may 
help to see how the variability behaves after some mea- 
sures aiming to reduce its level are taken. A decreasing 
of the daily concentration might occur, but it is also in- 
teresting to know if the variability also decreases. Fol- 
lowing in that direction we have, for instance, [21,22] 
and [23] where some univariate and bivariate stochastic 
volatility models are used to study the weekly averaged 
ozone concentration in Mexico City. Also, in [23] and 
[24] we have the use of multivariate stochastic volatility 
models to study the behaviour of five pollutants present 
in the city of São Paulo, Brazil. 

Many more works may be found in the literature. 
Some of those works consider spatial models and neural 
networks, among other methodologies. Some of them 
consider different pollutants as well. In this work we are 
going to consider only ozone since this pollutant is the 
one still causing problems in Mexico City. In the next 
section we describe the situation in Mexico City, the 
problem to be studied as well as the methodology con- 
sidered to study it. *Corresponding author. 
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1.2. Description of the Problem in Mexico City 

During the past twenty five years, environmental authori- 
ties in Mexico have been implementing several measures 
in order to decrease the level of pollution in several cities 
throughout the country. In particular, in Mexico City, 
those measures have caused an improvement in the air 
quality. For instance, from 1997 to 2005 the maximum 
hourly ozone measurements decreased by 30%. More- 
over, during the period of time ranging from 2008 to 
2010, the mean concentration of the daily maximum 
measurements did not surpassed the value 0.1 ppm. Tak- 
ing into account that the Mexican environmental standard 
for ozone is 0.11 ppm ([25]) and individuals should not 
be exposed, on average for a period of one hour or more 
once a year, this value for the mean is not so bad. How- 
ever, that does not mean that high levels do not occur. In 
order to see that, note that during the period from 01 
January 2008 to 31 December 2010, there were 491 days 
with the daily maximum measurement surpassing the 
value 0.11 ppm, 22 days when the threshold 0.17 ppm 
was surpassed, and one day of surpassings of the thresh- 
old of 0.2ppm used to declare emergency alerts in Mex- 
ico City. 

Figure 1 shows the plots of the daily maximum ozone 
measurements obtained during the period ranging from 
01 January 2008 to 31 December 2010. The horizontal 
line indicates the Mexican ozone standard of 0.11 ppm. 

Looking at Figure 1, we may see that even though the 

mean of the measurements in all regions is below 0.11 
ppm, we may still have many days in which the daily 
maximum measurement is well above 0.11. 

As seen in Figure 1, it would be useful to analyse how 
the ozone measurements variability have behaved in 
more recent years. In here we are analysing this vari- 
ability. Once we are able to model it we will able to esti- 
mate the frequency at which emergency situations may 
occur. In the present paper, in order to analyse the be- 
haviour of this variability, we also consider stochastic 
volatility models to analyse the ozone data set collected 
from the monitoring network of the Metropolitan Area of 
Mexico City (www.sma.df.gov.mx/simat/) corresponding 
to three years of the daily maximum ozone measure- 
ments. The advantage of using stochastic volatility 
models to analyse time series is that they assume the exi- 
stence of two processes modelling the series. One mo- 
delling the observations and another modelling the latent 
volatility. 

The model considered here is a particular case of the 
multivariate case considered in [23] and [24]. The diffe- 
rence here is that instead of using five pollutants we are 
going to concentrate only on ozone measurements ob- 
tained in five regions of Mexico City. Another difference 
is that in previous works, estimation of the parameters of 
the model was performed using the Gibbs sampling algo- 
rithm internally implemented in the software WinBugs 
([26]). That poses some difficulties such as slow con- 

 

 

Figure 1. Daily maximum ozone measurements for regions NE, NW, CE, SE and SW for the period ranging from 01 January 
2008 to 31 December 2010. 

Copyright © 2012 SciRes.                                                                                  AM 



V. DE JESÚS ROMO  ET  AL. 2180 

 
vergence of the algorithm and the use of very specific 
and very informative prior distributions. That was re- 
sponsible for the need of running the algorithm several 
times until the right values for the hyperparameters were 
obtained. In here, the Gibbs sampling algorithm is pro- 
grammed in R. The convergence was attained more 
rapidly and the prior distributions, even though infor- 
mative, were not so difficult to adjust. Hence, another 
aim here is to present the Gibbs sampling algorithm, and 
its code, used to estimate the parameters of the stochastic 
volatility model and apply it to the case of ozone data 
from Mexico City. 

