
Int. J. Communications, Network and System Sciences, 2012, 5, 802-809 
http://dx.doi.org/10.4236/ijcns.2012.512084 Published Online December 2012 (http://www.SciRP.org/journal/ijcns) 

A Scalable and Robust DHT Protocol for  
Structured P2P Network 

Xiao Shu, Xining Li 
Computing and Information Science, University of Guelph, Guelph, Canada 

Email: xshu@alumni.uoguelph.ca, xli@cis.uoguelph.ca 
 

Received October 1, 2012; revised October 26, 2012; accepted November 5, 2012 

ABSTRACT 

Distributed Hash Tables (DHTs) were originated from the design of structured peer-to-peer (P2P) systems. A DHT pro-
vides a key-based lookup service similar to a hash table. In this paper, we present the detailed design of a new DHT 
protocol, Tambour. The novelty of the protocol is that it uses parallel lookup to reduce retrive latency and bounds 
communication overhead to a dynamically adjusted routing table. Tambour estimates the probabilities of routing en-
tries’ liveness based on statistics of node lifetime history and evicts dead entries after lookup failures. When the net-
work is unstable, more routing entries will be evicted in a given period of time, and the routing tables will be getting 
smaller which minimize the number of timeouts for later lookup requests. An exprimental prototype of Tambour has 
been simulated and compared against two popular DHT protocols. Results show that Tambour outperforms the com-
pared systems in terms of bandwith cost, lookup latency and the overall efficiency. 
 
Keywords: P2P Network; Distributed Hash Table; Small-World Distribution; Parallel Lookups 

1. Introduction 

Unlike the majority of current file sharing P2P systems, 
DHTs organize the P2P network in a structured manner 
and provide a simple lookup interface which similar to 
hash table. Logically, each host in DHTs stores and 
serves resources named by keys like a bucket in classic 
hash tables, and it employs a distributed lookup function 
collaboratively with other hosts to locate the hosts being 
responsible for assigned keys. This simple and elegant 
lookup interface makes DHTs a potential universal build- 
ing block for many distributed system applications. 

One of the challenge every P2P system has to cope 
with is churn: Nodes continuously join and leave the sys-
tem. Studies of file sharing networks observe that the 
median time a node stays in the system ranges from tens 
of minutes to an hour depending on variant applications 
[1-3]. It is not a good assumption that departing nodes 
will be able to notify their neighbours before leaving, and 
in many DHTs, nodes do not even know who have them 
as neighbours. Stale entries result in expensive lookup 
timeouts, since it takes multiple round-trip time for a 
node to determine that a lookup packet has been lost and 
and re-route it through another neighbour. There are 
various methods to reduce lookup latency and increase 
the accuracy of routing tables under churn. In general, 
these methods generate extra communication to get more 
information about the liveness of existing neighbours and 

new nodes in the network. In order to be robust in sce-
narios when the network becomes unstable and churn 
rate increases rapidly, DHT networks should keep the 
extra cost in control to avoid flooding the network. 

This paper introduces a new DHT protocol, Tambour, 
which reduces average lookup latency by using parallel 
lookup and bounds the induced communication overhead 
automatically. While many popular DHTs organize neigh- 
bours in structured manners with a fixed routing table size. 
Tambour dynamically tunes its table size to get the best 
lookup performance. Unless there is abundant spare 
bandwidth, it does not probe the availabilities of its 
neighbours periodically, but maintains a flexible routing 
table and selects next hop node in an opportunist way. 
Most existing DHTs more or less rely on users to set up 
various parameters in order to tune the performance of 
the networks under different environments. Unfortu-
nately, studies show that many of these parameters are in 
practice either left unspecified or deliberately misre-
ported [4]. Instead of asking user to do the optimization, 
Tambour automatically provides optimal lookup per-
formance in a robust way and fits itself as the deploy-
ment environment changes. Performance evaluations 
show that Tambour could keep its communication over-
head within a range over different operating conditions, 
and has similar or better lookup performance than some 
existing DHT protocols even when they were tuned for 
specific workload. 

