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ABSTRACT 

An OS-online system called TransCom is based on a virtual storage system that supports heterogeneous services of the 
operating system and applications online. In TransCom, OS and software which run in the client are stored on the cen- 
tralized servers, while computing tasks are carried out by the clients, so the server is the bottleneck of the system per- 
formance. This paper firstly analyzes the characteristics of its real usage workload and builds a queuing model to locate 
the system bottlenecks. According to the study, the disk is the primary bottleneck, so an optimal two-level cache ar- 
rangement policy is developed on both the server and the client, which aims to avoid most of the server disk accesses. 
LRU algorithm is used in the client-side cache. A cache management algorithm called Frequency-based Multi-Priority 
Queues (FMPQ) proposed in this paper is used in the server-side cache. Experiment results show that the appropriate 
cache arrangement can significantly improve the capability of the TransCom server. 
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1. Introduction 

During the last decade, with the rapid advance in the em- 
bedded and mobile devices, the traditional general-pur- 
pose desktop computing is shifting toward the greatly 
heterogeneous and scalable cloud computing [1,2], which 
aims to offer novel pervasive services for users in right 
place, at right time and by right means with some kinds/ 
levels of smart or intelligent behaviours. From the scal- 
able service perspective, these pervasive services are 
highly expected, that a smart ubiquitous computing plat-
form should enable users to get different services via a 
single light-weight device and a same service via differ- 
ent types of devices. Unfortunately, all of the current 
technologies cannot achieve the uneven conditioning 
services. In another word, users are often unable to select 
their desired service freely via the devices or platforms 
available to them. A new computing paradigm is pro- 
posed, namely, transparent computing [3,4], which aims 
to solve the problems above. The core idea of this para-
digm is to realize the “stored program concept [5]” mo- 
del in the networking environment, in which the execu- 
tion and the storage of programs are separated in the dif-
ferent computers. All the OSes, applications, and data of 
clients are centered on the servers and are scheduled on 
demand and run on different clients in a “block-stream- 
ing” way. All the OS-, application-, and data-streaming 
can be intercepted, monitored, or audited independent 

of the clients. Due to the central storage of OSes and ap- 
plications, the installation, maintenance, and managment 
are also centralized, leaving the clients light-weighted. A 
typical transparent computing system is illustrated in Fig- 
ure 1. 

We implemented a prototype of transparent computing, 
namely, TransCom [6], which is a distributed system 
based on C/S model. In TransCom, a client is nearly a 
bare hardware, which is responsible for the execution of 
programs and the interaction with users. Most programs 
including OSes and applications executed on the clients 
are centralized on the server, which is responsible for the 
storage and the management. In order to fetch the remote 
programs and data transparently, the virtual disk system 
(Vdisk) in TransCom extends the local external memory 
to the disks and the memory on the server. 

Unlike the traditional distributed storage systems, Vdisk 
in TransCom is designed for the remote programs access 
rather than only the remote data access, which brings 
Vdisk some unique features as follows. Firstly, Vdisk 
supports for the remote program loading and paging. 
Secondly, all the virtual disks are transparent to the na-
tive file systems and applications. Thirdly, one program 
segment can be shared among different clients. At last, 
each client has a separate disk view. 

Since Vdisk is designed for the special purpose, its 
behaviour is not the same as the traditional distributed  
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Figure 1. The computing environment of Transparent Computing. 
 
storage systems. Understanding the workload character- 
istics of Vdisk is a necessary prelude to improve the per- 
formance of TransCom. In this paper, a trace-driven ana- 
lysis method is used to observe I/O characteristics of 
Vdisk, and the effect of cache on both the server and the 
client side is discussed. Also an analytical model is built 
to evaluate the effect of several optimizations on a cache 
system. 

The remaining sections are organized as follows. The 
overall architecture of the TransCom system is shown in 
Section 2. In Section 3, we build a queuing network mo-  
del to analyse the utilization of resources on the server. 
In Section 4, we identify the bottleneck on TransCom 
server and discuss the factors affect the cache hit ratio 
and the overall performance by simulation. In Section 5, 
we propose a two-level cache strategy optimization me- 
thod and provide the experimental results in Section 6. 
The conclusions and future works are discussed in Sec- 
tion 7. 

