
Applied Mathematics, 2012, 3, 1910-1920 
http://dx.doi.org/10.4236/am.2012.312262 Published Online December 2012 (http://www.SciRP.org/journal/am) 

Image Encryption Algorithm Based on a  
Chaotic Iterative Process 

Michael François1, Thomas Grosges1, Dominique Barchiesi1, Robert Erra2 
1Group for Automatic Mesh Generation and Advanced Methods, Gamma3 Project (UTT-INRIA),  

University of Technology of Troyes, Troyes, France 
2Network & Information Security, Ecole Supérieure d’Informatique, Electronique,  

Automatique, Paris, France 
Email: thomas.grosges@utt.fr 

 
Received September 17, 2012; revised October 25, 2012; accepted November 5, 2012 

ABSTRACT 

The paper describes a symmetric encryption algorithm based on bit permutations and using an iterative process com- 
bined with a chaotic function. The main advantages of such a cryptosystem is its ability to encrypt securely bit se- 
quences and assuring confusion, diffusion and indistinguishability properties in the cipher. The algorithm is applied on 
the image encryption where the plain-image is viewed as binary sequence. The results of statistical analysis about ran- 
domness, sensitivity and correlation on the cipher-images show the relevance of the proposed cryptosystem. 
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1. Introduction 

The use of the internet and network applications becomes 
indispensable in the modern society and the necessity to 
protect and secure such applications from prying eyes is 
essential. On internet, the informations can be your credit 
card numbers, bank account informations, health/social 
security informations or even personal communications 
with everybody. Such a challenge is the concern of cryp- 
tography that is developed and used to hide information 
against unauthorized users. Several encryption algorithms 
are available and used in information security. They can 
be classified into two categories: asymmetric (public) and 
symmetric (private) encryption algorithms. For asym- 
metric encryption, two keys are used: private and public 
keys. Public key is used for encryption and private key is 
used for decryption (e.g. RSA [1]). In symmetric case, 
only one key which must be secret is used to encrypt and 
decrypt the data. Some of the best known algorithms are 
DES, 3DES, BLOWFISH, IDEA or AES [2,3]. DES al- 
gorithm uses one 64-bits key where 8 bits are used solely 
for checking parity. Triple DES (3DES) uses three 64- 
bits keys. BLOWFISH has a 64-bits block size and a key 
length from 32 bits to 448 bits. IDEA operates with 64- 
bits block size and is controlled by a 128-bits key while 
AES uses various keys of 128, 192 and 256 bits. How- 
ever, these algorithms do not always keep the same effi- 
ciency (quality of the cipher, execution time, etc.) de- 
pending on the structure of the input data (texts, images) 

[4,5]. 
Here we propose an encryption algorithm which is 

able to deal efficiently with any type of input data. The 
input data is considered as a simple binary sequence (or 
vector) constituted only by the bits “0” and “1”. The al- 
gorithm directly works on the entire input block of bits 
and uses an iterative process of substitution-permutation 
combined with a chaotic function. The algorithmic prin- 
ciple is simple and easy to implement. The encryption 
key corresponds to the set of seeds values used by the 
chaotic function. The same secret key is used for encryp- 
tion and for decryption. The plaintext and ciphertext are 
bit sequences of various length. Such an algorithm en- 
crypts any kind of binary sequence and produces highly 
secure ciphers. Here we apply the algorithm on images 
that are known to have high correlation between adjacent 
pixel values. The analysis, achieved on the binary corre- 
sponding sequences of the cipher-images, is based on the 
criteria of randomness, sensitivity and correlation. We 
also show that the size of the key space is large enough 
to resist to brute-force attacks. The paper is structured as 
follows. The description of the chaotic function and the 
encryption/decryption algorithm are given in Section 2. 
Section 3 presents the results and the security analysis of 
the proposed cryptosystem before concluding. 

2. The Proposed Encryption Method 

The present scheme uses an iterative process to encrypt a 
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sequence of bits. The original input data is treated as a 
simple vector composed of bits “0” and “1”. A chaotic 
function is used during the iterative process to index the 
positions to be permuted. Before permutation, the bits of 
indexed positions will be transformed via a xor operator. 
This process simultaneously combines the confusion and 
diffusion properties that are required to obtain a high 
security level. 