Copyright © 2012 SciRes.                                                                                IJCNS 



X. SHU, X. LI 803

The rest of this paper is structured as follows. Section 
2 presents the basic system model and design of the 
Tambour protocol, and Section 3 shows the techniques 
employed in the implementation of Tambour. Section 4 
demonstrates Tambour’s performance through simulation 
and experiments on a prototype implementation. Section 
5 compares Tambour to related work. Finally, we sum-
marize our contributions and outline the items for future 
work in Section 6. 

2. System Design 

Similar to Chord [5], Tambour maps nodes to a ring-like 
circular address space by their randomly selected 128-bit 
identifiers. By sending probe packet periodically, each node 
maintains a list of successor nodes, whose IDs most closely 
follow the node on the ring, and a list of predecessors ac-
cordingly. With this simple routing structure, a lookup 
request is forwarded among adjacent nodes clock- wise on 
the ring until it reaches the node for which the request is 
looking. Since in each step, the lookup request reduces the 
clockwise ID distance to the destination by at least one, this 
procedure will finish in  hops eventually. logO n




Obviously, the simple ring routing structure is not ef-
ficient and scalable enough for practical use. Chord 
solves this problem by maintaining a “finger-table” with 

 entries to fold the ID distance by half at each 
hop, so that, it guarantees -hop lookup per-
formance. Besides Chord, Pastry [6], Tapestry [7], and 
Kademlia [8] employ similar mechanisms to achieve 
good scalability. However, in these DHTs, only a few 
routing entries are eligible to forward a given lookup. 
This inflexibility in choosing next hop not only reduces 
the efficiency of proximity neighbour selection (PNS) [9], 
but also does pose a robustness problem. 

logO n
logO n

For a Tambour node, the ID distance from the node to 

each of its neighbours follows a 
1

x
 distribution. In 

other words, the further two nodes are apart from each 
other on the ring, the less likely that one chooses the 
other as a neighbour. In Figure 1, which illustrates this 
distribution, each dot represents a node in the system and 
the darker ones with edges connecting to the bottom are  

the neighbours of the bottom node. This 
1

x
 distribution,  

which is based on the “small-world” model [10], creates 
a simpler and more flexible routing structure. It has been 
used by a few previous DHTs such as Symphony [11] 

 and Accordion [12]. Interestingly, Chord follows 
1

x
 

distribution as well unintentionally, since its “fin-
ger-table” maintains a constant number of routing entries 
for every ID-range , and this matches the fact 12 ,2i i

 

Figure 1. A 
1

x
 distribution of neighbours in Tambour, 

where the further two nodes are from each other on the 
ring, the less likely that one chooses the other as a neigh- 
bour. 
 

that the number of entries required by 
1

x
 distribution, 

1

2

2

1
d log

i

i x
x

  2 , is a constant as well. 

With this 
1

x
 distribution, Tambour gives a node the 

flexibility to utilize a routing table of any size. When the 
network has limited bandwidth or is unstable, Tambour 
maintains a small routing table to achieve Chord-like 
 logO n -hop lookup performance; when the network 

environment permits, Tambour can scaling its perform- 
ance up to constant hops like -hop protocols  1O

[9,13-16]. Another advantage of 
1

 distribution is its 
x

flexibility to select routes. Since each routing entry near the 
destination in the address space is a potential route, a node 
has a large set of routing entries to choose from as next hop 
to avoid nodes with low availability or high latency. 

3. Implementation 

The 
1

x
 distribution provides a flexible and scalable 

routing structure for DHTs. Based on this model, Tam-
bour employs several optimization techniques to fulfill 
its advantages in different operating environments. 

Copyright © 2012 SciRes.                                                                                IJCNS 



X. SHU, X. LI 804 

3.1. Node State 

As the underlying routing structure gives the flexibility 
to pick next hop from a large pool, Tambour enhances 
the lookup performance by prioritizing routing candi-
dates that are more responsive and stable. 

In order to assure the liveness of neighbour nodes and 
calculate their latencies, most exiting DHTs send probing 
message to each routing entry periodically [5-7]. One of 
the weaknesses of this approach is that it limits the size 
of routing table by the available bandwidth and reduces 
the effect of proximity routing [9]. Tambour employs a 
more efficient technique, parallel lookup, to avoid the 
probing overhead and mask timeouts caused by stale 
entries at the same time [17]. 

