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ABSTRACT 

In case of heteroscedasticity, a Generalized Minimum Perpendicular Distance Square (GMPDS) method has been sug- 
gested instead of traditionally used Generalized Least Square (GLS) method to fit a regression line, with an aim to get a 
better fitted regression line, so that the estimated line will be closest one to the observed points. Mathematical form of 
the estimator for the parameters has been presented. A logical argument behind the relationship between the slopes of 

the lines  and i0 1
ˆ ˆ

î iY X   0 1
ˆ ˆˆ

iX Y     has been placed. 
 
Keywords: Heteroscedasticity; Ordinary Least Square Method; Minimum Perpendicular Distance Square Method; 

Generalized Least Square Method 

1. Introduction 

Linear regression has a long history in its way of devel- 
opment from the very begging of eighteenth century till 
today. A lot of literatures are available in this area, these 
literatures involves the estimation of regression coeffi- 
cients and constant by Ordinary Least Square (OLS) 
method i.e. by minimizing the sum of square of the ver- 
tical distances between the observed points and the as- 
sumed regression line, and estimate the regression coef- 
ficients traditionally known as OLS estimation proce- 
dure. 

M. F. Hossain and G. Khalaf, (2009) showed that OLS 
method does not minimize actual distance from the ob- 
served point to the fitted regression line. They have sug- 
gested minimum perpendicular distance square (MPDS) 
Method estimation for simple linear regression in case of 
homoscedasticity which boils down the traditional OLS 
method. But regression disturbances whose variances are 
not constant across observations are heteroscedastic. 
Heteroscedasticity arises in numerous applications, in 
both cross-section and time-series data. For example, 
even after accounting for firm sizes, we expect to ob- 
serve greater variation in the profits of large firms than in 
those of small ones. The variance of profits might also 
depend on product diversification, research and develop- 
ment expenditure, and industry characteristics and there- 
fore might also vary across firms of similar sizes. When 
analyzing family spending patterns, we observe greater 
variation in expenditure on certain commodity groups 
among high-income families than low ones due to the 

greater discretion allowed by higher incomes [1]. MPDS 
method is not suitable for this type of heteroscedasticity 
situation because this method was established only for 
homoscedasticity cases. 

In this paper we have considered minimum perpen- 
dicular distance square method in case of heteroscedas- 
ticity which we called Generalized Minimum Perpen- 
dicular Distance Square (GMPDS) method. 

2. Problems of Ordinary Least Square (OLS) 
and Generalized Least Square (GLS) 
Method 

Suppose the simple linear regression model is 

0 1i iY X iu     

where the response variable  is related to the explana- 
tory variable 

Y
X  through the regression coefficient 1 , 

constant intercept 0  and random disturbance term . 
We assume that the disturbance terms iu  follow all 
assumptions of classical linear regression model. 

u

The estimation procedure of regression coefficient by 
Ordinary Least Square (OLS) method and Generalized 
Least Square (GLS) method is actually minimizing the 
sum of square of the vertical distances  from the 
observed points to the assumed regression line. 

 iu

The OLS estimators are: 
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and 0 1 .Y X     

The important assumption for applying OLS method is 
that the variance of each disturbance term i , condi- 
tional on the chosen values of the explanatory variables, 
is some constant number (is called homoscedasticity as- 
sumption). If the data violet this homoscedasticity as- 
sumption that is the variance of each disturbance term 

i  conditional on the chosen values of the explanatory 
variables is random (say 

u

u
2
i ) then we can not apply 

OLS and in this case we apply GLS estimation procedure 
for estimating parameters [2]. 

The GLS estimators are: 
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The problem of OLS and GLS estimation is that, actu- 
ally they don’t minimize real distance from the observed 
point to the fitted regression line rather they minimize the 
vertical distance from the observe point to the fitted re- 
gression line. For this reason we have the well known 
theorem is 

2
XY YX    . 

where XY  is the estimated regression coefficient of 
X  on Y  and YX  is the estimated regression coeffi- 

cient of  on Y X . If OLS and GLS minimize real dis- 
tance (error) then XY YX    should be unity that is 

XY YX . But in OLS and GLS methods, it only oc- 
curs if data are perfectly correlated, that is 

1  
1r  . In 

real life problem this type of perfect correlation occurs in 
rare case. 