2.1. The Used Chaotic Function 

The algorithmic process uses a standard chaotic function 
given by:  

   1 ,F X X X               (1) 

with   between 3.57 and 4 [6]. The chaotic behavior of 
such a function has been widely studied. Here, the value 
of   is fixed to 3.9999 which corresponds to a highly 
chaotic case [7]. In the last decade, several schemes have 
used this function for image encryption [5,8,9]. The cha-
otic function is defined by the recurrence relation  

 1 3.9999 1 , 0,n n nX X X n             (2) 

where the starting seed 0X  and all others elements nX  
are real numbers belonging to the interval ]0,1[. Such a 
chaotic function is used to compute the positions to be 
permuted into the input binary sequence. 

2.2. Description of the Algorithm 

The chaotic function given by Equation 2 is used and 
adapted through the iterative process. The principle of 
the encryption algorithm is described in four steps: 

1) The original input sequence 0I  is transformed into 
its 1D corresponding binary vector 0

bI . This vector 0
bI  

is composed only of the bits “0” and “1”. For example, if 
the initial sequence is a RGB-color (resp. gray-level) im-
age of size , the size of N M 0

bI  is  
(resp. ). 

3 8L N   M
M


8 N  L

2) A seed value 0X  is chosen in the interval  
to initiate the iterative relation of Equation 2. The seed 

0

]0,1[

X  contains d  decimal digits and the value of  is 
computed relatively to the size  of the vector 

d
bL 0I .  

3) A loop is started on the binary vector 0
bI , with 

. With the current position  in 00 i L  3 i bI , a new 
position  is computed by using the chaotic function:  j

 11 Floor mod ,ij i X U              (3) 

with  and the value of U  is initialized to 
 and decremented by 1 after each iteration. Due to 

the modular operation, the value 

10d 
1L 

 1iX 

d

0
b

Floor  is cho- 
sen to be larger than . Thus, the value of  is intrin- 
sically related to the size  of 

U
L I : 

10Floor 3.logd L   

During the loop, the computed position  has always 
a value 

j
i j L   and the elements of 0

bI  are trans- 
formed as follows:  

 1 0 ,bQ I i                                (5) 

   2 0 0 11 Floor modb b
iQ I j I i X U  ,           (6) 

3 1 2 ,Q Q Q                               (7) 

   0 3 0and ,b b
1I i Q I j Q                     (8) 

where the symbol   represents the exclusive OR op- 
eration bit-by-bit. That permutation process is the same 
until the end of the loop  3i L 

i

. One can remark that 
the new positions  represent the values of the old al-
ready shuffled positions . Therefore, the value into the 
vector can move several times before fixing.  

j

4) Depending to the encoding of the original sequence, 
the bits of the vector 0

bI  are gathered per small group to 
form the cipher. For RGB-color (resp. gray-level) images, 
the bits are gathered per group of  (resp. 8). This 
step permits to reconstruct the obtained cipher sequence.  

3 8

That constitutes the encryption steps for one round (i.e. 
1r  ) on the input sequence 0I  using the seed 0X . 

Therefore, given an input sequence 0I  the system pro- 
duces a corresponding cipher sequence RI , where  is 
the total number of round used by the algorithm. The first 
step is done once before starting the iterative process and 
step 4 is used only at the end to construct the obtained 
cipher. The total number of round  is computed by 
taking into account security criteria and characteristics of 
the initial sequence (see Section 2.3). Each cipher 

R

R

RI  is 
produced by using a key composed of the  values of 
seeds 

R
 1

0 0, , RX X . The Figure 1 illustrates the main  
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Figure 1. The main steps of the proposed encryption sche- 
me.             (4) 
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steps of the encryption scheme and the corresponding 
algorithm is given by the Algorithm 1. The decryption 
consists in reversing the process and initiating it from the 
last seed RX . All positions 1  used during 
the encryption must be computed and stored in a vector. 
A loop is done through the vector from the end to the 
start by making all necessary operations. The decry- 
ption algorithm is given by Algorithm 2. 