Without periodical contact, Tambour cannot be certain 
whether a neighbour is still in the network before relay-
ing a lookup request to the node. Thus, Tambour assumes 
that the node lifetimes follow a heavy-tailed Pareto dis-
tribution as suggested by empirical studies [3,18], and 
predicts the probability of a neighbour being alive with 
the knowledge about when the node joined the network 
and when it was seen last time [12]. Another problem 
caused by the lack of ping is that a node has no idea 
about the latency of a new neighbour right after learning 
it from other nodes. Tambour compensates this by bring- 
ing in the Vivaldi coordinate system, which predicts la-
tencies among nodes at a small bandwidth cost [19]. Af-
ter the first lookup request between two nodes, Tambour 
will record the real latency value and keep the estimated 
one for future reference. 

While many DHTs would consider both the latency 
and liveness of a neighbour in routing selection, they 
usually give priority to one trait over the other. Tambour 
characterizes node state in a more balanced way with the 
mathematical expectation of lookup latency. For example, 
if a neighbour with 80% chance of being alive could re-
ceive the lookup request in 150 milliseconds, it would 
also possibly lost the request in 20% of the cases and 
waste 1 second (5 times of the average Internet host la-
tency in a typical setting) for the sender to recover, 
therefore, in average, the latency of routing through that 
neighbour is  milliseconds. 
In general, if a node relays a lookup to  neighbours in 
parallel, assume that the latencies and live probabilities 
are  and 1 2  respectively, where 

1 2 d , then the mathematical expectation of the 
latency of this  degree parallel lookup is:  

150 80% 1000 20% = 320  
d

, dt , , , dp p p
t

d

1 2, ,t t 
t t 

    
1

fail
1 1 1

E 1
i dd

i i j j
i j j

t t p p t p


  

 
      

 
   1    (1) 

where fail  is the timeout value. With this mathematical 
expectation model which gives an all-around under-
standing of node state, a Tambour node could control the 

average latency more accurately. 

t

3.2. Parallel Lookups 

As illustrated in Figure 2, instead of pinging neigh- 
bours periodically, Tambour forwards each lookup re-
quest to several neighbours simultaneously to reduces the 
possibility of having to recover from stale routing entries. 
Parallel lookups is more efficient than active neighbour 
exploration in term of bandwidth overhead. The reason is 
that the larger degrees of parallelism, the more opportu-
nities of learning new neighbours and refreshing the 
status of current neighbours, and at the same time, it re-
duces the risk of waiting for timeouts. Therefore, parallel 
lookup not only reduces the negative effect of timeouts 
on the overall latency, but also does maintain the fresh-
ness of routing tables. 

Tambour employs a lottery algorithm for neighbour 
selection, where each entry near the lookup destination 
on the ID ring is given a number of lottery tickets that is 
inversely proportional to the expected latency of that 
entry. This algorithm biases towards nodes with high 
availability and low latency, but nodes that are not so 
stable or responsive get some opportunity to be selected 
as well. With this randomized method, Tambour keeps 
picking neighbours one by one until the probability of the 
lookup being successfully received by at least one neigh- 
bour reaches a threshold . In other words, if the aver-
age liveness probability of a neighbour is , Tambour 
will create a -way parallel lookup to insure that 

q
p

d
 1 1

d
p q   . 

It is nice to be able to guarantee the lookup delivery 
rate, since by doing so, Tambour would waste little time 
on waiting for the expensive timeout. However, this fea-
ture comes with a potential problem—if each node 
adopts a large degree of lookup parallelism arbitrarily to 
meet the delivery rate threshold, one lookup could trigger 
a flood of parallel messages in the whole system. As this 
problem affects the efficiency and robustness of Tam-
bour, it is necessary to investigate whether it could trig-
ger off a positive feedback or happen on a regular basis. 

The reason a node choosing a number of neighbours to 
do parallel lookup is because of the poor stability of 
these neighbours. In order to maintain the delivery guar-
antee, it has to use the degree of parallelism to compen- 

 

 

Figure 2. A host forwards multiple lookups to neighbours 
near the destination key simultaneously. 