This paper is organised as follows. Section 2 presents 
the stochastic volatility model considered here as well as 
the vector of parameters that need to be estimated. A 
Bayesian formulation used to estimate the parameters of 
the model considered in Section 2 is given in Section 3. 
In Section 4 the model and parameters estimation des- 
cribed in Sections 2 and 3 are applied to the data set 
obtained from the monitoring network of Mexico City. 
Section 5 presents some remarks and discussion of the 
results obtained. Finally, in Section 6 we conclude. An 
Appendix with the computer code used in the estimation 
of the parameters of the model is given after the list of 
reference. 

2. A Stochastic Volatility Model 

Stochastic volatility models have been used, in general, 
to analyse the variance of time series of financial returns 
(see for instance [27-30]). Until then, the existing 
methodology considered to model the volatility could be 
characterised by those used to model the variance based 
on function of past observations of the series (for instan- 
ce the ARCH—auto regressive conditional heteroscedas- 
tic-models proposed by [31]) and of the delayed values 
of the series (GARCH—generalised auto regressive con- 
ditional heteroscedastic—models proposed by [32]). 
Volatility models are characterised by modelling the vo- 
latility of the times series in function of a non observable 
stochastic process. Hence, the main difference between 
the two approaches is that models based on GARCH 
assume that the volatility is observed in a period ahead in 
time, while in the stochastic volatility models, the vola- 
tility is a latent variable that cannot be observed without 
an error. 

In this section the stochastic volatility model used to 
study the behaviour of weekly average measurements of 
the ozone in several regions of Mexico City is described. 
Many types of multivariate stochastic volatility models 
may be found in the literature (see for example [30]). The 
one considered here may be described as follows. Let 

 and  be fixed known integer and real 
numbers, respectively. (In here, N will represent the 
number of weeks in the observational period 

1N  0T 

 0,T  

whose weekly average measurements of ozone we are 
considering.) Also, let  be an integer number 
recording the number of different regions where mea- 
surements are taken. Hence, for 

0K 

   , 0,jX t t T

K

 the 
daily maximum ozone concentration measured on region 

 on the tth day, j 1,2, ,j   , define  

  , 1, 2, ,jZ t t   N  by      
7

1

7 ,j j
t

1 1Z X t

  
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14

8

2 1 7j
t

jZ X t


  , and so on. Therefore,  jZ t

j
, K

 is  

the weekly averaged ozone concentration in region  in 
the tth week, 1, 2, , j, 1,t N 2,   . 

Denote by   ,t , 2,3,jY t N  the log-return series  

defined by    log ,1j j 1, 2, ,Z t Z t

 , KY t 

j K  

 1,2, , N

 . Let  

      1 2, , ,t Y t Y t t Y  be a K-di-  

mensional vector whose coordinates are the K  times 
series   , 1, 2, ,iY t i K  . The vector  
is known as the log-return vector of the series  

  , 1, 2,Y t t  , N

  , 1, 2, , , 1, 2, ,jZ t j K t N   . The set  

      1 , 2 , ,D  Y Y Y N

 tY

  will denote the set of ob-  

served data. 
As in [23] and [24], we assume that  may be 

written as      tt H tY  , where  

        , K t1 2 , ,t t t    is an error vector and  

 H t  is a K K  diagonal matrix given by  

        1 22 2 2diag e ,e , , e Kh t h tH t h t , with  

        1 2, , , , 1, 2, ,Kt h t h t h t t N  h ,  a vector of 
latent variables to be specified later. Therefore, we may 
write   , 1,2, ,jY t j K     , as  2

e jh t
j jY t t  . 

Also, we assume that   , 1,2, ,t t N h  is such that 
its coordinates follow an AR(1) model, i.e., for  

1, 2, ,j K   

   
     
1 1

1 , 2,3

j j j

j j j j j j

h

h t h t t t N

 

   

 

        



 , ,

1

 

where 1 j   , and         1 2, , , Kt t t  η  t  
is assumed to have a multivariate Normal distribution 
with mean vector  0,0, ,00  and variance-cova- 
riance matrix   the diagonal matrix  

 2
1 2 K  

Remark. Note that by definition we have, for  

2 2, , ,  diag . 