= 1 ij i X  

2.3. Determination of the Round Number R 

The number of round necessary for encryption/decry- 
ption is an important element which is connected to the 
security of the system. For a higher level of security it 
must also take into account the characteristics of the bi-
nary vector 0

bI  (e.g. encoding, size and entropy). The 
number of round  is determined before starting the 
encryption process. Given today’s computer speed, it is 
generally accepted that a key space of size smaller than 

 is not secure enough. In the present case, each key 
is composed of  values of seeds  

R

R

1282
1
0 0, , RX X

r
. At 

each round , the corresponding seed 0r X  belongs to 
the interval  0,

10d 

1 , with  digits of accuracy (i.e. 
). Thus, excluding the null seed , the total 

number of possibilities for the seed space at each round 
 is . To satisfy the condition:  

d
10 d

r

0.0 0

9 1

 1 1289 10 2 ,
Rd               (9) 

and to avoid any brute-force attack, the minimum num- 
ber of rounds  is given by: 1R
 

Algorithm 1. Encryption algorithm. 

Require:   1, ,

0 010; ; ; floor 3; ;log RI L R d L X    

Ensure: The cipher sequence  0R RI I I
d b

.  

1: Initialisation ;  0 0= 10 ; = 1; = 2;r F L I I  

2: while  do r R
3:    0= 0; = 1; = ;ri U L X X

4:  while  do <i F

5:       3.9999 1X X   

Algorithm 2. Decryption algorithm. 

Require:   1, ,

010; ; ; = 3; ;log R

RI L R d floor L X   

Ensure: The initial sequence  0 0 RI I I
d b

. 

1: Initialisation = 10 ; = ; = 2; R Rr R F L I I    

2: while  do > 0r

3:    0= 0; = 1; = ;ri U L X X

4:  while  do <i F

5:     3.9999 1X X    X  

6:      1  j i floor X mod U       

7:     W i j  

8:    1i i   
9:    1U U   
10:  end while 
11: 1j F    

12: while 0  do j 

13:    i W j  

14:    1 rQ I j b  

15:    2 rQ I i b  

16:    3 1 2 2Q Q Q mod   

17:     2r

bI j Q  

18:     3r

bI i Q

1j j

 

19:      

20:  end while 
21:  1r r   
22: end while 
23: 0 0

bI I   

24: return 0I  

 

 1 1
2

128
Floor 1.

9 10log d
R



 
  
  

        (10) 

X

6:     1  j i floor X mod U       

7:     1 1rQ I i b  

8:     2 1rQ I j b  

9:      3 1 2  2Q Q Q mod 

10:    1 3r

bI i Q 


 

11:   1 1r

bI j Q 

1i i 

 

12:    
13:    1U U
14:  end while 
15:    1r r 
16: end while 
17:   b

R RI I  

18:  return RI  

The condition 1R R  assures the minimum entropy 
limit for the seed space but not necessarily all the re- 
quired qualities for the cipher RI . Given the algorithmic 
structure of the system, the number of round  is not 
sufficient to efficiently encrypt a binary sequence with a 
large imbalance of bits “0” and “1”. Therefore, the total 
number of rounds  must also be related to the distri- 
bution of bits “0” and “1” in the input binary sequence. 
Let consider that, in binary sequence 

1R

R

0
bI , the occurrence 

of the bit “0” has a probability  and 0p0.5 1 01 p  
for the bit “1”. Then, at each new round , the 
probability  is iteratively modified as follows:  

r

rp

    2 2

1 11 ,r r rp p p r  1,           (11) 

and the limit of the suite  must converge to  to 
ensure a balanced binary proportion in the cipher 

rp 0.50

RI . 
The purpose is to find the number of round  satisfy-
ing the relation: 

2R

2
10.50 ,lim r

r R
p 


              (12) 
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with 1  a fixed numerical tolerance (here 1 0.001  ). 
The value of 2  can be computed iteratively and can be 
large for 0

R
I  with very low Shannon’s entropy or small 

for 0I  with Shannon’s entropy closed to its maximum 
(i.e. 1 in base 2). Such a value is computed by the Algo- 
rithm 3. Another problem occurs when two nearby bi- 
nary sequences are encrypted using the same key, be- 
cause the corresponding ciphers can be highly correlated. 
Thus, the number of round  must also satisfy this 
case for a better encryption. For that, we consider the 
most unfavorable case where two sequences 0