Copyright © 2012 SciRes.                                                                                IJCNS 



X. SHU, X. LI 805

sate the probability of liveness. Once the node gets ac-
knowledgements from some of the neighbours, it will 
increase the estimations of their likelihoods of being 
alive and remove those neighbours that never reply from 
the routing table. Therefore, the average liveness prob-
ability of the routing table is increased by the process, 
which also reduces the requirement of parallel degree for 
future lookups. Intuitively, this “refresh” effect neutral-
izes the risk of continuous whole-system flooding. 

In fact, when the average liveness probability reaches 
an equilibrium between the “refresh” effect, which in-
creases the liveness of neighbours with lookup feedback, 
and the “aging” effect, which decreases the liveness of 
neighbours with no recent contact, the liveness probabil-
ity  will have limited impact on overall cost of paral-
lel lookups. If , this statement is obviously true 
since no parallel lookup is required; if , the equi-
librium of  implies: 

p
p q

p q
p

100% 1
s dk dk

p p
s s

       
 

r       (2) 

where s  is the size of routing table,  is the number 
of lookup requests in a unit of time,  is node failure 
rate and  is the degree of parallelism. Then, the cost 
parallel lookups is: 

k
r

d

1

1 1 1 1

sr p sr
dk

r p r
   

    q
           (3) 

This equation shows that, no matter how much the 
probability  is, the cost dk  is always bounded by 
other factors, such as, the size of routing table and churn 
rate. Therefore, even with a low level of lifeness prob-
ability, the guarantee of lookup delivery rate in Tambour 
will not overload the system in long term. 

p

Equation (3) also implies that a Tambour node has to 
maintain a smaller routing table under heavy churn to 
constrain the control overhead. Since churn leads to evic-
tions of neighbours and decreases the size of the routing 
table, there is a natural tendency which limits the over-
head of parallel lookups. To make this process go smoother 
and avoid massive amount of lookups under churn, Tam- 
bour gives higher priority to nodes with low expected 
latency when node failure rate increases. It does not do 
so by adding more lottery tickets to more reliable nodes 
but by increasing the size of the candidate pool. For ex-
ample, when the churn is low, Tambour might only pick 
next hop from 8 nodes near the destination; when the 
network becomes more unstable, Tambour would pick 
from 16 candidates. With a larger candidate pool, stabler 
neighbours get higher probability to be picked, and 
neighbours with low probability of being alive have little 
chance to be “refreshed” and will be removed from the 
routing table through the evicting process eventually. 
This method has the similar effect as removing unstable 

nodes from routing table directly. Its advantage is that, if 
the high level of churn ends in a short period of time, it 
will not lose much information about those unstable 
nodes, which helps the system recover from the churn 
faster. 

3.3. Routing Table Maintenance 

A Tambour node collects the majority of its routing 
entries from lookup traffic passing by. However, the 
senders’ keys of normal lookup traffic do not follow 
small-world distribution as Tambour need. Hence, it 
adopts two methods to correct the routing entry distri-
bution. 

First, a Tambour node piggybacks several routing en-
tries, which follow a small-world distribution from the 
recipient’s point of view, in each lookup and acknowl-
edgement. And, similar to the lottery algorithm used in 
parallel lookups, the extra routing entries are randomly 
picked with priority to stable and low-latency neighbours. 
Second, Tambour explores actively for new neighbours 
according to the small-world distribution. For every time 
interval, a Tambour node asks a neighbour for routing 
entries in the ID range between that neighbour and the 
very next neighbour in the circular ID space. Since the 
neighbour is closer to the range than the current node, it 
knows more routing entries in the range. With this extra 
knowledge, the neighbour answers with the nodes which 
have lowest latency to the sender according to Vivaldi 
coordinate system. 

The selection of which ID range to explore is based on 
whether it needs new neighbours in that range to match 
the small-world distribution or how much the latency 
could be improved with new neighbours. According to 
the small-world distribution, the number of nodes be-
tween neighbours i  and  should be proportional 
to,  

1i 

1 11
d logi

i

a i

a
i

a
x

x a
             (4) 

where 1,i ia a   are the ID distances from current node to 
neighbour i and neighbour  respectively. On the 
other hand, the level of latency improvement with new 
neighbours is characterized by the ratio of the current 
expected lookup latency 

1i 

 E it  for the range to the ex-
pected latency  E it  of new neighbours. By the nature 
of Tambour’s parallel lookup algorithm,  E it  is the 
expected latency of the several neighbours near the ID 
range forwarding lookup in parallel, and its value can be 
calculated from Equation (1). Since nodes reply explora-
tion requests with the low-latency entries based on their 
best knowledge,  E it  is approximately equal to the 
lowest latency of nodes in that range. Generally, the 
more nodes are in a set, the shorter latency can be found. 