1, 2, ,j K  , that  1jh  has a Normal distribution  

 2,
ji  N  and that given , the variable   1jh t  

 tjh  has a Normal distribution  

  21 , , 2,3, ,
jj j j jN h t t          N . 

We also assume that  t  has a multivariate Normal 
distribution with mean vector  and vari-  0,0, ,0 0 
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ance-covariance matrix  
, 1,2, ,ij i j K




 



 , where  

1ii   is the variance of  i t , and ij   is the cova- 
riance of  and  i t   , 2, ,j i j, , 1t i j , ,K   

1, 2,t  , N
 th

. Therefore, by definition, we have that 
given , the vector  has a multivariate Normal 
distribution with mean vector 0 and variance-covariance  

 tY

matrix given by , where  

and 

 
, 1,2, ,

Y
Y ij i j K




 


    

 e ih tY
ii 

2
e , , 1,2, , ,i jh t h tY

ij ij i j K i  
   j . 

Remark. Note that since the volatility of the series 
, is by definition    , 1, 2, ,Y t t N 

         2 2 1 , 2 , , 1t E Y t Y Y Y t    


, the vector 

        1 2, , , Kt h t h t h th   is the vector of the 
logarithm of the volatility of the series studied. 

In the present work we will be considering the case 
where  i.e., we assume 
independence among the coordinates of the vector  . 
Hence, now . That is, we are con- 
sidering only Model I given in [24]. This means that the 
problem can be viewed as having  times series which 
can be analysed separately. 

0 for , , 1, 2, ,ij i j i j K    

 diag 1,1, ,1  

K

Therefore, the joint density function of  tY  given 
 is  th

    

       2 2

1

1
2π exp e .

2
j

K
K h t

j j
j

f t t

h t Y t
 





       


Y h

   (1) 

This means that given         1 2, , , Kt h t h t h th  , 
the vector of the log-returns  
        1 2, , , Kt Y t Y t Y tY    has a Normal distribu- 

tion with mean vector  0, ,0
   

0,0  and variance-  

covariance matrix   diag e ,e , , e Kh tY  1 2h t h t . 

The vector of parameters to be estimated is  

 ; ; 2
ηθ μ σ  , where ,   1 2, , , K    μ

 1 2, , , K       and  1 2

2 2 2, , ,
K     2 ησ . (In  

here,  indicates the vector v  transposed.) v

3. Bayesian Formulation of the Models 

In this section the expression for the complete condi- 
tional marginal density functions of the parameters, that 
are used in the Gibbs sampling algorithm, are presented. 
We also determine the prior distribution of the para- 
meters of the model. Therefore, define  ,φ θ h , 
where . The aim is to obtain 
an expression for the posterior distribution 

      1 , 2 , , Nh h h h 
 P φ D  and 

from it obtain the estimated parameters. Note that we 
have that       P L P Pφ D D φ h θ θ  , where  
 L D φ  is the likelihood function of the model, 

 P h θ  and  P θ  are the conditional distribution of 
the latent variables given the vector of parameters and 
the prior distribution of the vector of parameters, re- 
spectively. 

Note that the likelihood function L D φ  is given by 

       2

1 1

1
expL   e .

2
j

N K
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
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D φ  (2) 

Additionally, 
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2
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N

t
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
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By hypothesis, we have that ([23] and [24])  
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and that for t N  , 
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Hence, 
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 

h θ

 (3) 

The choice of prior distributions for the parameters 
was based on information obtained from previous studies 
([22-24]) and also from the behaviour presented by the 
data. 

The parameters 2, and
jj j     will have as their 

prior distributions a Normal distribution Normal  

 ,j ja b , a Normal  ,j je f  and an inverse Gamma IG  

 , 1, ,j jc d j K 
, , , , ,j j j j ja b c d e

. The hyperparameters  
, 1, ,f j Kj    will be considered 

known and will be specified later. (In here, IG  ,a b  is 
the inverse Gamma distribution with mean  1b a    

and variance    22  1 2 , 2b a a a    .) 