R

bI  and 0
bI  

differ by only one bit. The proportion 0  of identical 
elements between these two binary suites is  

q

 0 . The value of  decreases according to 
the number of round as follows 

1q L  L 0q

2
1,r rq q r  1,                (13) 

and must satisfy:  

3
2 ,lim r

r R
q 


                    (14) 

where 2  is the acceptable criterion of similarity be- 
tween binary sequences (e.g. 2 0.005  , assuming a 
rate of identical bits smaller than 0.5%). The value of 

 satisfying the Equation (14) is given by  3R

 
 

2
3 2

0

ln
Floor 1.log

ln
R

q

  
       





        (15) 

Such a value of 3  ensures to obtain two completely 
different ciphers. It mainly allows to resist to the differ- 
ential attack or generally the chosen plaintext attack. 
Therefore, the relevant number of round  of the en- 
cryption algorithm is given by: 

R

R

 1 2 3max , , .R R R R             (16) 

The final number of rounds  permits to satisfy si-
multaneously the criteria of key entropy, maximum 
Shannon’s entropy and sensitivity to initial conditions 
(sequence and key). 

R

2.4. Bits Propagation Analysis 

In this section, we show the evolution of bits propagation 
 

Algorithm 3. Computation of the round number R2. 

Require: 0p  (proportion of bit ‘0’);  1 = 0.001;
Ensure: The round number 2R . 

1. 2 0= 0; = ; = 0.50 ;R p p dif p  

2. while 1>dif   do 

3.   2
12p p p      

4.  0.50dif p   

5.   2 2 1R R 
6. end while 

7. return 2R  

into the cipher during the encryption process. To illus- 
trate the bit propagation, we use a particular initial vector 

0I  corresponding to a gray-level image composed by 
only black (0) and white (255) pixels. The image size is 
350 350  and the white pixels are gathered in the center 
of the image as a small white circle. The number of black 
pixels is 122276 (i.e. 99.81%) and white pixels is (i.e. 
0.19%) (see Figure 2(a)). The values of 1 2 3  
are 5, 11 and 23 respectively. The encryption round 
number is 

, andR R R

23R  . The plain-image is encrypted and the 
intermediate cipher-images obtained after r = 1, 2, 5, 7, 9, 
11, 20 and 23 are shown in Figures 2(b)-(i). We note 
that, after 1 5r R 

r
 rounds, the small white circle is 

vanishing. For 9 , the intermediate cipher-image 
starts to look like a true random image and from 

2 11r R   it passes successfully the NIST tests [10]. 
One can remark that the randomness propagation is 
gradual before stabilizing and give a true random image. 
The ciphers obtained by this encryption scheme have all 
the same appearance and the same randomness quality, 
whatever the particularity of original binary sequence. 
The cipher quality does not depend on the structure of 
the input sequence. Additional analysis is achieved by 
computing the correlation coefficients [5], NPCR (Num- 
ber of Changing Pixel Rate) and UACI (Unified Aver- 
aged Changed Intensity) [11], of intermediate cipher- 

 

   
(a)                  (b)                   (c) 

   
(d)                  (e)                   (f) 

   
(g)                  (h)                   (i) 

Figure 2. Intermediate cipher-images: (a) The initial unba- 
lanced plain-image; (b, c, d, e, f, g, h and i) The cipher- 
images obtained after r = 1, 2, 5, 7, 9, 11, 20 and 23 rounds, 
respectively. For each round, the seed value is chosen arbi-
trarily in the interval  ,0 1  with  decimal digits.  8d
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images between two consecutive rounds. For two uncor- 
related sequences, the correlation coefficient is . A 
strong correlation occurs between two sequences for a 
coefficient value . The evolution of coefficient 
values is represented at Figure 3(a). One can also remark 
that, the NPCR and UACI indicator values increase with 

0

1

r  (see Figure 3(b)). For 2 , the values appear 
to be stabilized for the three indicators. That confirms 
that from 2 , the intermediate cipher-images are 
different and the correlation coefficients, NPCR and 
UACI values become stable for 