2. System Overview 

TransCom system is based on C/S model, where a single 
server can support up to tens of clients connected in a 
network system. Figure 2 shows the overall architecture 
of a TransCom system with a server and a single client. 
Without the local hard disk, each client accesses the OS, 
software and data from the remote virtual disks which 
simulate the physical block-level storage devices. Vdisk, 
in essence, is one or more disk image files located on the 
server and accessed by the client remotely via Network 
Service Access Protocol (NSAP) [7]. TransCom server, 
running as an application daemon, maintains a client  

management process, a disk management process, and all 
Vdisk image files belonging to all clients in the system. 

As seen from its structure in Figure 2, the Vdisk dri- 
ver is composed of two parts running on the Trans-Com 
client and TransCom server, respectively. OS-Specific 
Driver (OSD) is mainly used to provide the interaction 
interface with a specific Client OS, so that Client OS 
may perform various operations on the virtual devices as 
usual. Independent Driver (ID) which runs in TransOS is 
used to fulfill the Vdisk functions that are irrelevant with 
a specific Client OS. The interface between OSD and ID 
is an ordinary hardware-level interface based on the I/O 
controller and register. Service Initiator is used to locate 
the TransCom server for ID and to transport the requests 
for Vdisk operations to relevant handling programs on 
the TransCom server via NSAP. Waiting for the response 
from the server, Service Initiator then passes the handling 
results to ID for further handling. Service Target is used 
to receive I/O requests from the TransCom client, search 
relevant database, check the access authority, perform 
operations to the corresponding Vdisk image files and 
physical devices, and finally return the results to the 
TransCom client. NSAP communication protocol is the 
communication protocol to locate the TransCom server, 
verify relevant authorization, and transport requests and 
responses for various I/O operations. 

As mentioned above, the Virtual I/O (VIO) path needs 
to go through the TransCom delivery network (a round- 
trip transportation) and the physical I/O operations of the 
TransCom server. Therefore, a complete VIO operation 
will take more time than commonly known I/O opera- 
tions. More often than not, this makes the VIO the bot- 
tleneck of system performance. In order to enhance the  
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Figure 2. Overall architecture of a TransCom system with a server and a single client. 
 
access performance to VIO in the TransCom system, it is 
necessary to add cache modules along the VIO path 
through “add-in” mechanism, so as to further improve 
the read or write performance. 

The client cache is used to cache the requests or re- 
sponses data from the Client OS and remote TransCom 
servers, and to reduce the I/O response time. The server 
cache is added based on Service Targets on the Trans- 
Com server. After the caching modules are added, in 
handling VIO requests sent from the TransCom client, 
the Service Targets will first search the cache for the I/O 
data requested by the user using the server cache. If the 
VIO data requested by the user is in the cache, it will 
directly return the I/O data to the TransCom client. Other- 
wise, the Service Target will directly operate on the V- 
disk image file and its corresponding physical device, 
acquiring the VIO data requested by the users, updating 
the content in the cache buffer with the server cache, and 
then sending the result to the sending queue. The server 
cache also will determine whether it is needed to pre-read 
some VIO data into the cache buffer, according to the 
specific VIO request sent by the user. If it is needed, it 
will invoke the Service Target to operate directly on the 
Vdisk image file and its corresponding physical device, 
so as to read the VIO data beforehand. 

Two features distinguish TransCom from previous 
diskless distributed systems [8-10]. Firstly, TransCom 
can boot and run heterogeneous OSes and applications, 
so the Vdisk driver is transparent to both OSes and ap- 
plications. Secondly, Vdisks perceived by users can be 
flexibly mapped to the Vdisk image files on the Trans- 
Com server. Such flexibility allows TransCom to share 
OSes and applications to different clients to reduce the 
overhead of the storage and the management, while  

still isolating the personal files for the privacy of users. 
We study a real usage case deployed in the network 

