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ABSTRACT

The bound state solutions of the Schrodinger equation with generalized inverted hyperbolic potential using the Niki-
forov-Uvarov method are reported. We obtain the energy spectrum and the wave functions with this potential for arbi-
trary | -state. It is shown that the results of this potential reduced to the standard potentials—Rosen-Morse, Poschl-
Teller and Scarf potential as special cases. We also discussed the energy equation and the wave function for these spe-

cial cases.

Keywords: Schrodinger Equation; Inverted Hyperbolic Potential; Nikiforov-Uvarov Method

1. Introduction

The analytical and numerical solutions of the wave equa-
tions for both relativistic and non-relativistic cases have
taken a great deal of interest recently. In many cases dif-
ferent attempts have been developed to solve the energy
eigenvalues from the wave equations exactly or numeri-
cally for non-zero angular momentum quantum number
(I#0) for a given potential [1-16]. It is well known that
these solutions play an essential role in the relativistic
and non-relativistic quantum mechanics for some physi-
cal potentials of interest, [1,2,12,17-19].

In this paper, we aim to solve the radial Schrodinger
equation for quantum mechanical system with inverted
generalized hyperbolic potential and show the results for
this potential using Nikiforov-Uvarov method (NU), [20].

The present paper is an attempt to carry out the ana-
lytical solutions of the Schrodinger equation with the
generalized inverted hyperbolic potential using the NU
method.

The hyperbolic potentials under investigations are
commonly used to model inter-atomic and intermolecular
forces [10,21]. Among such potentials are Poschl-Teller,
Rosen-Morse and Scarf potential, which have been stud-
ied extensively in the literatures, [5-8,22-25]. However,
some of these hyperbolic potentials are exactly solvable
or quasi-exactly solvable and their bound state solutions
have been reported, [3,4,11,13,26-28]. We seek to pre-
sent and study a generalized hyperbolic potential which
other potentials can be deduced as special cases within
the framework of Schrodinger equation with mass m and
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potential V.

The paper is organized as follows: Section 2 is devoted
to the review of the Nikiforov-Uvarov method. In Sec-
tion 3 we present the exact solution of the Schrodinger
equation. Discussion and results are presented in Section
4. Finally we give a brief conclusion in Section 5.

2. Review of Nikiforov-Uvarov Method

The Nikiforov-Uvarov (NU) method, [20] was proposed
and applied to reduce the second order differential equa-
tion to the hypergeometric—type equation by an appro-
priate co-ordinate transformation S = S(r) as, [15,20].

7(s) a(s)
"(s)+ "(s)+ s)=0 1
VS O e e M
where o(s) and &(s) are polynomials at most in the
second order, and 7 is a first order polynomial. In or-
der to find a particular solution of Equation (1) we use
the separation of variables with the transformation

w(s)=o0(s)x(s) @)

It reduces Equation (1) to an equation as hyper-
geometric type

a(s)x"(s)+7(s)x'(s)+Ax(s)=0 3)

and ¢J(S) is defined as a logarithmic derivative in the
following form and its solution can be obtained from
¢'(s) _n(s)
e )
o(s) o(s)
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The other part of the wave formation y(s) is the
hypergeometric type function whose polynomial solu-
tions are given by Rodriques relations.

B d'r ,
Za(8)= (5) & [0' (S)p(S)J Q)

where B, is a normalization constant, and the weight
function p(s) must satisfy the condition.

~(op)==(s)(s) ©)
with
7(s)=7(s)+2xn(s) (7)

The function n(s) and the parameter A requires
for the NU method are defined as follows:

n(s)za'_?i\/(#] ~5+ko ®)

2

A=k+r(s) ©

On the other hand in order to find the value of k, the
expression under the square root of Equation (8) must be
square of polynomial. Thus, a new eigenvalue for the
second order equation becomes

A=1, :_nE_M (10)
ds 2
dr(s)

where the derivative

is negative. By comparing

Equations (9) and (10), we obtained the energy eigen-

values.