11r R 

r R

 max R  1,R 2a . 
Taking into account 3  allows to include the plain- 
image sensitivity and therefore to obtain a better security 
level of the system. These results show the relevance of 
the iterative process and the choice of the round number 
of the encryption algorithm. 

r R
R

2.5. Key Space 

An efficient encryption scheme should have a large key 
space in order to make brute-force attacks infeasible. It is 
generally accepted that a key space of size smaller than 

 is not secure enough. In the present case, the de- 
termination of round number  allows to satisfy the 
required entropy of the size of key space. For example, 

1282
R
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Figure 3. Evolution of coefficients values: (a) The correla- 
tion coefficients and (b) The NPCR (in %) and UACI (in %), 
obtained between intermediate cipher-images of two con-
secutive rounds. 

for a bits sequence of length   1033848L 
 9, 23d R 

238 684

, the algorithm enables to produce exactly  

 9 10 2   different cipher sequences. Therefore,  

the proposed scheme is not vulnerable to brute-force at- 
tacks. 

3. Results and Security Analysis 

The cryptosystem is applied on the image encryption 
where the original image is treated as a sequence of bits. 
Generally, the adjacent pixels in an image are highly cor- 
related therefore the pixel values are very close or iden- 
tical throughout the image. The statistical analysis of the  
encryption scheme is based on the three fundamental 
properties that are: indistinguishability, confusion and 
diffusion [12]. Indistinguishability means that the pro- 
duced ciphers should have a high level of randomness 
and not to be differentiated from the outputs of a truly 
random function. The property of confusion means that 
the plain-image and the cipher-image should be comple- 
tely decorrelated. By diffusion, the cryptosystem should 
be very sensitive to the initial condition (i.e. a variation 
of at least one bit in the key or plain-image leads to strong 
different cipher-images). Therefore, the security of the 
system is analysed through these three properties. 

3.1. The Used Images for Analysis 

Two image formats are used for the analysis: a RGB- 
color image and a gray-level image. The RGB-color im- 
age, noted a

DI , has 173 rows and 249 columns (see Fig- 
ure 4(a)). Its binary length is , the com-
puted round number  is equal to 23 and the number 
of decimal digits is 

1033848L 
R
d 9 . An example of encryption 

with the key  23X

a
C

1 , ,0 0  given in the Table 1 
is presented at the Figure 4(b). The frequency histo-
grams for the red, green and blue channels before and 
after encryption of the RGB-color image are presented in 
Figure 5. The second image 

a
D K X

I  of size 361 500  
 4400014L 

23R

 encoded in gray-level is presented in 
Figure 6(a). The round number and the significant digits 
are   and 9d  . An example of cipher-image 
with the key a

CK  (here C D
a aK K ) is given in Figure 

6(b). The Figures 6(c)-(d) show the frequency histo- 
grams of intensity levels before and after encryption of 
the image a

CI . The obtained histogram after encryption 
has a balanced distribution of frequencies. 

3.2. Key Sensitivity Analysis 

A good encryption system must be highly sensitive to the 
encryption key. A difference of a single bit into the key 
must provide a very different encryption/decryption re-
ult. In that case, the key is given by  values of arbi s   R

Copyright © 2012 SciRes.                                                                                  AM 
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(a)                                               (b) 

Figure 4. Example of RGB-color image encryption: (a) The plain-image of a caravan in the desert and (b) Its corresponding 
cipher-image using the key a

DK  (given in Table 1). 
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Figure 5. RGB channel distributions: (a), (c) and (e) Show the frequency distributions before encryption for the red, green 
and blue channels, respectively; (b), (d and (f) Show the associated histograms of the cipher-image, after encryption using the 
key a

DK . 
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(a)                                                            (b) 
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Figure 6. The gray-level dromedary’s image and frequency histograms: (a) The original image, (b) The corresponding 
cipher-image with key a

DK . Frequency histograms for (c) The original image and (d) The cipher-image. 

 
Table 1. The 23 values of seeds , ,X X1

0
23
0  constituting the 

key a
DK . 

