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ABSTRACT 

In this paper, Spike-and-Slab Dirichlet Process (SS-DP) priors are introduced and discussed for non-parametric Baye- 
sian modeling and inference, especially in the mixture models context. Specifying a spike-and-slab base measure for DP 
priors combines the merits of Dirichlet process and spike-and-slab priors and serves as a flexible approach in Bayesian 
model selection and averaging. Computationally, Bayesian Expectation Maximization (BEM) is utilized to obtain MAP 
estimates. Two simulated examples in mixture modeling and time series analysis contexts demonstrate the models and 
computational methodology. 
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1. Introduction 

Dirichlet Process (DP) priors are used across a wide vari- 
ety of applications of Bayesian analysis, including Baye- 
sian model validation, density estimation and mixture 
modeling. Specifically in hierarchical mixture models, 
the nonparametric nature of the Dirichlet process trans- 
lates to mixture models with a countably infinite number 
of components and is used to specify latent patterns of 
heterogeneity. It allows for uncertainty about the number 
of mixture components and component specific parame- 
ters. 

On the other hand, if the typical Dirichlet process prior 
with a continuous base measure 0  is used as the prior 
for the distribution of parameter , this requires a 
known parametric model and fixed parameter space. 
However, this is often not the case. For example, in mix- 
ture models, we often deal with cases with model un- 
certainty where the parameter space of one mixture com- 
ponent might be smaller than that of another. In these 
cases, a DP priors with continuous base measure are both 
theoretically and philosophically not right to use. Instead, 
we want to further integrate model selection techniques 
into the model to allow for more flexibility. 

G


Bayesian spike-and-slab approaches to parameter se- 
lection have been proposed [1,2], and used as prior dis- 
tributions in the Bayesian model selection and averaging 
literature [3]. Spike-and-slab distributions are mixtures of 
two distributions: the spike refers to a point mass dis- 
tribution (say, at zero) and the other distribution is a con- 
tinuous distribution for the parameter if it is not zero. 
Recently, the use of spike-and-slab distribution combined 
with Dirichlet process prior has been proposed in mul-  

tiple hypothesis testing [4,5]. This approach is shown to 
readily accommodate sharp hypothesis, which cannot be 
tested using regular Dirichlet process with continuous 
base measure (due to the fact that sharp hypotheses will 
have zero posterior probability) [6]. 

In this study, we propose the use of Spike-and-Slab 
Dirichlet process (SS-DP) priors, especially in mixture 
models. The uncertainty about model and parameter 
space is incorporated in the model by modeling the un- 
known distributions of parameters with SS-DP priors 
which allow degeneration of certain parameters. We 
show that SS-DP mixture models are flexible models 
allowing both unknown number of components and dif- 
ferent component-specific parameter spaces. 

2. Models and Methods 

2.1. Spike-and-Slab Dirichlet Process Mixture 
Models 

Consider a Dirichlet Process Mixture (DPM) model with 
infinite number of components of the form 

 πi ii
y f y . Hence, y is distributed as a mixture of  

distributions with the same parametric form f and para- 
meter space, but different parameter values. Assuming 
that all the parameters i  are from the continues distri- 
bution G, the mixture model can be expressed hierar- 
chically as a DPM model of the form: 
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where 0 0  is the Dirichlet Process with conti- 
nuous base measure 0  and spread 0

 DP G
G   [7,8], and G is 

a random distribution drawn from the Dirichlet process. 
The SS-DP mixture model we proposed here is an ex- 

tension of the DPM model, which allows different para- 
meter spaces of f, especially with some of the parameters 
degenerated. This flexibility is achieved by letting the 
base measure 0  be spike-and-slab with a mixture of 
point mass (typically at 0) and the other (continuous) dis- 
tribution instead. 

G

Hence, the SS-DP mixture Model is: 
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      (2) 

where 0   is a Dirac delta function, 0H  is a con- 
tinuous measure and w is the mixing weight with a Beta 
prior distribution. 

Clearly, by allowing the values of parameters to be 
exactly 0, SS-DP mixture models simultaneously incor- 
porate the uncertainty of component-specific parameter 
space. It is worth noting that in many applications, this 
degeneration of specific parameter(s) (or an exact value 
of a parameter) defines important regime switching or 
phase change that cannot be modeled by traditional DPM 
models with continuous base measure. Examples of such 
cases are shown in the simulation study section. 