The latent variables  th  will be considered as para- 
meters to be estimated and will have as their prior dis-  

tribution a Normal  2,
jj    for , and for 1t 

2,3, ,t N   its prior distribution is a Normal 
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   21 , , 1, 2, ,
jj j j jh t j K        . 

Therefore, we have from (2), (3) and the forms of the 
prior distributions of the parameters, that the complete 
posterior distribution P φ D  is given by 
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(4) 

Due to the complexity of (4), estimation of the para- 
meters of the volatility models may not be performed 
using usual methods. Hence, Markov chain Monte Carlo 
algorithms will be used. In particular, a Gibbs sampling 
algorithm (see for instance [33]) programmed using R is 
going to be used to obtain a sample of the parameters and 
with that estimates for them. 

Therefore, we need the expression for the complete 
marginal conditional distribution for each parameter. 
Additionally, in some cases, in order to obtain a sample 
from those complete conditional marginal distributions, 
we will need to use a Metropolis-Hastings algorithm (see 
for instance [34-36]) step inside the Gibbs sampling. 
Therefore, whenever necessary, the acceptance probab- 
ility for the Metropolis-Hastings algorithm is also going 
to be presented. 

Hence, let  indicate the vector φ  without the 
coordinate containing the parameter . Therefore, from 
(4) we have, for , that  
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and for , 2,3, ,t N 

       
      

     2

2

,

,

1
exp 1

2

j

j

j j j

j jh t

j j j j j

P h t h t Y t

h t Y t

h t h t


  




 

          
  

φ

 

where 

      

     2

,

1
exp e .

2

j

j

j jh t

h t
j j

h t Y t

h t Y t




       

                 

Therefore, in the case of , if  is 
the new proposed value for  and 

  , 1, 2, ,jh t t N 
 jh t

y
x  is its actual 

value, then the acceptance probability in the Metropolis- 
Hastings step is given by (we use the respective prior 
distributions to generate the proposed values) 
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Additionally, we have, for , that  1,2, ,j K 
  ,j jP  φ D  is proportional to a Normal  
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that   ,j jP  φ D  is proportional to a Normal 

 ,1j j jD C C , with 
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and that   2 2 ,
j j

P   φ D  is proportional to a in-  
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
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tions, namely, NE (Northeast), NW (Northwest), CE 
(Centre), SE (Southeast) and SW (Southwest) (see for 
instance [10], [15] and http://www.sma.df.gob.mx). The 
data used here correspond to the daily maximum ozone 
measurements taken from 01 January 2008 until 31 
December 2010, corresponding to  observa- 
tions. Measurements are taken minute by minute and the 
1-hour average results is reported at each monitoring 
station. The daily maximum measurement for a given 
region is the maximum over all the maximum averaged 
values recorded hourly during a 24-hour period by each 
station placed in the region. During the period of time 
considered, the mean concentration levels for regions NE, 
NW, CE, SE and SW are, respectively, 0.0829, 0.0851, 
0.0876, 0.0911, and 0.0977 with respective standard 
deviation given by 0.0286, 0.0303, 0.0306, 0.0294 and 
0.0341. We also have a total of  weeks and 
note that in here 

1092T 

155N 
5K  . We associate k = 1, 2, 3, 4 and 

5, with regions NE, NW, CE, SE and SW, respectively. 

where  
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Convergence of the Gibbs sampling algorithm was 
monitored using the analysis of the trace plots and the 
package CODA that is part of the software R. Spe- 
cifically, we used the Geweke ([37]), Raftery-Lewis 
([38]), Heidelberger-Welch ([39]) and the Gelman-Rubin 
([40]) tests. 

Figure 2 presents the plots of the weekly averaged 
measurements for each of the regions during the period 
of time considered here. 