Seeds Values ( ) 9d 

1 2 3

0 0 0, ,X X X  0.372517362 0.073559321 0.875371003

4 5 6

0 0 0, ,X X X  0.034203719 0.984941322 0.403519327

7 8 9

0 0 0, ,X X X  0.487302137 0.392510603 0.302543081

10 11 12

0 0 0, ,X X X  0.812174032 0.665371032 0.004723821

13 14 15

0 0 0, ,X X X  0.950317340 0.910451945 0.740255912

16 17 18

0 0 0, ,X X X  0.482664019 0.103619439 0.308598253

19 20 21

0 0 0, ,X X X  0.018036430 0.804104810 0.282906931

22 23

0 0,X X  0.296051483 0.571410332  

 
trarily chosen seeds in the interval  0,1 . The sensitivity 
study focuses on a variation of the last seed value 0

RX . 
In the following, we consider the RGB-color image 
(Figure 4(a)) and the gray-level image (Figure 6(a)). 
Each image is encrypted by using the seed values given 

in Table 1. On the last seed, a loop is done from 
0.571410332 to 0.571411131 incrementing by 910 . The 
variation on the last seed value (i.e. 23

0X ) produces 800 
keys. The 800 cipher-images obtained from the 800 gen- 
erated keys are analysed. 

3.2.1. Randomness Analysis 
The randomness level of the 800 ciphers is analysed 
through the NIST tests. Such a suite consists in a statisti-
cal package of fifteen tests developed to quantify and to 
evaluate the randomness of binary sequences produced 
by cryptographic random or pseudorandom number gen-
erators [10]. For each statistical test, a value  probability 
is computed. A value  of zero indicates that, the se- 
quence appears to be completely non-random. A value  
larger than 0.01 means that, the sequence is considered to 
be random with a confidence level of 99%. For multiple 
tested sequences at the same time, each test defines a 
proportion 

p
p

p

  as the ratio of sequences passing success- 
fully the test relatively to the total number of tested se- 
quences   valuek k . The propor- 
tion 

.N i . 0.01e p n N
  is compared to an acceptable proportion accept  

which corresponds to the ratio of sequences that should 
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pass the test. The range of acceptable proportions, ex-
cepted for the tests Random Excursion-(Variant) is de- 
termined by using the confidence interval defined as  

   1 0.01 3 0.01 1 0.01 kN    [10]. For 800kN  ,  

the acceptable proportion should lie above 97.94%. Each 
binary sequence is individually tested and the percentage 
of success   is given for each statistical test. The Table 
2 presents the results of tests for the ciphers obtained 
from the two plain-images a

DI  and a
CI . The tested bi- 

nary sequences pass successfully the NIST tests. There- 
fore, these sequences can be considered as random se- 
quences. This analysis checks the properties of indistin- 
guishability and confusion. 

3.2.2. Correlation Analysis 
For each case (RGB and gray-level image), the correla- 
tion is analysed globally by computing the correlation 
coefficients between each pair of produced ciphers. The 
distribution of the coefficient values are presented by the 
histograms given by the Figure 7. All the coefficient 
 
Table 2. Results of NIST tests on the 800 cipher-images 
from RGB-color and gray-level images. For each test, the 
ratio   (in %) of pvalue  is given. 

Test Cipher-Images Cipher-Images 

 of Desert of Dromedary 

   in % Result   in % Result

Frequency (Monobit) 98.50 Pass 99.25 Pass 

Block-Frequency 99.12 Pass 98.62 Pass 

Cumulative Sums (1) 98.50 Pass 99.12 Pass 

Cumulative Sums (2) 98.62 Pass 99.12 Pass 

Runs 98.62 Pass 99.25 Pass 

Longest Run 99.62 Pass 99.25 Pass 

Rank 99.12 Pass 99.25 Pass 

FFT 99.12 Pass 98.62 Pass 

Non-Overlapping 99.00 Pass 98.50 Pass 

Overlapping 98.87 Pass 99.25 Pass 

Universal 98.62 Pass 99.00 Pass 

Approximate Entropy 98.12 Pass 98.75 Pass 

Random Excursions 98.45 Pass 98.53 Pass 

Random E-Variant 98.45 Pass 98.53 Pass 

Serial (1) 99.37 Pass 98.75 Pass 

Serial (2) 99.00 Pass 99.37 Pass 

Linear Complexity 99.00 Pass 98.75 Pass 

values belong to the interval  0.01,0.01 . For the RGB- 
color image, 99.56% of the coefficients have an absolute 
value smaller than 0.008. In the case of gray-level image, 
99.24% of the coefficients have an absolute value smaller 
than 0.0065. The results show that the cipher-images 
have a very low correlation. This analysis shows that a 
small difference between the keys can be propagated and 
give completely different ciphers (diffusion property). 