and system group in Tsinghua University. The system is 
set up as the baseline case. The server is Dell PowerEdge 
1900 machine, equipped with an Intel Xeon Quad Core 
1.6 GHz CPU, 4 GB Dual DDR2 667 MHz RAM, one 
160 GB Hitachi 15,000 rpm SATA hard disk, and a 1 
Gbps on-board network card. Each client is configured as 
Intel Dual Core E6300 1.86 GHz machine, with 512 MB 
DDR 667 RAM and 100 Mbps on-board network card. 
All the clients and server are connected by an Ethernet 
switch with 98,100 Mbps interfaces and two 1Gbps inter- 
faces. All clients run the Windows XP Professional SP3. 
The server runs Windows 2003 Standard SP2, with the 
software providing the TransCom services. 

In this paper, we study and optimize the above system. 
In the following sections, we will discuss what the bottle- 
neck of this system is and How to improve the system. 

3. Model Analysis 

In this section, the most critical resources on the server 
are identified. The measurement data is analysed to build 
the queuing network performance models. In this section, 
we describe our models, the inputs, and the experiments 
conducted to obtain these inputs. 

3.1. Models of TransCom System 

Since the input requirements of our models dictate the 
quantities that must be measured, a description of these 
models is introduced at the beginning. We chose the queu- 
ing network performance models, because the models 
can achieve an attractive combination of the efficiency 
and the accuracy. There are three components in the 
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specification of a queue network model: service centre 
description, customer description, and service demands. 
The service centre description identifies the resources of 
the system that will be represented in the model, such as 
disks, CPUs, communication networks, etc. The custo- 
mer description indicates the workload intensity and the 
offered load, such as the average number of the requests 
in the system, the average rate at which requests arrive, 
the number of users and the average waiting time. The 
service demands indicate the average amount of the ser- 
vices which each request requires at each service centre. 

Once these inputs have been specified, the model can 
be evaluated using efficient numerical algorithms to ob- 
tain the performance measures, such as utilization, resi- 
dence time, queue length, and throughput. In essence, the 
evaluation algorithm calculates the effect of the interfer- 
ence, and queues the results when customers who have 
certain service demands share the system at particular 
workload intensity. Once created, the model can be used 
to project the performance of the system under various 
modifications. System modifications often have straight- 
forward representations as modifications to the model 
inputs.  

In TransCom system, a number of TransCom clients 
share a server over a local area network. Figure 3 illus- 
trates the models used in our study. The server is repre- 
sented by three service centres, corresponding to the 
CPU, the storage subsystem and the network subsystem. 
The execution of the requests at the CPU depends on the 
type of operations requested by the client, which may be 
either control or access operations. For the storage ser- 
vice, the execution of a request to the server is simpler. A 
user request for a control operation is translated to one or 
more access requests to the server by the client. The ac- 
cess and control requests at the server are handled in a 
similar way to an access request to a file service. The 
storage system is represented by a flow equivalent server 
centre, which is composed of a memory cache and some 
disks. Thus, the efficiency of the storage system depends 
on the effect of the cache system, which is usually pre- 
sented by the hit rate. Each client workstation is repre- 
sented by a delay centre, in which the delay time is a sum 
of latencies during the network transaction and the net- 
work stack processing on each client. The model includes 
one “token” or “customer” corresponding to each client. 
Each customer cycles between its client and the server 
via the network, accumulating the services and encoun- 
tering the queuing delays which are caused by the com- 
petition from other customers.  

3.2. Customer Characteristics 

The I/O requests issued by the clients in the baseline 
system were traced in Tsinghua University for 4 weeks. 

……
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Figure 3. Models of TransCom system. (a) Queuing model 
of TransCom system; (b) Model of storage system in Trans- 
Com system. 
 
There are 15 users, a professor and several graduate stu- 
dents, working on each client with Windows XP from 8 
am to 6 pm. The applications used most frequently are 
the internet browser (IE 7.0), the text editor (Microsoft 
Office 2007) and the text viewer (Adobe acrobat reader 
8.0). Besides, New Era English software, a multimedia 
application for English self-learning, is often used by 
students. 