Note that the weekly averaged measurements also 
present low values in a large number of weeks. However, 
it seems that the variation from one week to another may, 
in some cases, be very high. Therefore, it is of interest to 
know how this variability is behaving. Using stochastic 
volatility models we will be able to obtain information on 
how the variation behaves and with the estimated values  

4. An Application to Mexico City Ozone 
Measurement 

In this section we apply the stochastic volatility model, 
described in earlier sections, to ozone measurements 
from the monitoring network of Mexico City. The Me- 
tropolitan Area of Mexico City is divided into five sec-  
 

 

Figure 2. Weekly averaged ozone measurements for regions NE, NW, CE, SE and SW for the period ranging from 01 
January 2008 to 31 December 2010. 
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of the parameters of the model, we may perform pre- 
dictions about future behaviour of this variability. As 
said before, estimation of the parameters is going to be 
made using a sample from the respective complete 
conditional marginal posterior distributions which will 
be drawn using the Gibbs sampling algorithm run for 
three separate chains. Each chain run 21000 steps and 
after a burn-in period of 2000 steps, a sample of size 
3800, taken every 5th generated value, was obtained 
from each one. Hence, estimation of the parameters was 
performed using a sample of size 11400. The hyper- 
parameters of the prior distributions are aj = 0, bj = 1, cj 
= 3, dj = 3, ej = 0, fj = 10, j = 1, 2, 3, 4, 5. Table 1 

presents the mean, the standard deviation (indicated by 
SD) and the 95% credible intervals for the parameters 
of the model when data from each of the regions are 
used. 

In Figures 3-5, we have the plots of the estimated 
(dashed lines) and observed (solid lines) log-returns of 
the weekly averaged measurements for the entire obser- 
vational period and including the predicted and the ob- 
served values for the month of January 2011 (not in- 
cluded in the data when estimating the parameters). 

Observing Figures 3-5, we may see that, most of the 
time, the estimated log-returns of the weekly averaged 
measurements provide a good fit to the observed ones. 

 
Table 1. Posterior mean, standard deviation (indicated by SD) and 95% credible intervals of the parameters of interest for all 
regions. 

Region Parameter Mean SD 95% Credible interval 

 μ −2.864 0.174 (−3.205, −2.524) 

NE  0.154 0.150 (−0.14, 0.448) 

 2

  0.837 0.281 (0.287, 1.387) 

 μ −2.689 0.182 (−3.046, −2.332) 

NW  0.163 0.152 (−0.135, 0.46) 

 2

  0.912 0.328 (0.269, 1.555) 

 μ −2.689 0.167 (−3.016, −2.362) 

CE  0.141 0.151 (−0.155, 0.437) 

 2

  0.757 0.255 (0.257, 1.256) 

 μ −2.921 0.173 (−3.26, −2.582) 

SE  0.135 0.143 (−0.145, 0.416) 

 2

  0.888 0.292 (0.315, 1.46) 

 μ −2.668 0.171 (−3.003, −2.333) 

SW  0.131 0.150 (−0.163, 0.425) 

 2

  0.839 0.287 (0.277, 1.401) 

 

  

Figure 3. Observed (solid line) and estimated/predicted (dashed) log-returns of the weekly averaged measurements for 
regions NE and NW for the period ranging from 01 January 2008 to 31 December 2010/31 January 2011. 
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Figure 4. Observed (solid line) and estimated/predicted (dashed) log-returns of the weekly averaged measurements for 
regions SE and SW for the period ranging from 01 January 2008 to 31 December 2010/31 January 2011. 
 

 

Figure 5. Observed (solid line) and estimated/predicted 
(dashed) log-returns of the weekly averaged measurements 
for region CE for the period ranging from 01 January 2008 
to 31 December 2010/31 January 2011. 

5. Discussion 

In this paper we have considered a particular version of a 
multivariate stochastic volatility model to study the be- 
haviour of the weekly ozone averaged measurements. 
The interest was in the variability of the series of mea- 
surements. The parameters present in the model were 
estimated using a Gibbs sampling algorithm. This algo- 
rithm was implemented using the package R and the code 
is given in the Appendix of this work. Even though the 
model considered here is a particular case of a more 
general version, the general approach may also be imple- 
mented by making some adjustments in the code. 