Additional analysis is achieved by calculating the 
NPCR and UACI between each pair of the 800 cipher- 
images. The average and the standard deviation values 
for the correlation coefficients, NPCR and UACI are 
computed and presented in the Table 3. The obtained 
values show that the tested ciphers are totally different. 
Such an analysis confirms the sensitivity of the encrypt- 
tion system in relation with the encryption key. 

3.3. Plain-Image Sensitivity Analysis 

A second important analysis concerns the sensitivity re-
lated to the original image. Therefore, we produce multi- 
ple nearby images by introducing a small variation of one 
bit in the original image. All these images are encrypted 
by using the same key and the corresponding ciphers are  
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Figure 7. Distribution of the correlation coefficient values 
between each pair of the 800 cipher-images of (a) The 
RGB-color image and (b) The gray-level image. 
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Table 3. Average   and standard deviation   values of 
the correlation coefficients, NPCR (in %) and UACI (in %) 
between the 800 cipher-images of the RGB-color and the 
gray-level images.  

Indicator RGB Gray-Level 

         

Coef corr. 0.0022 0.0016 0.0018 0.0013 

NPCR 99.6093 0.0172 99.6095 0.0147 

UACI 33.4637 0.0660 33.4470 0.0550 

 
analysed. For the RGB-color image, the first pixel (0, 0) 
of the image at upper left is encoded by the values 
[94,148,179] (i.e. blue, green, red). The value of the blue 
component (94) is incremented by 1 (i.e. from 94 to 233) 
to form 140 consecutive images. Obviously, the differ-
ence between the 140 produced images can not be visu-
ally distinguished. These images are encrypted using the 
same key a

DK  (given in Table 1). The same approach is 
applied to the gray-level image for which the value of the 
first pixel (147) is decremented by 1 (i.e. from 147 to 8) 
to produce 140 new gray-level images. These images are 
encrypted with the key a

CK . For each case, the 140 ci- 
pher-images are constructed from the original image by 
using the same set of seed values. 

3.3.1. Randomness Analysis 
The NIST tests are used to evaluate the randomness level 
of the 140 ciphers. With such number of ciphers, the ra- 
tio   must overpass accept 96.47%.   The results of 
the NIST tests are presented in the Table 4. The results 
show that the tested sequences have a good level of ran- 
domness. This analysis checks the properties of indistin- 
guishability and confusion. 

3.3.2. Correlation Analysis 
The correlation coefficient is calculated between each 
pair of the 140 cipher-images. The Figure 8 presents the 
two histograms of correlation coefficients for values be- 
longing to the interval  0.01,0.01 . 

For the 140 cipher-images of the RGB-color image, 
99.02% of the coefficients have absolute values smaller 
than 0.0072 and for the gray-level images 99.19% of the 
coefficients have absolute values smaller than 0.0065. 
These histograms illustrate the small correlation between 
the tested cipher-images. Such a quality is critical to re- 
sist to the chosen plaintext attack. The correlation is also 
evaluated via the NPCR and UACI indicators. The aver- 
age and the standard deviation values for the correlation 
coefficients, NPCR and UACI are computed and pre- 
sented in the Table 5. The results show that the tested ci-
phers are completely different. A difference of only one bit 
in the original binary sequence produces different cipher. 