Copyright © 2012 SciRes.                                                                                IJCNS 



X. SHU, X. LI 806 

In this case, where the system is supposed to be deployed 
on the surface area of Earth, the lowest latency is ap- 

proximately proportional to  
1

2
1i ia a


   [20], and so is 

 E it . 

Combining above analysis, Tambour selects an ID 
range to explore randomly with a lottery algorithm which 
assigns the ith range a number of lottery tickets with fol-
lowing formula:  

  1
1E l i

i i i
i

a
t a a

a


   og            (5) 

This exploration process approximates a 
1

x
 distribu- 

tion with the consideration of locality. It keeps hop-count 
low while providing good latency level for each hop to 
any part of the ID space. 

In a comparatively stable and lookup-request intensive 
network, a Tambour node could learn enough informa-
tion about its neighbours through monitoring bypassing 
lookup traffic and need no active exploration. In this case, 
further searching for new neighbours is unnecessary and 
a waste of bandwidth, thus, it is important to know under 
what condition active exploration is worth the cost and 
when it should stop. Intuitively, the more neighbours a 
node have, the more probable a node could find low la-
tency neighbours near the destination in the ID space; 
And if a node has already learnt many low latency 
neighbours in a small ID range, it is unlikely to find bet-
ter neighbours. These observations can be quantified by 
the following theorems. 

Theorem 1 Suppose nodes are uniformly distributed 
on Earth and the median latency between each pair of 
nodes is 0 . For two random nodes, the probability of 
the latency between them being shorter than 

t
x  is  

0

1 π
1 cos

2 2

x

t

 
 

 
. 

Proof The latency between a pair of nodes is posi-
tively correlated with the geographical distance between 
them [1]. The reason behind this phenomenon is that 
latency is limited by the speed of electronic signal trans-
mission, meanwhile the data packets on the Internet is 
usually routed with shortest path. Therefore, if the la-
tency between a pair of nodes is x , then, 

0

π

2 ,
r d

t x
                    (6) 

where  is the radius of Earth and  is the distance 
between the two nodes. 

r d

Suppose the angle between the two nodes is  , then 
Equation (6) can be written as, 

0

π

2

d x

r t
                     (7) 

Thus, the probability of the latency shorter than x  is,  

  2

0

2π cos
Pr latency

24π

1 π
1 cos

2 2

rh r r
x

rr

x

t


  

 
  

 

      (8) 

A node should check whether it is worth to search for 
new neighbours with Theorem 1 before doing any probe. 
If current neighbours are good enough and the probabil-
ity of getting better neighbours is low, the node does not 
have to waste bandwidth on active discovery. This indi-
cator is useful for deciding when to update neighbour 
globally, however, the more important application is to 
find out which ID regions of neighbours are worth to 
update. With a limited bandwidth budget, Theorem 1 can 
be used to improve the cost effective of the bandwidth. 

However, sometimes the information, which Theorem 
1 relies on, i.e., the median latency of the network and 
the latency to neighbours, is not available or unreliable. 
For example, before the first contact with a new neigh- 
bour, a node can only estimate its latency with geoloca-
tion information which is not always accurate. The fol-
lowing theorem is suitable for such scenario. 

Theorem 2 Suppose nodes are uniformly distributed 
on Earth. The expected minimal distance between a node 
and  other random nodes is approximately equal to k

π

1

r

k 
, where  is the radius of Earth. r

Proof From the proof of Theorem 1, we know that, 

    1
Pr 1 cos

2

x
F x d x

r
   
 






        (9) 

So the probability of having at least one node in k 
nodes whose distance is smaller than  is, d

   1 1
k

kF x F   x               (10) 

By the definition, the mathematical expectation of the 
minimal distance is, 

   

 

   

  
  

0

π

0

ππ

0 0

π

0

π

0

π

0

E min d

d

d

π 1 1 d

1 d

1
1 cos d

2

k

r

k

rr

k k

r k

r k

k
r

k

d x f x x

x F x x

x F x F x x

r F x

F x x

x
x

r


   