The Minimum Perpendicular Distance Square Method 
suggested by Hossain and Khalaf (2009) produced the 
estimator which gives  for all cases and it 
indicates that the errors are really minimized and gives 
more accurate result than that of OLS [3]. 

ˆ ˆ 1XY YX  

Concept of Minimum Perpendicular Distance 
Square (MPDS) Estimation 

The real distance of the assumed regression line 

0 1Y X    from the points  , ; 1, 2, ,i iX Y i n   are 
not the vertical distances or height of the point minus  
height of regression line i.e. .  0 1i iY X  

In fact the actual distances from the line 0 1Y X    
to the points  , ; 1, 2, ,i iX Y i n   are the perpendicular 
distances ’s (as indicated in Figure 1). These perpen- 
dicular distances would also be positive and negative 
according to 

ˆiu

 ,i iX Y  is above the line  or be-   ˆ 0iu 
low the line  ˆ 0ui  . Also assuming that 

  2ˆ ~ 0,iu N   . Hence estimating 1  and 0  by mi- 

nimizing sum of the squares of these perpendicular dis- 
tances will produce the closest fitted regression line from 
the points  , ; 1, 2, ,i iX Y i n   which may be used for 
more accurate prediction purposes. 

3. The Method of Generalized Minimum 
Perpendicular Distance Squares Method 
(GMPDSM) 

Let us consider two-variable linear regression function is 

0 1i iY X iu     

which for ease of algebraic simplification we write as  

0 0 1i i iY X X iu                (1) 

where 0 1iX   for each  and the response variable 
is related to the explanatory variable 

i
Y X  through the 
regression coefficient 1 , constant intercept 0  and 
random disturbance term . We know that one of the 
important assumptions of the classical linear regression 
model is that the variance of each disturbance term i , 
conditional on the chosen values of the explanatory 
variables is some constant number equal to 

u

u

2 . This is 
the assumption of homoscedasticity. Symbolically, 

   2 2 ; 1,2, ,i iVar u E u i n     

 

Y

X

(x1, y1) 

(x2, y2) 

 (x4, y4) 
(xi, yi)

iu

ˆ
iu

0 1
ˆ ˆŶ X  

0 1Y X   

 

Figure 1. Regression lines obtained from OLS & MPDS 
method. 
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Now if the conditional variance of  are not 
same for each of the . i.e., heteroscedasticity. Sym- 
bolically, 

ori iY u 
iu

   2 2 ; 1, 2, ,i i iVar u E u i n     

and suppose the heteroscedastic variance 2
i  are known. 

Then dividing (1) by 2
i  both sides, we get 

0
0 1

i i i

i i i

Y X X u  i

i  
    

      
    





iu

          (2) 

which for ease of exposition we write 

0 0 1i i iY X X                      (3) 

where the transformed variables are the original variables 
divided by (the known) i . We use the notation 0

  
and 1

 , the parameters of the transformed model, to 
distinguish them from the usual MPDS parameters 0  
and 1 . Now we see 
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which is a constant. That is, the variance of the trans- 
formed disturbance term  is now homoscedastic. i

This procedure of transforming the original variables 
is done in such a way that the transformed variables sat- 
isfy the assumptions of the classical model. Now apply- 
ing MPDS method to this transformed model to estimate 
parameter we call Generalized Minimum Perpendicular 
Distance Squares Method (GMPDSM). In short, GMPDS 
is MPDS on the transformed variables that satisfy the 
classical regression assumptions. The estimators thus 
obtained are knows as GMPDSM estimators. 

u

3.1. Perpendicular Distance from the Points to 

the Line   0 1i iY X 

Let us consider two-variable linear regression function 

0 1i iY X     

Dividing both sides by i  we have 

0
0 1

i i i

i i i

Y X X u  i

i  
     

      
    





iu

       (4) 

or 

1 0 2i i iY X X         

For estimating 0
  and 0

  we need to determine the 
perpendicular distance from the observed point  ,i iX Y   

to the line . The perpendicular dis- 

tance 

1 0 2
ˆ

î i  ̂ 

ˆiu  from the points  ,i iX Y   to the fitted line 

0 0Y X 1
ˆ ˆˆ

i  X      [4,5] is 

iX Y X 
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3.2. Parameter Estimation Based on GMPDS 
Method 

To obtain the GMPDS estimators, we minimize sum of 
square of perpendicular distances  from the points ˆiu

 , ;i i 1,2, ,X Y i  n   to the fitted line 0 1
ˆ ˆŶ X      

following steps are taken. 
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where weights 

2

1
i

i

w


  

that is, the weights are inversely proportional to the 
variance of  or  conditional on the given iu iY iX , i.e.,  

    2var vari i i i iu X Y X   . 