Looking at Table 1, we may see that the values of the 
parameters are very similar in all regions. That is justi- 
fied by the fact that the weekly averaged measurements 
behave in a very similar way in all regions during the 
observational period (see Figure 2). Hence, the log- 
returns series will reflect that behaviour. Also from Ta- 
ble 1, we may see that the effect of the parameter   on 
the latent variables is a negative one in all regions. That 
effect is also observed in similar studies ([22,23]). Note 

that in all regions the value of   is very small. That 
means that the effect of past values in the present ones is 
very small. That same behaviour is also seen in [22,23]. 
However, for the present dataset the effect is even 
smaller. 

Using the estimated parameters given in Table 1, we 
may obtain estimates for the averaged weekly measure- 
ments in future weeks. In order to illustrate that we con- 
sider the month of January 2011. Note that, by hy- 
pothesis we have, for each , that  1, ,j K 2,

      log 1j j jY t Z t Z t  , and therefore, we may  

write    1 expj j j Z t Z t Y t     , where  

     exp 2j j j  . Hence, using the value of 
the last week of December 2010 (which would be 
Y t h t t  

 1jZ t  ), and using the simulated values for  jh t  
and  j t  we may obtain an estimate for the averaged 
measurement of the first week of January 2011. This 
values is used as  1jZ t   in the next step. Again, we 
simulate values for  jh t  and  and with that we 
obtain the new 

j t
 jZ t , which will correspond to the se- 

cond week of January 2011, and so on. Those estimated 
values and the observed ones are given in Table 2. 

Looking at Table 2 we may observe that for the first 
two weeks of January 2011 the estimated weekly ave- 
raged values overestimate the observed ones. However, 
for the last two weeks, the observed weekly averaged 
measurements are underestimated. The error in the esti- 
mation may be justified by the accumulated errors that 
might occur during the estimation of  and  jh t  j t . 
Nevertheless, the approximation is overall very good. 
That can also be corroborated by looking at the plots of 
the log-returns given in Figures 3-5. 

6. Conclusions 

Even though the version of the model considered here 
assume independence among regions, it is possible to 
see, by looking at Figures 3-5 and at Table 2, that the  
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Table 2. Observed and predicted weekly averages ozone measurements for the month of January 2011. 

Weeks  NE NW CE SE SW 

1 observed 0.064 0.063 0.057 0.063 0.069 

 estimated 0.076 0.07 0.079 0.083 0.084 

2 observed 0.08 0.084 0.084 0.085 0.098 

 estimated 0.095 0.091 0.099 0.103 0.108 

3 observed 0.076 0.071 0.07 0.076 0.078 

 estimated 0.06 0.053 0.061 0.066 0.065 

4 observed 0.069 0.068 0.065 0.069 0.074 

 estimated 0.053 0.047 0.054 0.058 0.057 

 
estimated quantities provide a good approximation to the 
observed one as well as providing a good prediction to 
future observations. 

Since it provides an instrument to be used to estimate 
the parameters in volatility models, the programme code 
given in this work may help those interested in studying 
volatility of times series in general. Even though the 
model is applied to air pollution data, the code may be 
used in any dataset. 

We would like to call attention to the fact that a model 
where correlation amongst the regions is considered may 
provide a better insight on the behaviour of the volatility 
of the weekly averaged measurements. That would in- 
corporate the possible effect that the wind direction may 
have on the measurements in different regions. In the 
present work we have not dealt with that, but as men- 
tioned before a modification on the complete conditional 
marginal posterior distributions and on the code of the 
programme can be easily made in order to incorporate 
those cases. However, that is the subject of future stu- 
dies. 
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Appendix 