Wireshark 1.6 is used to set up a network monitor on 
the server to capture I/O requests related packets and to 
extract the required information, such as disk id, user id, 
requested initial block number, block length, operation 
command and time of packet issued/received. Note that, 
because of the limitation of the network packet size, 
TransCom clients need to split a large I/O request to sev- 
eral small ones. Some fields in each split packets are 
added to record the initial block number and the length of 
original requests. 

The results of our trace analysis are summarized as 
follows. Note that a request referenced here is an original 
request before it is split by TransCom system. 

1) The minimal request size is 0.5 KB, and the maxi- 
mal request size is 64 KB. The average request size is 8 
KB. 

2) Most of the requests are short in length (70% less 
than or equal to 4 KB), and 4 KB is the most frequent re- 
quest size (60%). 

3) The proportion of the traffic between the read and 
the write requests is 1:3, while the proportion of the  
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working set (amount of blocks that be accessed at least 
once) is 4:5. 

4) On average, half of the requests are sequential. 
According to the above observations, a 4 KB data is 

defined as a “typical request”. The service demands at 
the client are composed of the processes in user mode, 
and the overhead processes for transferring some 4 KB 
blocks. Since NSAP is a one-step protocol, the service 
demands of a client should be a constant when the scale 
of clients increases.  

3.3. Measuring Service Demands 

The parameters whose values are required for transfer- 
ring 4 KB data are the service demands, such as the cli- 
ent CPU, the server CPU, disk and NIC, and the network. 
These service demands are measured in a series of ex- 
periments that transfer large numbers of blocks with the 
4 KB block size. These experiments are repeated to en- 
sure the reliability. 

The CPU service demands at the clients or the server 
are measured by a performance monitor, which is a back- 
ground process provided by Windows in all experiments. 
The server CPU consumption can be further divided into 
3 parts: storage related consumption, network related 
consumption and I/O server consumption. The storage 
related consumption is the CPU service time spent on 
dealing with the cache system and controlling disks. 
Network related consumption is mainly associated with 
the overhead on UDP/IP network stack. I/O server con-
sumption is used to calculate the requested image files 
and the position of the file access pointer. 

Since it is complicated and expensive to deploy a 
monitor on the NIU (Network Interface Unit) to measure 
the service time of the NIU directly, the service time is 
estimated by the throughput and the network related 
consumption. Lots of 4 KB UDP packets are transferred 
continuously via 1Gbps Ethernet NIC in the server, so 
we measure the throughput and the network stack con- 
sumption on the server CPU, by which the service time 
on the NIU can be calculated. The disk service time of 
both the random and sequential accesses is measured by 
IOMeter. In the experiment, we found that the service 
demands of the CPU in the client and server were not 
dependent on the access mode. According to the results 
of our trace study mentioned above, we assume that a 
seek time is required once per two disk accesses in our 
model. The typical parameter describing the cache effect 
is the hit ratio, which is not easy to be measured in a real 
usage. The hit ratio is one of the factors, which affect the 
request response time and the utilization of each service 
centre.  

3.4. Modeling Verification 

To make the model simple and effective, several assump- 

tions are proposed, some parts of which have already 
been mentioned in previous sections. 

Assumptions of Service Centre are proposed as fol- 
lows: 1) Service centres in the model are independent 
from each other; 2) The buffer of each service centre is 
unlimited, so no request will be dropped. 

Assumptions of workload are proposed as follows: 1) 
the size of the requests is 4 KB; 2) A seek time happens 
once per two disk accesses. 

To examine whether the assumptions affect the accu- 
racy of our model, the response time of the Vdisk re- 
quests calculated by the model is compared with the re- 
sponse time measured in the real system, as shown in 
Figure 4. The calculated values and the measured values 
are pretty similar to each other in the both two figures, 
which prove that the assumptions are reasonable in our 
scenario. In next section, this model is adopted to con- 
duct the bottleneck analysis of TransCom system, espe- 
cially, to evaluate the effect of the cache on both the 
server and the clients. 

