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ABSTRACT 

The bound state solutions of the Schrödinger equation with generalized inverted hyperbolic potential using the Niki-
forov-Uvarov method are reported. We obtain the energy spectrum and the wave functions with this potential for arbi-
trary -state. It is shown that the results of this potential reduced to the standard potentials—Rosen-Morse, Poschl- 
Teller and Scarf potential as special cases. We also discussed the energy equation and the wave function for these spe-
cial cases. 
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1. Introduction 

The analytical and numerical solutions of the wave equa-
tions for both relativistic and non-relativistic cases have 
taken a great deal of interest recently. In many cases dif-
ferent attempts have been developed to solve the energy 
eigenvalues from the wave equations exactly or numeri-
cally for non-zero angular momentum quantum number 

0l 

 

 for a given potential [1-16]. It is well known that 
these solutions play an essential role in the relativistic 
and non-relativistic quantum mechanics for some physi-
cal potentials of interest, [1,2,12,17-19]. 

In this paper, we aim to solve the radial Schrödinger 
equation for quantum mechanical system with inverted 
generalized hyperbolic potential and show the results for 
this potential using Nikiforov-Uvarov method (NU), [20]. 

The present paper is an attempt to carry out the ana-
lytical solutions of the Schrodinger equation with the 
generalized inverted hyperbolic potential using the NU 
method. 

The hyperbolic potentials under investigations are 
commonly used to model inter-atomic and intermolecular 
forces [10,21]. Among such potentials are Poschl-Teller, 
Rosen-Morse and Scarf potential, which have been stud-
ied extensively in the literatures, [5-8,22-25]. However, 
some of these hyperbolic potentials are exactly solvable 
or quasi-exactly solvable and their bound state solutions 
have been reported, [3,4,11,13,26-28]. We seek to pre-
sent and study a generalized hyperbolic potential which 
other potentials can be deduced as special cases within 
the framework of Schrödinger equation with mass m and 

potential V. 
The paper is organized as follows: Section 2 is devoted 

to the review of the Nikiforov-Uvarov method. In Sec- 
tion 3 we present the exact solution of the Schrodinger 
equation. Discussion and results are presented in Section 
4. Finally we give a brief conclusion in Section 5. 

2. Review of Nikiforov-Uvarov Method 

The Nikiforov-Uvarov (NU) method, [20] was proposed 
and applied to reduce the second order differential equa-
tion to the hypergeometric—type equation by an appro-
priate co-ordinate transformation S = S(r) as, [15,20]. 
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   where s  and s  are polynomials at most in the 
second order, and   is a first order polynomial. In or-
der to find a particular solution of Equation (1) we use 
the separation of variables with the transformation 

     s s s                         (2) 

It reduces Equation (1) to an equation as hyper-
geometric type 

          0s s s s s               (3) 

 sand   is defined as a logarithmic derivative in the 
following form and its solution can be obtained from  

   
 
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 
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                          (4) 
*Corresponding author. 

Copyright © 2012 SciRes.                                                                                 JMP 



A. N. IKOT  ET  AL. 1850 

The other part of the wave formation  s  is the 
function whose polynomial solu-hypergeometric type 

tions are given by Rodriques relations. 

       d
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                (5) 

where Bn is a normalization constant
nction 

, and the weight 
fu s  must satisfy the condition. 

     d

d
s s

s
                        (6) 

with 

     2πs s s  

nction 

                     (7) 

The fu π s  and t rameter he pa   requires 
ethod are definfor the NU m ed as follows: 

 
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s k
    
       

 
       (8)  

 πk s                      

On the other hand in order to find the value of k, the 
expression under the
square of polynomia
se

        (9) 

 square root of Equation (8) must be 
l. Thus, a new eigenvalue for the 

cond order equation becomes 

 1d

d 2n

n n
n

s

 


                 (10) 

where t vative 
 

he deri
d

ds

s
 is neg

Equati  (10), we obtained the energy eigen-  

 

ative. By comparing  

ons (9) and

values. 

3. Bound State Solutions of the Schrödinger 
Equation 

The Schrödinger equation with mass m and potential V(r) 
takes the following form, [15] 

   2

2
0

m
r E V r r      

       (11) 

where the generalized hyperbolic potential V(r) under 
investigation is defined as  

     
 

2
, , , 0 1

2
2

coth coth

 cosech

a b c dV r aV r bV r

cV r d

 



  

 
  (12) 

Here V0, V1 and V2 are the depth of the potential and a, 
b, c and d are real numbers. The generalized hyperbolic 
potential V(r) of Equation (12) has the following special 
cases: 

     2
,0, ,0 0 2coth cosecha cV r aV r cV r    (13) ( i )  

   2
0,0, ,0 2cosechcV r cV r              (14) (ii) 

   2
0, ,0,0 cothbV r b r

  

                (15) (iii) 

The potentials (13)-(15) are the Rosen-Morse poten- 
tial, Poschl-Teller potential and Scarf potential respec- 
tively. 

We now perform the transformation [6,7,15] 

R r
r

r
 

 

                 (16) 

on Equation (1) and obtain 
 

       2 2
2coth coth cosech 0R r E aV r bV r cV r d R r                       (17) 

where the prime indicates differentiation both respect to 
r. 