3. Bound State Solutions of the Schrodinger
Equation

The Schrodinger equation with mass m and potential V(r)
takes the following form, [15]

() EV(]¥()=0 D

where the generalized hyperbolic potential V(r) under
investigation is defined as

V,pcq (r)==aV,coth(ar)+bV,coth® (ar) a2
—cV,cosech’ (ar)+d
Here V, V, and V, are the depth of the potential and a,
b, c and d are real numbers. The generalized hyperbolic
potential V(r) of Equation (12) has the following special
cases:

(i) V_agc0(r)=aV,coth(ar)-cV,cosech® (ar) (13)
(i) Vygco(r)=CcV,cosech® (ar) (14)
(iii) Vyp, (1) =bcoth® (ar) (15)

The potentials (13)-(15) are the Rosen-Morse poten-
tial, Poschl-Teller potential and Scarf potential respec-
tively.

We now perform the transformation [6,7,15]

LI’(r):m (16)

r
on Equation (1) and obtain

R”(r)+2h—T[E +aV,coth (ar)-bV,coth? (ar)+cV,cosech’ ((xr)—d] R(r)=0 17)

where the prime indicates differentiation both respect to
r.

Now using a new ansaltz for the wave function in the
form [3,4,11]

d’R(r) _dF 2m

dr?

Because of the centrifugal term in Equation (19), this
equation cannot be solved analytically when the angular
momentum quantum number ¢ # 0. Therefore, in order
to find the approximate analytical solution of Equation
(19) with ¢ # 0, we must make an approximation for the

d*F(r) pdF(r)
ar’  dr

a

2
+2h_T{E +(£j +aV,coth(ar)—bV,coth? (ar)+cV,cosech® (ar)—a’l (I +1)cosech’ (ar)—d |F(r)=0
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pr

R(r)=e 2 F(r) (18)

and including the centrifugal term, reduces Equation (17)
into the following differential equation,

r

I+1 ’
——ﬂE+F E+aV000th(ar)—bV100th2(ar)+Cvzcosech2(ar)—d—(—+2)+[§) }F(r):o (19)

centrifugal term. Thus, when ar <1 we use the ap-
proximation scheme [9,29] for the centrifugal term,

1
e a’cosech’ (ar) (20)

Substituting Equation (20) into Equation (19), we get

@n
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Now making the change of variable

s = coth(ar) (22)
we obtain
2d’F dF
(1+sz) e +(1+sz)(/3+23)E
m 5Y. (23)
+W{E+(EJ +aV,s—-bV,s” +cV, (1+52)—a2l(l +l)(l+sz)—d F(s)=0
Simplifying Equation (23), we have
d’F  p+2s dF 1 9
+ —+ & +ps+y’s” |F(s)=0 24
dSZ (1+52) ds (1+52)2|: & ﬂ e :| ( ) ( )
where the following dimensionless parameters have been 7(s)=(B+2s),5(s)= (1 e )’
employed: (26)

R [E+[§]+cvz—a2€(f+l+d)},

o’

2maV,

p = hzaQO
. %(cvz bV, e (£+1)) (25)

Comparing Equations (1) and (24), we obtain the fol-
lowing polynomials,

\/(u +V)s +\/(u—v)

B
n(s):—zi

N | —

2
where u=[524/1+2ﬁ?+7/]andv =ip /72+§ﬁ2 )

For the polynomial of 7=7+2n which has a nega-
tive derivative, we get

kzyz—gz—(gj +u? —v? (29)
n(s):—g—%[ﬂl(u +V)s —\/u—vJ (30)

Now using A=k+n'(s), we obtain 7(s) and A
valued as

7(s)=2s—/(u+v)s+vu-v (31)
/1(5):72—52—[§j —Ju? =2 —%\/u+v (32)
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G(s)=—&+p’s+y’s’.