4. Performance Analysis of the Baseline 
System 

The service demands are measured in the real system, as 
it is shown in Table 1. The disk service demands at the 
server dominate among the shared resources, our re- 
search emphasizes on the investigation of the effect of 
the memory cache which can be presented by the hit rate. 

4.1. Effect of Cache Hit Ratio at Server 

The relationship between the server throughput at the 
heavy load and its cache hit ratio of the storage subsys- 
tem is plotted in Figure 5. The throughput isn’t sensitive 
to the hit ratio when the hit ratio is low, while it improves 
dramatically when the hit ratio is more than 80%. Be- 
sides, the large block size will achieve a higher through- 
put than the small one. 

4.2. Congestion Analysis 

Figure 6(a) illustrates the throughput of the server at 
various loads. A fact can be observed that even the hit 
ratio is 100%, the server saturates at a rather small scale 
(about 15 clients). Another metric to evaluate the per- 
formance of our system is the latency issued by the cli- 
ents. It is observed from Figure 6(b) that the access la- 
tency can be smaller than the local disk when the hit ratio 
is higher than a certain threshold. This indicates that re- 
mote disk accesses in TransCom may achieve better per- 
formance at a light load. According to Figure 6(a) and 
Figure 6(b), a design, that reduces light-load remote 
access latency at the expense of increasing service de-
mands, would appear to be inappropriate. Conversely, a  
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Figure 4. Performance comparison between model estima- 
tion and real system; (a) Throughput at various scales; (b) 
Average response time of each 4 KB request. 
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Figure 5. Relationship between the throughput and the ser- 
ver cache. 
 
design, that reduces the service demands at the expense 
of some increase in light-load file access latency, would 
appear to be desirable. 
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Figure 6. Congestion analysis at different server hit ratio; (a) 
Throughput at different server hit ratio; (b) Latency at dif- 
ferent server hit ratio. 
 
Table 1. Service demands to transfer a 4 KB or 32 KB re-
quest. 

Request block size 
Service demand 

4 KB 32 KB 

CPU 0.1 ms 0.23 ms 

Disk 6.76 ms 7.20 ms 

NIU 0.17 ms 0.5 ms 

Client-Delay 
(Client CPU + NIU) 

0.32 ms 2.56 ms 

4.3. Bottleneck Analysis 

The bottleneck is the shared resource with the highest 
utilization at a heavy load. Because of the effect of the 
cache, the primary bottleneck may vary with the different 
hit ratios. Besides, the block size of a request, which is a 
factor that affects the ratio of the sequential and random  
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accesses to the server disk, is also a potential factor that 
affects the bottleneck identification. Therefore, Figure 7 
illustrates the utilization of some devices with the func- 
tion of the cache hit ratio. Figure 7(a) presents a typical 
small block size (4 KB) and Figure 7(b) presents a typi- 
cal large block size (32 KB). According to the two fig- 
ures, the disk, or the storage subsystem, is the primary 
bottleneck when the hit ratio is lower than 90%, and the 
network becomes the primary bottleneck when the hit 
ratio is higher than 90%. The Utilization of the disk at a 
large block size drops more sharply than a small block 
size when the hit ratio increases. 

5. Cache Strategy 

In a caching scheme, requested blocks are saved in the 
main memory so that the subsequent requests for these 
blocks can be satisfied without disk operations. The per- 
formance of the cache depends on the behaviours of the 
workload, and the deployed location (client or server). In 
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Figure 7. CPU, network and disk utilization at different 
server hit ratio; (a) Block size of request is 4 KB; (b) Block 
size of request is 32 KB. 

this section, we discuss how these factors affect the ca- 
che hit ratio and the overall performance by simulation. 
We firstly study the client and server cache access pat- 
terns in TransCom. LRU [11] algorithm is used in cli- 
ent-side cache. A cache management algorithm called 
Frequency-based Multi-Priority Queues (FMPQ) propos- 
ed in this paper is used in server-side cache. 

5.1. Cache Simulator 

A program is written to simulate the behaviour of various 
kinds of caches, using the trace data to drive the simu- 
lations. The trace data is collected in the experiment 
mentioned in Section 3. The design of the simulator is 
similar to the classical stack algorithm, by which the hit 
ratios for all cache sizes could be calculated in a single 
pass over the reference trace. 