2.2. Truncated SS-DP Mixture Models 

In practice, for problems that require unknown number of 
mixture components and uncertainty of component-spe- 
cific parameter space, we can use the stick-breaking re- 
presentation of Dirichlet process [9] to truncate the SS-DP 
mixture models at a maximum number of components J. 
To illustrate, the following example of truncated SS-DP 
mixture models is shown, which will also be the basic 
model for our simulation studies. 

Assume that y is distributed as a mixture of K normal 
distributions, and the component means are linear com- 
binations of covariates x0 and x1, where the regression 
coefficients of x0 may be zero in some mixture com- 
ponents. With the number of components K unknown, 
we model y as coming from a normal mixture with maxi- 
mum number of components J  J K : 

 0 1 ,1
1

π
J

j j j j
j

y N    x x

 . 

Furthermore, to model the possible degeneration of 

j , SS-DP priors with a mixture of point mass at 0 and a 
normal distribution are placed for j , while typical DP 

priors with normal base measures are used for j , as 
described in (1) and (2). 

The model and priors can be written under stick- 
breaking representation [9] as follows: 
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   (3) 

Given the model and priors, Bayesian posterior analy- 
sis of parameters provides inference of both model para- 
meters and model uncertainty. 

3. Computational Methods 

For inference and posterior analysis, we propose to use 
Bayesian Expectation Maximization (BEM) to obtain 
Maximum A Posteriori (MAP) estimates of all the para- 
meters. To help BEM visit the (local) maximum of the 
regions with high mass, Markov Chain Monte Carlo 
(MCMC) will be conducted before BEM, and multiple 
starting points of BEM will be chosen from MCMC 
samples. In comparison, label switching is expected to be 
a concern to interpret the MCMC results if instead Gibbs 
sampler is used, which is not a recommended compu- 
tational method. The details of BEM are shown as 
follows: 

Let , , nz z z 
z j

1  denote the latent component in- 
dicators, where i   if observation  is from the 

 component. And let 
i

thj  π ,ij i iP z j y   denote 
the assignment probability. Then the BEM is to maxi- 
mize the posterior log likelihood, and iterated between 
the two steps: 

E-step: Calculate 
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 twhere   denotes all the parameters,   is the para- 
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meter learning at the  iteration,  
    ,t t

ij y πij  piP z  and   is the joint prior dis-  

tribution of parameters. 
M-step: Find the  which maximizes  1t    tQ   : 

    1 =arg maxt tQ   . 

The derivations of the M-steps given our SS-DP mix- 
ture models and priors shown in (3) are listed in detail in 
Appendix. 

4. Simulation Study for SS-DP Mixture 
Model 

Data are generated from a mixture of 3 normal distri-  

butions  ,1
3

1
π

J

j j j jx
j

y N   

 



  as follows, where  

the component mean is independent of x in one of the 
components. 
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We assume that the number of normal components are 
unknown a priori and set the maximum number of com- 
ponents J to be 20. Models and priors are used as shown 
in (3) and MAP estimates of all unknown quantities are 
obtained using BEM. Several aspects of posterior infe- 

rence are checked to gauge the performance of the model 
and algorithms: 

The MAP estimates of the model give 4 mixture com- 
ponents, the parameters of which are shown in Table 1. 
Components 1-3 recover the three components of the 
simulated data very well. Zero   of the third compo- 
nent is also inferred exactly. The model identifies one 
additional trivial (1.2%) fourth component. The inference 
of one more number of components is due to the fact that 
we obtained the maximum likelihood point estimate, 
which shows small deviation from the true number of 
components. 

Further if we do model-based clustering based on the 
posterior probability of data belonging to a specific com- 
ponent, the classification results are shown in Figure 1, 
which show great similarity with the simulated com- 
ponents. 

5. Cointegrated Time Series Analysis via 
SS-DP Mixture Models 

One of the motivating applications for this paper arises in 
time series analysis where there is likely to be regime 
switching between a mixture of multiple stationary and 
non-stationary states, while the number of the states is 
unknown. In practice, statistical arbitragers can take 
advantage of the separation of regime-specific informa- 
tion, one of the examples of which is pair trading [10], a  

 
Table 1. MAP estimates of parameters via SS-DP mixture model. The estimates compared to the true values (shown in paren- 
theses) show good inference. 