 

  

   

 

   
 













x
    (11) 

Copyright © 2012 SciRes.                                                                                IJCNS 



X. SHU, X. LI 807

Let 
x

r
  , then 

  π

0

2

π

0

π

0

1 1
2 1 2 1

2 2π

0

1 cos
E min d

2

1 2 cos 1
2

d
2

2 cos d
2 2

2 sin cos d
2 2

k

k

k

k

d r

r

r

r

 





 

2

 
     
 

        

     
   

 
 
 

    
 

        
   










 

Based on the property of beta function:  

     
π

2 1 2 1
2

0
B 1, 1 2 sin cos d

m n
m n          (12) 

We have 

 

 

1 1
E min ,

2 2

1
π2

π
1 1

d r B k

k
r

r
k k

         
   
  
  

      (13) 

Tambour uses Theorem 2 to predict how many nodes a 
node has to probe before getting a better node as neigh- 
bour if latency information is unreliable. With the con-
sideration of bandwidth limit, a Tambour node keeps in 
mind that if it knows large number of neighbours in a 
certain ID region, the probability of discover a new 
neighbour with lower latency is limited, thus it is more 
cost-effective to probe an ID region with relatively fewer 
known neighbours. 

4 . Performance Evaluation 

This section evaluates the performance of a prototype 
Tambour implementation in a generic P2P protocol si- 
mulator, p2psim [21], and compares it with some other 
DHTs implemented in p2psim, such as, Chord [5] and 
Accordion [12]. The experiments run on a network of 
10,000 nodes. Each node is assigned a coordinator on a 
2-dimensional plain, and the round-trip time between 
each node pair is proportional to their distance on the 
plain. The average round-trip time is about 170 ms. The 
node lifetimes follow a Pareto distribution with a mean 
of 60 minutes ( 0.83   and 1560   sec). Nodes 
that depart will rejoin under different addresses after an 
exponentially-distributed interval with a mean of 6 min-
utes. 

Figure 3 plots the trade-offs between average lookup 

latency and bandwidth overhead in Chord, Accordion 
and Tambour. In this experiment, Tambour gets the va-
rieties of bandwidth overhead levels from different ex-
ploration rate settings. Both Tambour and Accordion 
could achieve better average lookup latency than Chord 
no matter how much bandwidth they use. Since Tambour 
does not “refresh” routing table actively and employs a 
cost-effective neighbour exploration algorithm, it is not 
as sensitive to the bandwidth as the other algorithm do, 
and it still performs well with limited bandwidth. 

Figure 4 shows the performance results of the three 
protocols under various churn rate. To be a fair compari-
son, these protocols are all tuned to spend about 20 byte 
per second on communication. All of them display resil-
ience under churns, but, Tambour outperforms the other 
two in term of efficiency again. 

Figure 5 plots the bandwidth costs of Chord, Accor-
dion and Tambour as the lookup load increases. Since 
Chord does not use parallel lookup, its bandwidth con-
sumption increases linearly with the lookup load. Accor- 

 

 

Figure 3. The average lookup latency as a function of the 
bandwidth overhead for Chord, Accordion and Tambour. 
 

 

Figure 4. The average lookup latency of Chord, Accordion 
and Tambour under various levels of churn rate. Their 
bandwidth overhead are tuned to the same level at about 20 
byte/sec. 

Copyright © 2012 SciRes.                                                                                IJCNS 



X. SHU, X. LI 808 

 

Figure 5. The bandwidth overhead as a function of the 
lookup load for Chord, Accordion and Tambour. 
 
dion holds its bandwidth consumption at a steady level 
due to its sophisticated bandwidth budget system. Al-
though Tambour has no direct control over its bandwidth, 
its parallel lookup algorithm scales well with increasing 
lookup load. Actually, the extra lookup load brings more 
routing entries and refreshes neighbour states, as a result, 
Tambour needs fewer hops, smaller degrees of parallel-
ism and smaller extra overhead. 