The simulator represents the cache as a stack, with the 
most recently referenced block on the top. Each element 
of the stack represents a fixed-size blocks composed of 
several Vdisk sectors, and the upper k elements of the 
stack are the blocks in a cache. To simulate the image 
sharing mechanism, a block in the simulator is identified 
by a tuple < block_id, client_id > block_id is the linear 
address of the initial sector, and client_id is the MAC 
address of the client who “owns” the block. “Owner” of a 
block indicates a client who creates the block. A block 
with a specific owner, namely private block, is created 
when the owner firstly attempts to modify the content of 
a shared block with same block_id. Since then the client 
can access the new block instead of the shared one. 

When the trace indicates that a range of sectors in 
Vdisk is read or written, the range is firstly divided into 
one or more block accesses. For each block access, the 
simulator checks to see if a corresponding private block 
owned by the requesting client exists. If so, it finds the 
private block in the stack and moves the block to the top 
of the stack. If not, the simulator checks whether it is a 
read or write request. If it is a read request, the simulator 
searches the shared block. If it finds the requested block, 
it moves the block to the top of the stack. Otherwise, it 
creates a shared block, and pushes it in the stack. If it is a 
write request, the simulator creates a private block be-
long to the client, and pushes it in the stack. 

If a block is referenced at the level k, it is a “hit” for 
all sizes presented by the level k and larger. Counters are 
deployed in each level of the stack. It is response for re-
cording the number of “hit” occurred at the certain level. 
To work out the hit ratio of the cache size k, we only 
need to sum all the counter numbers of the upper k lev-
els. 

5.2. Two-Level Cache Characteristic 

Figure 8 illustrates the relationship among the hit ratio,  

Copyright © 2012 SciRes.                                                                                 JSEA 



Performance Analysis and Improvement of Storage Virtualization in an OS-Online System 919

1 2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

H
it 

R
at

io
 (

%
)

Cache size (M)

 1K
 2K
 4K
 8K
 16K
 32K
 64K
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the cache size and the block size at the server. As men- 
tioned in Section 4, if the server cache hit ratio is raise up 
to 90% or higher, disks will not be the primary bottle- 
neck of the system. Figure 8 shows that it is possible to 
achieve a hit ratio over 90% if the cache size is larger 
than 256 M. Since it is common for a PC or a server con- 
figured with several gigabyte memories today, it is rea- 
sonable to keep most working sets in the memory to 
achieve a high hit ratio in this scenario. 

The simulation results of the client cache are similar 
with the server cache. However, since the client res- 
ources are usually limited, we focus on the hit ratio pro-
duced by a small cache size. As it is illustrated in Figure 
9, the block size is the critical factor that affects the 
cache hit ratio, and the effect of the cache size increasing 
from 1 M to 16 M is negligible. This fact can be ex-
plained that the workload of Vdisk, filtered by the file 
system cache of the operating system, is lack of temporal 
locality. 

Although, a large block size is able to increase the hit 
ratio of the client cache, it also increases the expenses of 
single request transfer, and produces more cache pollu- 
tions. Therefore, the model should be enhanced by add- 
ing the storage subsystem component to the delay centre. 
The new model is parameterized by the service demands 
and the simulation results of the client cache hit ratio, 
especially the server cache hit rate is assumed as 95%. 
Assumption of the workload is the same as the previous 
section.  

A large cache block size achieves a higher hit ratio 
shown in Figure 9, however, it also makes the average 
response time longer at a large scale. This feature is dis- 
tinct from the conclusions observed in the local disk 
analysis [12], that the average access time reduces as the 
block number increases. Because 95% server cache hit 
ratio dominates the access latency. In this scenario, a 
block size of 8KB allows the minimal access latency at a  
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Figure 9. Cache hit ratio at the client. 
 
scale of 50. Compared to a large server cache, a small 
client cache only reduces 27% at the optimal block size. 
Therefore, there are some benefits that can be achieved 
from the client cache. However, it is quite limited. 