# GIBBS SAMPLING ALGORITHM 
# Auxiliary functions 
psi_hj1=function(hj1,yj1){ 
b_2=exp(-1/2*(hj1+exp(-hj1)*yj1^2)) 
b_2 
} 
##################################### 
psi_hjt=function(hjt,yjt){ 
b_1=exp(-1/2*(hjt+exp(-hjt)*yjt^2)) 
b_1 
} 
##################################### 
# Initial data 
n=21000 
burn=2000 
n.cadenas=3 
salto=5 
region=1 
seed=987 
if(seed>0){set.seed(seed)} 
a1=0 ;b1=1 
c1=3 ;d1=3 
e1=0 ;f1=10 
# Generating the initial values 
in_mu=rnorm(n.cadenas,0,1) 
in_phi=rnorm(n.cadenas,0,0.35) 
in_sigma2=1/rgamma(n.cadenas,3,2) 
###################################### 
mide.tiempo=proc.time() 
if(region==1){y1=scan("c:/r/rsne3.txt")} 
if(region==2){y1=scan("c:/r/rsnw3.txt")} 
if(region==3){y1=scan("c:/r/rsce3.txt")} 
if(region==4){y1=scan("c:/r/rsse3.txt")} 
if(region==5){y1=scan("c:/r/rssw3.txt")} 
N=155 # number of weeks (three years) 
espmu=e1;espphi=a1;espsigma2=d1/(c1-1) 
###################################### 
# Storing the values of the chains 
SIMmu=matrix(0,n,n.cadenas) 
SIMphi=matrix(0,n,n.cadenas) 
SIMsigma2=matrix(0,n,n.cadenas) 
Hjtn=matrix(0,n,N*n.cadenas) # store simulated value of  
# h 
Contador=matrix(0,N,n.cadenas) # store accepted Metro-  
# polis-Hasting values 
##################################### 
for(m in 1:n.cadenas){ 
###################################### 
# Gibbs simulation of the latent variables (n=1) 
# h_j, t=1,2,...,155; N=155 
# First step for t=1 
# Metropolis-Hastings step in the Gibbs sampling 
anterior=in_mu[m] # initial value for h_j(1) 

u=runif(1) 
y=rnorm(1,in_mu[m],sqrt(in_sigma2[m])) # proposal 
# density 
num=psi_hj1(y,y1[1]) 
den=psi_hj1(anterior,y1[1]) 
rho=num/den 
Hjtn[1,(N*(m-1)+1)]=anterior+(y-anterior)*(u<=rho) # 
# first simulated Gibbs value 
Contador[1,m]=(u<=rho) 
# simulation for t=2,3,...,N 
for(t in 2:N){ 
hj_ant=Hjtn[1,(N*(m-1)+t-1)] # Gibbs actualization 
anterior=rnorm(1,hj_ant,sqrt(in_sigma2[m])) # initial  
# value 
u=runif(1) 
y=rnorm(1,in_mu[m]+in_phi[m]*(hj_ant-in_mu[m]),sqrt
(in_sigma2[m])) # proposed value 
num=psi_hjt(y,y1[t]) 
den=psi_hjt(anterior,y1[t]) 
rho=num/den 
Hjtn[1,(N*(m-1)+t)]=anterior+(y-anterior)*(u<=rho) 
Contador[t,m]=(u<=rho) 
} 
################################### 
# mu_1--->n=1 
# Gibbs actualisation 
# h_1=Hjtn[1,(N*(m-1)+1):(N*(m-1)+N)] 
# Gibbs actualisation# 
# Parameters of the complete conditional marginal densi- 
# ties 
########## 
A=1/f1+(1+(1-in_phi[m])^2*(N-1))/in_sigma2[m] 
diferencias=numeric(N) 
for(t in 2:N){ 
diferencias[t]=h_1[t]-in_phi[m]*h_1[t-1]} 
B=e1/f1+(h_1[1]+(1-in_phi[m])*sum(diferencias))/in_si
gma2[m] 
C=B/A; D=1/A 
##############################################
## 
SIMmu[1,m]=rnorm(1,C,sqrt(D)) 
################################### 
# phi_11--->n=1 
# Gibbs actualisation# 
mu_1=SIMmu[1,m] 
#Gibbs actualisation# 
#Parameters of the complete conditional marginal densi- 
# ties 
########## 
diferencias1=numeric(N) 
for(t in 2:N){ 
diferencias1[t]=(h_1[t-1]-mu_1)^2} 
A=1/b1+sum(diferencias1)/in_sigma2[m] 
diferencias2=numeric(N) 
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for(t in 2:N){ 
diferencias2[t]=(h_1[t]-mu_1)*(h_1[t-1]-mu_1)} 
B=a1/b1+sum(diferencias2)/in_sigma2[m] 
C=B/A; D=1/A 
##############################################
## 
SIMphi[1,m]=rnorm(1,C,sqrt(D)) 
################################### 
# sigma2_1--->n=1 
# Gibbs actualisation# 
phi_1=SIMphi[1,m] 
# Gibbs actualisation# 
# Parameters of the complete conditional marginal densi- 
# ties 
########## 
A=c1+N/2 
diferencias=numeric(N) 
for(t in 2:N){ 
diferencias[t]=(h_1[t]-mu_1-phi_1*(h_1[t-1]-mu_1))^2} 
B=1/2*((h_1[1]-mu_1)^2+sum(diferencias))+d1 
##############################################
## 
SIMsigma2[1,m]=1/rgamma(1,A,B) 
########################################## 
# Gibbs simulation for n=2,3,..., 
########################################## 
for(k in 2:n){ 
# Gibbs actualisation# 
mu_1=SIMmu[k-1,m] 
phi_1=SIMphi[k-1,m] 
sigma2_1=SIMsigma2[k-1,m] 
# Gibbs actualisation# 
# h_j, t=1 
anterior=Hjtn[k-1,(N*(m-1)+1)] 
u=runif(1) 
y=rnorm(1,mu_1,sqrt(sigma2_1)) 
num=psi_hj1(y,y1[1]) 
den=psi_hj1(anterior,y1[1]) 
rho=num/den 
Hjtn[k,(N*(m-1)+1)]=anterior+(y-anterior)*(u<=rho) 
Contador[1,m]=Contador[1,m]+(u<=rho) 
# simulating h_j, t=2,3,...,N 
for(t in 2:N){ 
hj_ant=Hjtn[k,(N*(m-1)+t-1)] 
anterior=Hjtn[k-1,(N*(m-1)+t)] 
u=runif(1) 
y=rnorm(1,mu_1+phi_1*(hj_ant-mu_1),sqrt(sigma2_1)) 
num=psi_hjt(y,y1[t]) 
den=psi_hjt(anterior,y1[t]) 
rho=num/den 
Hjtn[k,(N*(m-1)+t)]=anterior+(y-anterior)*(u<=rho) 
Contador[t,m]=Contador[t,m]+(u<=rho) 
} 
# ################################## 