5. Related Work 

As one of the first DHTs, Chord [5] is designed to be 
scalable over a wide range of system size. Although a 
latter variation gets a boost from proximity neighbour 
selection (PNS) [9], the performance is still limited due 
to its rigid routing tables, especially when bandwidth is 
comparatively adequate. Tambour has borrowed the ID 
ring structure and successor pointer stabilization tech-
nique from Chord because of their simplicity. 

EpiChord [22], a DHT inspired by Chord and various 
-hop protocols [9,13-16], demonstrates that a large 

and flexible routing table combining with parallel lookup 
technique could be beneficial in a range of lookup work-
loads. Unlike Tambour, EpiChord only allows a fixed 
degree of parallelism and use iterative parallel lookup 
instead of recursive parallel lookup. Iterative parallel 
lookup avoids the flooding problem raised by multicast, 
however, it introduces higher latency and reduces the 
efficiency of proximity neighbour selection. 

(1)O

Symphony [11] and Accordion [12] employ the same 
small-world distribution [10] as Tambour for populating 
their routing tables. Symphony has a fixed-sized routing 
table and acquires its routing entries only from active 
exploration. Like Tambour, Accordion is more flexible in 
term of routing maintenance and uses parallel lookup to 
avoid timeout. In order to restrain the side-effect of par-
allel lookup, Accordion tunes the degree of parallelism 
automatically with a complex bandwidth budget system. 

On the other hand, Tambour achieves a similar result 
with a simple routing entry picking algorithm without 
any user-specified parameters. 

6. Conclusions 

This paper has presented a new scalable and robust DHT 
protocol, Tambour, which uses parallel lookups to reduce 
lookup latency and bounds the induced communication 
overhead automatically as a result of “refresh” effect. 
Tambour estimates the probabilities of routing entries’ 
liveness based on statistics of node lifetime history and 
evicts dead entries after lookup failures. When the net-
work is unstable, more routing entries will be evicted in a 
given period of time, and the routing tables will be get-
ting smaller which minimize the number of timeouts for 
later lookup requests. Other than the efficiency advan-
tage, Tambour shifts the burden of tuning from the user 
to the system by automatically adapting itself to the ob-
served churn and workload to provide the best perform-
ance. 

For future study, it is interesting to see the feasibility 
of fusing Tambour into other existing DHT systems. Be-
cause of the its flexibility and simplicity, a Tambour 
node should be able to work with DHTs like Chord and 
Accordion after a little modification. Another possible 
improvement on Tambour is to utilize the information 
revealed by the IP address of a Internet host, such as, the 
timezone and location. These data could help Tambour to 
make a better predication about a neighbour’s availability 
and latency. 

REFERENCES 
[1] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. 

Shenker and I. Stoica, “The Impact of DHT Routing 
Geometry on Resilience and Proximity,” Proceedings of 
the 2003 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, 
ACM, New York, 2003, pp. 381-394. 

[2] Z. Yang, J. Tian and Y. Dai, “Towards a More Accurate 
Availability Evaluation in Peer-to-Peer Storage Systems,” 
Proceedings of the 2006 International Workshop on Net-
working, Architecture, and Storages, Shenyang, 2006, pp. 
73-80. doi:10.1109/IWNAS.2006.45 

[3] M. Zhou, Y. Dai and X. Li, “A Measurement Study of the 
Structured Overlay Network in P2P File-Sharing Sys-
tems,” Advanced Multimedia, Vol. 2007, No. 1, 2007, pp. 
10-18. 

[4] S. Saroiu, P. K. Gummadi and S. D. Gribble, “A Meas-
urement Study of Peer-to-Peer File Sharing Systems,” Mul-
timedia Computing and Networking Conference (MMCN), 
San Jose, January 2002, pp. 156-170. 

[5] I. Stoica, R. Morris, D. Karger, F. F. Kaashoek and H. 
Balakrishnan, “Chord: A Scalable Peer-to-Peer Look up 
Service for Internet Applications,” Computer Communi-

Copyright © 2012 SciRes.                                                                                IJCNS 

http://dx.doi.org/10.1109/IWNAS.2006.45


X. SHU, X. LI 

Copyright © 2012 SciRes.                                                                                IJCNS 

809

cation Review, Vol. 31, No. 4, 2001, pp. 149-160. 
doi:10.1145/964723.383071 

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale 
Peer-to-Peer Systems,” Lecture Notes in Computer Sci-
ence, Vol. 2218, 2001, pp. 329-350. 
doi:10.1007/3-540-45518-3_18 

[7] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jo-
seph and J. D. Kubiatowicz, “Tapestry: A Resilient Global- 
Scale Overlay for Service Deployment,” IEEE Journal on 
Selected Areas in Communications, Vol. 22, No. 1, 2004, 
pp. 41-53. doi:10.1109/JSAC.2003.818784 

[8] P. Maymounkov and D. Mazières, “Kademlia: A Peer-To- 
Peer Information System Based on the XOR Metric,” 
IPTPS, 2002, pp. 53-65. 