The effect of the cache at both the server and the client 
is analysed. According to our observations, several con- 
clusions can be summarized. We firstly study whether 
data accesses in the client and server cache have tempo- 
ral locality characteristics. Previous studies have shown 
that the client cache accesses show a high degree of 
temporal locality [13]. LRU algorithm, which takes full 
advantage of temporal locality, is mainly used in the cli- 
ent cache. Those blocks which have temporal locality 
characteristics may remain in the client cache, and at the 
same time the block requests unmet in client cache will 
access the server cache buffer cache. Therefore, the ser- 
ver cache is a critical mechanism to improve the overall 
performance of TransCom. The capability of the server 
increases slowly along with the hit ratio when the hit 
ratio is at a low level. However, it increases dramati- 
cally when the hit ratio is over 90%. Since the Vdisk 
image is widely shared, the working set size is small 
enough that a reasonable large cache size achieves a high 
hit ratio on the server. The workload of the server cache 
is less of temporal locality, so appropriate cache algo- 
rithm which achieves a higher hit ratio can reduce the 
access latency. 

5.3. Frequency-Based Multi-Priority Queues 
(FMPQ) 

In TransCom client, the client cache has temporal local- 
ity characteristic. Therefore, some cache replacement 
algorithm based on the temporal locality, such as LRU 
can be used. We use LRU algorithm as the client cache 
management algorithm. In the TransCom server, I/O re- 
quests accesses in the server cache show the characteris-  
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tics, that some of the frequently accessed blocks satisfy a 
higher proportion of accesses, so we designed a cache 
replacement algorithm, namely Frequency-based Multi- 
Priority Queues, which is based on the access frequency 
priority. FMPQ gives the highest priority on the blocks 
which are accessed most frequently. FMPQ also gives 
different priorities for the blocks depending on the access 
frequencies, and reserves for different periods according 
to the priorities of the blocks in the server cache. 

FMPQ uses more than one LRU queue (Q0, Q1 to Qw–1) 
to store the different priorities of the blocks. w is an ad- 
justable parameter. If the priority of Qi is lower than the 
priority of Qj (i < j), the life cycle of the blocks in the Qi 
will be less than Qj. FMPQ also sets up a queue Qoff, 
which records the access frequencies of the blocks which 
have recently been replaced. Qoff is a FIFO queue with a 
limited size, which only stores the identities and the ac- 
cess frequencies of the blocks. 

FMPQ sets a function QCount(g) = log2g, which puts 
the blocks on the proper LRU queue. g is a given fre- 
quency. When the frequency of a block is changed, the 
function ascends the position of the block. For example, 
the block P is hit in the server cache, and then P is firstly 
removed from the LRU queue. And according to the 
current access frequency of the block P, the function 
QCount(g) = log2g calculates the result which is pre- 
sented as d. The block is put at end of the Qd queue. For 
another example, the block P is accessed eighth times, 
and then P will be upgraded from the Q2 queue to the Q3 
queue. When the block P has not been hit, FMPQ selects 
a block which is evicted from the server cache to make a 
room for the block P. When the replacer is chosen, 
FMPQ starts to query the head of Q0 queue. If Q0 is an 
empty queue, FMPQ will query the queues from Q1 until 
it finds a non-empty queue Qi with the lowest level, and 
then replaces the head of the queue. If the block R is re- 
placed, its identity and the current access frequency will 
be inserted into the end of the historical cache queue Qoff. 
If Qoff is full, the identity reserved for the longest period 
in Qoff will be deleted. If the request block P is in the Qoff 
records, P will be loaded from the hard disk into the 
server cache, and the value of its frequency g is set to be 
the record value of the access frequency in Qoff plus 1. If 
the block P is not in Qoff, it will be loaded into the server 
cache, and its frequency g is set to 1. At last, according to 
QCount(g), P is moved into the relevant LRU queue.  