Substituting these polynomials into Equation (8), we
obtain the n(s) function as

n(s)z__ﬂ
2 27

%\/(4k —477)S -4+ B+ 4s” + 4K

The expression in the square root of Equation (27)
must be square of polynomial in respect of the NU
method. Therefore, we determine the 7(s) -values as

\/(u +v)s+\/(u—v),for k=y"-¢& —(é]z N

(28)

\/(u +v)s—\/(u —v),fork =y -¢’ —(é)z —u? —v?

Another definition of A, is as given in Equation (10),
thus using values of 7(s) and o(s), we get,

A=A =uJu+v—u(u+l) (33)

Comparing Equations (32) and (33), we obtain the en-
ergy eigenvalue equation as

(n+l) ; /4 1 4 iﬂz 1 2
L?ﬁﬂy}{?%ﬁﬁ_ajg ) a

{2—(n;)ﬁ+iv+ﬂ((n+1)+iyz)—%}:o

22

where Zz(é) -7 =n(n+1).

Solving the energy eiginvalue equation explicitly, we
obtain the energy eiginvalues as
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x[Z—(n+;)\/;+iV +2{3/g((n+1)+iy2)—%}

(n+1) ( 1 (n+1) [ y 1
2{8x/§ﬂr+l(8x/§ﬂ_2\/ﬂ 2|:8x/§ﬂ7+|(8\/§ﬂ_2v

(35)

Hﬁ“?(l*%ﬁ+4{§3§2*‘[w€ﬁ%ﬂ

Now using these quantities of Equation (20) and the definition for > and V given as

2 2
ha

Zzz—m{%—cvz+bv, +a’1(0+1)+

[ 2m
V= {Wj\/avo +CV, —bV, —a*( (£ +1) (37)

o’
2m

na’| . i’
o {H i (1+v)}

(36)

n*a’n(n+1)
2m

We obtain the energy spectrum of the Equation (35)
for the Schrodinger equation with the generalized in-
verted hyperbolic potential as

(e )

1

nl (n+l)+_ ro 1 - (n+l)+_ ro 1 (n+1) 5 i
2{8«/5[77 '(8«/5/3 2vﬂ 2{&/5/% I[S\/E,B 2vH ’{Z‘Tﬁ“”ﬁ@“*" )—%} (38)

—(éj —cV, +a*((+1)-d

We now find the corresponding eigenfunctions. The
polynomial solutions of the hyperbolic function y, (s)
depend on the determination of weight function p(s).
Thus we determine the p(s) function in Equation (6)

p(s)=(1+s%)" (r_usj

- 39)
—1IS

where u=2-4u+v , v=+U-Vv and substituting

Equation (39) in to the Rodriques relation of Equation (5),

we have

2, (s)=B, (1+is)2+"+2” (1 —is)z_”_i“
" (40)

d . +u+iv— . \h—-v—iv—
de" |:(1+IS)N “ 2(1—|s) 2}

The polynomial solution of y,(s) can be expressed
in terms of Jacobi polynomials which is one of the or-
thogonal polynomials, which is pﬁ*A’Z’A (X) , where
A=pu+iv,and X=is.

The other part of the wave function is obtain from
Equation (4) as,

u+B u—B

p(s)=(1+is) 2 (1-is) 2 41
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g4/
2
Combining the Jacobi polynomials of Equations (40)
and (41), we obtain the redial wave function of the
Schrédinger equation with inverted generalized hyper-
bolic potential as

where

u+B -B

Fo(S)=N, (1+x) 2 (1-x)2 PFA2A(x)  (43)

where N,is a new normalization constant and obeys the
condition

["Ri(s)ds=1.

The total radial wave function is obtain using Equa-
tions (18) and (22) as

u+B

R.(r)=N, [1+icoth(ar)} 2

(43)

u-B

-(1 + icoth(ozr))T Pﬁ*A’Z‘A(icoth(ar))

4. Results and Discussion

The well-known potentials are obtained from the gener-
alized inverted hyperbolic potential if we make appropri-

JMP



A.N.IKOT ET AL. 1853

ate choose for the values of the parameters in the gener-
alized inverted potentials as stated in Section 3. We plot-
ted the variation of the generalized inverted hyperbolic
potential as a function of r fora =1, b = 0.01, V, =1
MeV, V, =0.5 MeV, C, =2, V,=0.02 MeV, d =2 MeV
at different parameters of o =1,2,3and 4 as display in
Figure 1.