Table 4. Results of NIST tests on the 140 cipher-images 
produced from 140 plain-images of the RGB-color and 
gray-level images. The images are encrypted with the same 
key and the ratio   (in %) of  is given for each sta- 

tistical test. 

pvalue

Test Cipher-Images Cipher-Images 

 in RGB in Gray-Level 

   in % Result   in % Result

Frequency (Monobit) 100.00 Pass 98.57 Pass 

Block-Frequency 99.28 Pass 100.00 Pass 

Cumulative Sums (1) 100.00 Pass 98.57 Pass 

Cumulative Sums (2) 100.00 Pass 99.28 Pass 

Runs 97.85 Pass 100.00 Pass 

Longest Run 100.00 Pass 99.28 Pass 

Rank 98.57 Pass 97.14 Pass 

FFT 99.28 Pass 100.00 Pass 

Non-Overlapping 97.85 Pass 97.85 Pass 

Overlapping 99.28 Pass 98.57 Pass 

Universal 97.85 Pass 97.85 Pass 

Approximate Entropy 97.14 Pass 96.62 Pass 

Random Excursions 97.67 Pass 97.64 Pass 

Random E-Variant 97.67 Pass 97.64 Pass 

Serial (1) 98.57 Pass 98.57 Pass 

Serial (2) 98.57 Pass 99.28 Pass 

Linear Complexity 100.00 Pass 99.28 Pass 

3.4. Efficiency Analysis 

Efficiency is also an important indicator for a good en- 
cryption algorithm. Table 6 lists the execution time and 
the key space entropy for the encryption process for dif- 
ferent sizes of gray-level images. A comparison with the 
results of other algorithms is also presented. The used 
computer is an Intel Core Duo T2300 (1.66 GHz) Proc- 
essor with 2.5 Go memory under Fedora 14 (Laughlin). 
One can see that the size of the key space is larger for the 
proposed algorithm, assuring a secure encryption. Sensi- 
tivity to the plain-image should not be neglected because 
it is part of the assumptions to be verified for an encryp- 
tion algorithm. If such an hypothesis is not respected, the 
algorithm can be broken by the chosen plaintext attack. 
In order to compare the time efficiency with reference 
algorithms, we also consider the two cases with 

 1 2max ,aR R
R

R R and . The speed 
time of the a  version of the algorithm (not taking into 
account the sensitivity to the initial sequence) is achieved 

 1 2 3max , ,R R R
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Figure 8. Histogram of correlation coefficient values be- 
tween the 140 cipher-images obtained from (a) The RGB- 
color and (b) The gray-level images. 
 
Table 5. Average   and standard deviation   values of 
the correlation coefficients, NPCR (in %) and UACI (in %) 
between the 140 cipher-images of the RGB-color and the 
gray-level images. 

Indicator RGB Gray-Level 

         

Coef corr. 0.0021 0.0016 0.0018 0.0014 

NPCR 99.6108 0.0164 99.6102 0.0138 

UACI 33.4676 0.0675 33.4520 0.0528 

 
in order to compare with reference algorithms which use 
the correlation, NPCR and UACI indicators. An alterna- 
tive way to improve the encryption speed is to reduce the 
value of 2  in Equation (15) which determines the 
number of round . 3R

4. Conclusion 

A new symmetric encryption algorithm based on binary 
permutations was presented. The algorithm uses an itera- 
tive process of substitution-permutation combined with a  

Table 6. Encryption time in seconds and key space entropy 
in bits for the proposed and for reference algorithms. For 
the proposed algorithm, two cases are considered:  

 , 1 2maxaR R R  and  , , 1 2 3maxR R R R . 

Image Size Proposed Algorithm ( aR R ) Ref. Algo. [13,14] 

(8 bits/pixel) Time Entropy Time Entropy

256 256 0.55/2.25 132/654 6.01 [13] 84 

   1.01 [14] 113 

512 512 2.45/11.10 148/713 36.53 [13] 84 

   4.73 [14] 113 

1024 1024 11.66/58.89 148/773 253.87 [13] 84 

   19.78 [14] 113 

 
chaotic function. The principle of such a process is to 
drastically disrupt the internal binary structure of the se- 
quences and progressively induce randomness character- 
istics. The key space is large enough to resist brute-force 
attacks. The application to image encryption show that 
the cryptosystem is very sensitive to key and plain-image. 
The advantage of such an encryption algorithm is its 
ability to securely encrypt any kind of binary sequence. 
Such a cryptosystem can be used for secure storage or 
transmission of sensible binary data. 
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