    Components 21   w (Mixture Weight) 

1 1.940 (2) 2.000 (2) 0.254 (0.25) 33.6% (33.3%) 

2 −1.981 (−2) 1.086 (1) 0.967 (1) 32.6% (33.3%) 

3 3.990 (4) 0 0.911 (1) 32.6% (33.3%) 

4 −1.389 (NA) −0.546 (NA) 1.000 (NA) 1.2% (0) 

 

 

Figure 1. Model-based posterior clustering of the data compared with true clustering. The left figure shows the true 3 com- 
ponents of the simulated data, the right one shows the model-based clustered data into the 4 components identified using 
SS-DP mixture models, represented by different colors. 
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popular yet simple short-term speculation strategy. 

The idea is of pair trading that: find two securities 
whose prices have been historically moving “together”. 
So when the spread between them widens, we short the 
winner and buy the loser. And if we believe that the 
history would repeat itself, prices will converge again 
and the arbitrager will profit. This “moving-together” 
relationship between two time series is called co-inte- 
gration. Mathematically, if two time series t  and tV  
are co-integrated, then there exists a number k, such that 

U

t tY U Vt 

U
V

 is a stationary time series. 
However, although there have been many statistical 

studies to find co-integrated time series, it is sometimes 
very hard to find such co-integrating relationship, one 
main reason of which is the existence of structural breaks 
or regime switching. In an attempt to solve the problem, 
we propose to use the SS-DP mixture models for model- 
ing possible regime-switching in co-integrated time se- 
ries analysis, which allows the co-integration relation- 
ship to be switched on and off between multiple regimes. 

5.1. Error Correction Model and Cointegration 

Suppose we have two I(1) stationary time series t  and 

t , and t t tY UV    (  is known, typically people 
propose a   and then test the stationary property of 

t ). If Y is I(0) stationary, then we say time series  
and  are co-integrated. 
Y

V
tU

Y
t

The way to test if t  is I(0) stationary is using the full 
Error Correction Model (ECM), which is to test the li- 
near model:  

 0,1t t N1
1

m

t t i t i
i

Y Y Y    


       

tY
0

. 

Then the ECM model tells that the time series  is 
non-stationary if and only if j  . 

Given our motivation that the time series is likely to 
switch between a mixture of multiple stationary and non- 
stationary regimes, while the possible number of regimes 
are a priori unknown, SS-DP mixture model combined 
with the ECM model (SS-DP ECM mixture model) is a 
perfect tool here to explore the regime switching and re- 
gime-specific parameters. Also, posterior inference of   
at 0 for a specific regime has the straightforward inter- 
pretation that the time series is non-stationary within the 
regime. 

5.2. Simulated Cointegration Analysis 

To testify the performance of SS-DP ECM mixture mo- 
del for cointegrated time series analysis, a mixture of 
stationary and non-stationary time series is constructed, 
which switches between two stationary AR(2) processes 
and one non-stationary AR(2) process. We assume that 
the number of components are a priori unknown. And 

this time series mimics the tmies series generated by a 
co-integrated pair. 

The two stationary AR(2) model and one non-stationary 
AR(2) model, and their corresponding Error Correction 
Model (ECM) are shown (the (non-)stationary property 
can be easily tested by the unit root test [11]):  
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The simulated time series of length 300 is shown in 
Figure 2, with the probability of simulating from the 
three states being ,  and 10%  respectively. 

We applied SS-DP mixture model combined with the 
ECM model to model the regime-switching time series as 
a mixture of statioanry and non-stationary time series. 
The model and stick-breaking representation of the SS-DP 
priors are shown as follows: 
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We set maximum number of components J to be trun- 
cated at 20 and used BEM to obtain MAP estimates of all 
unknown quantities. The results show correct identifi- 
cation of 3 mixture components (regimes). Since in most 
cases we are especially interested in identifying and ex- 
cluding time points in the non-stationary regime, Figure 
2 shows that the posterior inferred non-stationary time 
points (green dots) recover the true non-stationary time 
points (red dots) well. Good MAP estimates of the re- 
gime-specific parameters  , ,    are also obtained as 
shown in Table 2. 

5.3. Model-Based Decision Making 

SS-DP mixture models are especially important in this 
case, because the characterization of stationary regime is 
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Table 2. MAP estimates of SS-DP ECM mixture models for the regime-switching time series analysis. MAP estimates are 
compared to the true values (shown in parentheses) and show good inference. 