[9] R. Bhagwan, S. Savage and G. M. Voelker, “Under-
standing Availability,” IPTPS, 2003, pp. 256-267. 

[10] J. Kleinberg, “The Small-World Phenomenon: An Algo-
rithmic Perspective,” Proceedings of the 32nd ACM Sym- 
posium on Theory of Computing, ACM, New York, 2000, 
pp. 163-170. 

[11] G. S. Manku, M. Bawa, P. Raghavan and V. Inc, “Sym-
phony: Distributed Hashing in a Small World,” Proceed-
ings of the 4th USENIX Symposium on Internet Tech-
nologies and Systems, 2003, pp. 127-140. 

[12] J. Li, J. Stribling, R. Morris and M. F. Kaashoek, “Band-
width-Efficient Management of DHT Routing Tables,” 
Proceedings of the 2nd Conference on Symposium on Net- 
worked Systems Design & Implementation, USENIX As-
sociation, Berkeley, 2005, pp. 99-114. 

[13] I. Gupta, K. Birman, P. Linga, A. Demers and R. V. Re-
nesse, “Kelips: Building an Efficient and Stable P2P DHT 
through Increased Memory and Background Overhead,” 
Proceedings of the 2nd International Workshop on Peer-to- 
Peer Systems, Berkeley, 2003, pp. 160-169. 

[14] R. Rodrigues and C. Blake, “When Multi-Hop Peer-To- 
Peer Routing Matters,” The 3rd International Workshop 
on Peer-to-Peer Systems, La Jolla, 26-27 February, 2004, 
pp. 112-122. 

[15] A. Gupta, B. Liskov and R. Rodrigues, “Efficient Routing 
for Peer-to-Peer Overlays,” Proceedings of the 1st Con-
ference on Symposium on Networked Systems Design and 
Implementation, USENIX Association, Berkeley, 2004, 
pp. 113-126. 

[16] B. Leong and J. Li, “Achieving One-Hop DHT Look up 
and Strong Stabilization by Passing Tokens,” Proceed-
ings of the 12th International Conference on Networks 
(ICON), Singapore, November 2004, pp. 344-350. 

[17] J. Li, J. Stribling, R. Morris, M. F. Kaashoek and T. M. 
Gil, “A Performance vs. Cost Framework for Evaluating 
DHT Design Trade offs under Churn,” Proceedings of the 
24th Infocom, Miami, 13-17 March 2005, pp. 225-236. 

[18] S. Saroiu, K. P. Gummadi and S. D. Gribble, “Measuring 
and Analyzing the Characteristics of Napster and Gnu- 
tella Hosts,” Multimedia Systems, Vol. 9, No. 2, 2003, pp. 
170-184. doi:10.1007/s00530-003-0088-1 

[19] F. Dabek, R. Cox, F. Kaashoek and R. Morris, “Vivaldi: A 
Decentralized Network Coordinate System,” SIGCOMM, 
2004, pp. 15-26. 

[20] H. Zhang, A. Goel and R. Govindan, “Incrementally Im-
proving Lookup Latency in Distributed Hash Table Sys-
tems,” ACM Sigmetrics, 2003, pp. 114-125. 

[21] “A Simulator for Peer-to-Peer (P2P) Protocols,” 2012. 
http://pdos.csail.mit.edu/p2psim 

[22] B. Leong, B. Liskov and E. D. Demaine, “EpiChord: Pa- 
rallelizing the Chord Lookup Algorithm with Reactive 
Routing State Management,” The 12th International Con-
ference on Networks (ICON), Singapore, November 2004, 
pp. 1243-1259. 

 
 

http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1007/s00530-003-0088-1