Differentiating (5) with respect to 1


1

, then putting 
equal to zero and setting for 1

ˆ     we get the normal 
equation 

2
1 0

2 2
1 0 1

2 2 2 *
1 0 1

0 1

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ2 0

i i i i i i i

i i i i i

i i i

i i

w X Y w X w X

w X Y w X

wY w

wY

 

  

  

 

 

  

 

 

  

 

 

 

  
 
 


      (6) 

Again differentiating Equation (5) with respect to 0
  

and equating zero with 0
ˆ

0   , we get 
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 (7) 

Using Equation (7) in Equation (6) we get 
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So the solution of the above equation is: 
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Using this result in Equation (7) we can estimate 0̂
 . 

And hence 

0 1
ˆ ˆi i i i

i i

w Y w X

w w
     

 
           (8) 

In this method we get two regression coefficients, it 
could be proved that the “+” solution i.e.  1 1̂   gives 
minimum of (5) and hence we suggest the reader to use 

 1 1̂   as the regression coefficient and accordingly the 
regression constant 0

  could be estimated by using 

 1 1̂   in Equation (8) to fit the regression line Y   on 
X   i.e. . 0 0 1

ˆY X   ˆ  X 

ˆ ˆˆ Y

3.3. Estimation of Regression Coefficient by 
Using GMPDS for the Model 

  X β β0 1
     

To estimate regression coefficient 1
  and regression 

constant 0
 by minimizing sum of squares of the error 

term iu  ’s (assumed) the perpendicular distances from 

the fitted line 0 1
ˆ ˆX̂ Y        to the points  

 , , 1,2, ,i iX Y i n    ; we do the similar steps as we do 
in Section 3.7. 
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Differentiating both sides with respect to 0
  and 

1
  and putting equal to zero and setting for 0

  and 

1
 , we get the following solutions: 
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Here we also get two regression coefficients and for 
the same region as we have mentioned in Section 3.2, we 
will suggest the reader to use  1 1̂    as regression coeffi- 
cient and accordingly the estimation of 0̂

  may be 
obtained to fit the regression line X  on . Y 

3.4. Relationship between Regression 
Coefficients 

If we consider the GMPDS method to estimate regres- 
sion coefficients 1

  and 1
 as we have indicated in 

Sections 3.2 and 3.3, by minimizing the error term ˆiu  
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and respectively (the perpendicular distances from 
these lines to the observed points), we get 

ˆiu 
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for the line 0 0 1
ˆ ˆX̂ X       Y   we see that  1 1̂   is 

proportional to  1 1̂   i.e. 
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, 

which indicate that during estimating regression coeffi- 
cient by using GMPDS method in case of heteroscedas- 
ticity, the error term is minimized. This is a new angle to 
advocate the advantage our suggested method (GMPDSM) 
to estimate regression coefficients in case of heterosce- 
dasticity. 

4. Concluding Remarks 

The method of MPDS estimation actually minimize real 
distances from the observed points to the fitted regres- 

sion line but OLS and GLS method fail to do that by us- 
ing vertical distance from the observe points to the fitted 
regression line. But one of the crucial assumptions of 
MPDS method and also for traditional OLS method is 
that the variance of each disturbance terms remains some 
constant number  2 . So we can not apply MPDS 
method when this assumption is violated. That is, in 
presence of heteroscedasticity OLS and MPDS is not 
suitable. In this paper our main focus is on minimum 
perpendicular deviations in case of heteroscedasticity, 
and we have shown in mathematically that GMPDS me- 
thod gives an estimator that the error term is really 
minimized. Hence we propose GMPDS method in case 
of heteroscedasticity. 
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