Rosen-Morse Potential: For b = d = 0, the Rosen-
Morse Potential is obtain as given in Equation (13). We
plotted the variation of Rosen-Morse V(r) with r for a =
-1,Vo=1MeV, c=2 and V, = 0.02 MeV with different
a parameters of o =1,2,3and 4 in Figure 2. Substi-
tuting b = d = 0 in Equations (38) and (43), we obtain the
energy spectrum and the wave function of the Rosen-
Morse potential respectively.

Poschl-Teller Potential: Poschl-Teller Potential is
obtain from the generalized inverted hyperbolic potential
by setting a =b =d = 0 and ¢ = —C as given in Equation
(14). The Poschl-Teller potential is plotted as a function
of r for c = -2 and V, = 0.02 MeV in Figure 3. Substi-
tuting these parameters in the energy equation of Equa-
tion (38) and wave function (43), we obtain the desired

(98]

"'.'2 T

............. /-’\\;i'.:‘:

\':»
V(r)“"?l'n'-lllli ........... o=1
1 1 B 1 2 oo a=2
-1 T .-'\\.\.—'/ ........... — - -0=3
[3M% o7 4
F s

72 _:

2 -

r

Figure 1. A plot of inverted generalized hyperbolic poten-
rial with r fora=1,5=0.01,c=2,d =2 MeV, V, =1 MeV,
V:=05MeV, V;,=0.02MeV and a =1, 2, 3, and 4.

~
=
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:'/
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Figure 2. Variation of Rosen-Morse potential with r for a =
-1,b=0,c=2,d=0, Vy =1 MeV, V, = 0.02 MeV with
various parameter of « =1, 2, 3, and 4.
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energy spectrum and the wave function of the Poschl-
Teller potential.

Scarf Potential: We can deduce the Scarf potential
from the generalized inverted hyperbolic potential by
setting a = ¢ = d = 0. We display in Figure 4 the plot of
Scarf potential as a function of r for b = 0.05, V|, = 0.5
MeV with various parameter of « =1,2,3 and 4 . Setting
the above limiting values in Equations (38) and (43) we
obtain the energy eigen-values and wave function for the
Scarf potential respectively.

5. Conclusion

The bound state solutions of the Schrodinger equation
with a generalized inverted hyperbolic potential have
been investigated within the framework of the NU me-
thod. Three well-known potential have been deduced
from this potential. We discussed the energy spectrum
and the wave function of the SE with this potential for an
arbitrary | -state. We also discussed the special cases of
the generalized inverted hyperbolic potential: Rosen
Morse, Poschl-Teller and Scarf potentials. Finally, we
plotted the effective potential as a function of r for dif-
ferent | =1, 2, 3 and 4 as shown in Figure 5.

014 |
F0.08 1
V(r) : 8 Eol
1006 1
: H T e o=1
004311 ---a=2
s N — . -a=3
//6.02_:; ..
pageesttt 7 ":\.\u' Shcamus PN S o e oo =4
25 -2 15 -1-05 0 05 1 1.5 2 25

T

Figure 3. A plot of Poschl-Teller potenrial with r for 0.01, ¢
= -2, ¥, =0.02 MeV with various parameter of « = 1, 2, 3,
and 4.
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V(t) F0.08 1
3 O | o=1
-—=a=2
: —_=a=3
‘ —oa=4

2.5 2 <15 -1 0.5 0 05 1 15 2 2.5
Figure 4. A plot of Scarf potenrial with r for a = 0, b = 0.05,

c=0,d=0, V;=0.5 MeV with various parameter of 2 = 1, 2,
3, and 4.
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Figure 5. A variation of the effective potential as a function
of rfor/=1,2,3 and 4 witha =1.
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