    Classification Weight  Components πi  

1 3.099 (3) 0.288 (0.28) 0.960 (1) Stationary (Stationary) 40.4% (40%) 

2 1.043 (1) 0.504 (0.5) −1.013 (−1) Stationary (Stationary) 52.0% (50%) 

3 3.993 (4) −0.330 (−0.3) 0 (0) Non-Stationary (Non-Stationary) 7.6% (10%) 

 

 

Figure 2. Characterization of non-stationary states via 
SS-DP ECM mixture models. The simulated time series Yt is 
shown. The red dots mark the true time points when the 
time series is in the non-stationary regime, and the green 
dots are inferred time points at which Yt is in the non- 
stationary regime from SS-DP ECM mixture model. 
 
the key for decision making. To illustrate this, we use the 
pair trading context, in which only if the time series t  
generated by the pair of t  and tV  is in stationary re- 
gime, can people do pair trading based on the tradi- 
tional rule that you open a long-short position when the 
pair prices have diverged by more than two historical 
standard deviations. And you unwind the position when 
it returns to historical mean. Otherwise, if t  is within 
the non-stationary regime at a specific time point, no ac- 
tion should be taken. 

Y
U

Y

Compared to the traditional co-integration test, SS-DP 
ECM mixture model helps make more reasonable deci- 
sion, since it is only based on selected stationary regimes. 
In comparison, the traditional co-integration tests can 
only test the whole time series, which in most cases are 
blindly pooled data consisting of both stationary and 
non-stationary states. 

6. Concluding Remarks 

In this paper, we introduced and studied spike-and-slab 
Dirichlet process priors, especially in the mixture models 
framework, which add more flexibility to the traditional 
nonparametric mixture models by allowing uncertainty 

about the component-specific parameter space. Given the 
wide use of mixture models in a variety of fields includ- 
ing biological science, machine learning, econometrics 
and finance, more flexible while computationally effi-
cient models are definitely worth exploring. 
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Appendix J

Bayesian Expectation Maximization (BEM) 

The derivations for BEM are based on the model for 
simulation Study 1: 

 
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π ,1j j j j
j
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and priors specified in Equation (3).  
M-step for the SS-DP mixture model for simulation 
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Q N y x p

y x V V p

    


    

 



  

 
    

  

        



 

   

 

 
The solutions to the first-order differential equations 

are: 

 

 

 

   

     
 

 

1 1

1

1 1
1 1

π
; 1, , 1

π 1

π ;

n
t

ij
t i

j n J
t t

ik
i k j

t t

V j J

V

j J



 

 

 

  
 



 






1
1 1

1

1

1

1

π 1 2

e 2
.

log 1

j
t t
j j i

i

t

J

j
j

V V

J

f V



 








 

 


 





 

However, when we look at the first order differential 
equations for j , j , jw  and j , they are compli- 
cated due to the existence of delta function (not shown  

here). In order to find the optimal values ,  1t
j
  1t

j
 ,  

 1tw  1t
j

  and j
 . The following two-step trick can be 

applied. 
1) Split into j 0  and j 0  

0

 two cases. For each 
case, find the values of parameters that are (local) maxi- 
mum. 

Note: For j   case, there might be no (local) 
maximum that can be found (or very hard to directly 
confirm that a maximum is found), but we can indeed use 
the reference solutions provided below ( j , j  , wj  and 

j ) to continue to find the global maximum. 
2) Compare the solutions of the two cases by log 

posterior density, the ones that give the bigger log 
posterior density will be set to be ,  1t

j
  1t

j
 1t
jw ,   

and  1t 
j . 

       1 1 1 1, , ,t t t t
j j j jw  Derivations for   

0
. 

If j :  
The solutions to , , andj j jwj    all have close 

form, which are: 
 

       

     

     
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 

 

    

  

  

             
     

          
    

         
   

   

  

    
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

  

1

π t
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j

 
          
    


 



      



  




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If 0j  : 

We can immediately get the solution to j , which is: 

 

 

1

1

π
.

1 π

t
ij i

i
j n

t
ij

i

m y

 




 







n

 

For jw  and j , apparently the solutions to the two  

equations (which are 0
j

Q

w





 and 0

j

Q







) do not  

have close form. Numerical Methods will be applied to 
get accurate enough approximate solutions. 

 

 

     

 

     
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



where 

2

0

2 1

2
2πj j

SS
S T










 









 


 






   

 


 
    












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1 2 2
1 1

; exp
2

j
j j j j

j

w
T S m

w  
        

. 

And the last two equations are used to iteratively find 
the approximate solution to j  and jw

 

, which are: 

     
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

 
     


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


   




 

 , , ,Compare solutions j j jw   with  j
 , , ,j j j jw    

       

, the one that gives larger log posterior 

density is set to  1 1 1 1, , ,t t t t
j j j jw      . 

BEM for simulation Study 2 with SS-DP ECM 
mixture model is obtained similarly. 
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