Now using a new ansaltz for the wave function in the 

 

0 12h 
2m

 

form [3,4,11] 

 2e
r

R r F r


   

and including the centrifugal term, reduces Equation (17) 
into the following differential equat

            (18) 

ion, 
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Because of the centrifugal term in Equation (19), this 
ytically when the angular 

. Therefore, in order 

centrifugal term. Thus, when 1r
 

   we us
proximation scheme [9,29] for the centrifugal teequation cannot be solved anal

omentum quantum number 0
to 
m

find the approximate analytical solution of Equation 
(19) with 0 , we must make an approximation for the  

e the ap-
rm, 

2 2
2

cosech
r

1
r     

get 

            (20) 

Substituting Equation (20) into Equation (19), we 
 

   

           

2

2
2 2 2 2

0 1 22

2
coth coth cosech 1 cosech 0

m
E aV r bV r cV r l l r d F r

     
            



) 

2d d

dd

F r F r

rr




h  

    (21
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Now making the change of variable 

 coths r                                                              

we obtain 

    (22) 

    
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Simplifying Equation (23), we have 
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d
s
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  

   
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w meters have been 
employed: 

2
2 2

2 22 2

d 2 d 1
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 
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    here the following dimensionless para   
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Comparing Equations (1) and (24), we obtain the fol-
lowing polynomials, 

2 12 2
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Substituting these polynomials into Equation (8), we 
obtain the π( )

s s     

s  function as  

 

 2 2 2 2 24 4 4 4 4
2

k s s k

π
2

1

s


        

The exp on in the square r

 
   (27) 

ressi oot of Equation (27) 
must be square of polynomial in respect of the NU 
method. Therefore, we determine the  π s -valu
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2π    which has a nega-
get tive derivative, we 
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Now using  πk s   , we obtain  s  and   
valued as 
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Another definition of n  is as given in Equation (10), 
thus using values of   d  s , we get, s  an
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Comparing Equations (32) and (33), we obtain the en-
value equation as ergy eigen
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ob    

Solving the energy eiginvalue equation explicitly, we 
tain the energy eiginvalues as 
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Combining the Jacobi polynomials of Equations (40) 
and (41), we obtain the redial wave function of the 
Schrödinger equation with inverted generalized hyper- 
bolic potential as  
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4. Results and D
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The well-known potentials are obtained from th
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e gener-
alized inverted hyperbolic potential if we make appropri-
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ate choose for the values of the parameters in the gener-
alized inverted potentials as stated in Section 3. We plot-
ted the variation of the generalized inverted hyperbolic 
po

2

1, 2,3 and 4  as display in 
Figure 1. 

Rosen-Morse Potential: For b = d = 0, the 
Morse Potential is obtain as given in Equation (13). We 
plotted the variation of Rosen-Morse V(r) with r for a = 

.02 MeV with different 

tential as a function of r for a = 1, b = 0.01, V0 = 1 
MeV, V1 = 0.5 MeV, C  = 2, V  = 0.02 MeV, d = 2 MeV 
at different parameters of

2

 

Rosen- 

–1, V0 = 1 MeV, c = 2 and V2 = 0
  parameters of 1, 2,3 and  4  in Figure 2. Substi-

02 MeV in Fig
e parameters in the energy equation of Equa-

tio

tuting b = d = 0 in Equations (38) and (43), we obtain the 
energy spectrum and the wave function of the Rosen- 
Morse potential respectively. 

Poschl-Teller Potential: Poschl-Teller Potential is 
obtain from the generalized inverted hyperbolic potential 
by setting a = b = d = 0 and c = –c as given in Equation 
(14). The Poschl-Teller potential is plotted as a function 
of r for c = –2 and V2 = 0. ure 3. Substi-
tuting thes

n (38) and wave function (43), we obtain the desired  
 

 

Figure 1. A plot of inverted generalized hyperbolic poten-
rial with r for a = 1, b = 0.01, c = 2, d = 2 MeV, V0 = 1 MeV, 
V1 = 0.5 MeV, V2 = 0.02 MeV and α = 1, 2, 3, and 4. 
 

 

Figure 2. Variation of Rosen-Morse potential with r for a = 
1, b = 0, c = 2, d = 0, V0 = 1 MeV, V2 = 0.02 MeV with 

various parameter of α = 1, 2, 3, and 4. 

energy spectrum and the wave function of the Poschl- 
Teller potential. 

Scarf Potential: We can deduce the Scarf potential 
from the generalized inverted hyperbolic potential by 
setting a = c = d = 0. We display in Figure 4 the plot of 
Scarf potential as a function of r for b = 0.05, V1 = 0.5 
MeV with various parameter of 1, 2,3 and 4  . Setting 
the above limiting values in Equations (38) and (43) we 
obtain the energy eigen-values and wave function for the 
Scarf potential respectively. 

5. Conclusion 

–

The bound state solutions of the Schrödinger equation 
with a generalized inverted hyperbolic potential have 
been investigated within the framework of the NU me- 
thod. Three well-known potential have been deduced 
from this potential. We discussed the energy spectrum 
and the wave function of the SE with this potential for an 
arbitrary l -state. We also discussed the special cases of 
the generalized inverted hyperbolic potential: Rosen 
Morse, Poschl-Teller and Scarf potentials. Finally, we 
plotted the effective potential as a function of r for dif-
ferent l = 1, 2, 3 and 4 as shown in Figure 5. 

 

 

Figure 3. A plot of Poschl-Teller potenrial with r for 0.01, c 
= −2, V2 = 0.02 MeV with various parameter of α = 1, 2, 3, 
and 4. 
 

 

Figure 4. A plot of Scarf potenrial with r for a = 0, b = 0.05, 
c = 0, d = 0, V1 = 0.5 MeV with various parameter of α = 1, 2, 
3, and 4. 
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Figure 5. A variation of the effective potential as a function 
of r for l = 1, 2, 3 and 4 with α = 1. 
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