# mu_1-->>n=k 
# Gibbs actualisation# 
h_1=Hjtn[k,(N*(m-1)+1):(N*(m-1)+N)] 
# Gibbs actualisation# 
# Parameters of the complete conditional marginal densi- 
# ties 
########## 
A=1/f1+(1+(1-phi_1)^2*(N-1))/sigma2_1 
diferencias=numeric(N) 
for(t in 2:N){ 
diferencias[t]=h_1[t]-phi_1*h_1[t-1]} 
B=e1/f1+(h_1[1]+(1-phi_1)*sum(diferencias))/sigma2_1 
C=B/A; D=1/A 
##############################################
## 
SIMmu[k,m]=rnorm(1,C,sqrt(D)) 
################################### 
# phi_11-->>n=k 
# Gibbs actualisation# 
mu_1=SIMmu[k,m] 
# Gibbs actualisation# 
#Parameters of the complete conditional marginal densi-
ties 
########## 
diferencias1=numeric(N) 
for(t in 2:N){ 
diferencias1[t]=(h_1[t-1]-mu_1)^2} 
A=1/b1+sum(diferencias1)/sigma2_1 
diferencias2=numeric(N) 
for(t in 2:N){ 
diferencias2[t]=(h_1[t]-mu_1)*(h_1[t-1]-mu_1)} 
B=a1/b1+sum(diferencias2)/sigma2_1 
C=B/A; D=1/A 
##############################################
## 
SIMphi[k,m]=rnorm(1,C,sqrt(D)) 
################################### 
# sigma2_1-->>n=k 
# Gibbs actualisation# 
phi_1=SIMphi[k,m] 
# Gibbs actualisation# 
# Parameters of the complete conditional marginal densi- 
# ties 
########## 
A=c1+N/2 
diferencias=numeric(N) 
for(t in 2:N){ 
diferencias[t]=(h_1[t]-mu_1-phi_1*(h_1[t-1]-mu_1))^2} 
B=1/2*((h_1[1]-mu_1)^2+sum(diferencias))+d1 
##############################################
## 
SIMsigma2[k,m]=1/rgamma(1,A,B) 
}} 