In the server cache, FMPQ sets a failure time parame- 
ter, OverTime, for each block, which is used to drop the 
inactive blocks from the high priority queue to a low 
priority queue and is used to exceed the access count 
limit. “Time” here refers to the logical time, which is the 
access count. When a block enters a LRU queue, Over- 
Time is set to be NowTime + DurationTime. The Dura- 
tionTime is an adjustable parameter for setting the sur-  

vival time of each block in a LRU queue. When an ac- 
cess happens, FMPQ compares OverTime of the head 
block of the queue with NowTime. If OverTime is less 
than NowTime, the block will be moved to the end of the 
next level queue and the value of its OverTime will be 
reset. 

Similar to 2Q [14] algorithm, FMPQ also has a time 
complexity O(1). Because all of the queues use the LRU 
list, w is usually very small. When an access happens, up 
to w-1 head blocks will be checked for the possible 
downgrade. Relative to FBR [15] or LRU algorithm, 
FMPQ is highly efficient and very easy to be imple- 
mented.  

6. Optimization and Experiment 

6.1. Evaluation of FMPQ 

We have evaluated the local algorithms for the two level 
buffer caches using trace-driven simulations. We used 
the analysis of the I/O request access patterns in the Sec- 
tion 3 to simulate FMPQ algorithm. LRU cache replace- 
ment algorithm is used in the client’s Vdisk driver, on 
server-side the FMPQ and three existing replacement 
algorithms, LRU, FBR, and 2Q, are implemented. The 
block size is set to 4 KB. The requests have a significant 
temporal locality characteristic in the client cache, so this 
section will not evaluate the performance of the client 
cache algorithm in TransCom client, and focus on the 
performance of FMPQ algorithm in the server cache. 

In the trace load tests, the performance of LRU algo- 
rithm is not very good, even if it has a good performance 
in the client cache. There is no algorithm worse than 
LRU, because the longer minimal distance in the server 
cache makes the access frequency inaccurate. The per- 
formance of FBR algorithm is better than LRU, but it is 
always worse than FMPQ, in several cases the difference 
is very large. Although FBR considers the access fre- 
quency in order to overcome the defects of LRU algo- 
rithm, but it is difficult to adjust the parameters to com- 
bine the frequency and recency properly. The perform- 
ance of 2Q algorithm is better than other algorithms ex- 
cept FMPQ. To set up a separate queue, for the blocks 
only accessed once, 2Q will store the blocks accessed 
frequently in the queue for a long time. When the server 
cache size is small, 2Q hit ratio is lower than FMPQ, 
because the life cycle of a block in the server cache is not 
long enough to reserve it to be accessed in the next cycle. 
To learn more about the test results, we use the temporal 
distance as a measurement to analyse the performance of 
the algorithm. The analysis in Section 5 shows that the 
access to the server cache mostly tends to maintain a 
longer temporal distance, so the performance of the 
server cache replacement algorithm depends on the ex- 
tent that it meets the survival time attribute of the block.  
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If the temporal distance of the majority accesses is longer 
than S, the replacement algorithm which cannot save 
most of the blocks during a period that is longer than S is 
unlikely to have a good performance. 

We choose to the trace load to analyse in detail. Table 
2 shows the hits and misses of different algorithms in the 
two types of access when the size of the server cache 
buffer cache is 256 MB. FMPQ has a significant reduc- 
tion in misses in the right column, as shown in Table 2, 
the misses of FMPQ in the right column is 2573 k, which 
is 33% less than LRU. Similar to the FBR algorithm, the 
FMPQ algorithm has some misses in left column, but the 
number of the misses is very small, only about 13.2% of 
the whole number of misses. Overall, the performance of 
FMPQ is significantly better than other algorithms. 

6.2. System Optimization 

According to the discussion above, the remote memory 
accesses are faster than the local disk, because the remote 
fetching, paging and swapping of the programs in Trans- 
Com are done more efficiently than the local disk, even if 
tens of clients work together. The key point to achieve 
the goal is to avoid the server disk accesses as much as 
possible. Therefore, several key points are proposed to 
enhance the system performance effectively, especially at 
a heavy load. 

1) Strategy A: A large memory cache (e.g. 1 - 2 GB) 
should be configured at the server to ensure a high hit 
ratio. A small memory (e.g. 1 MB) cache is enough at the 
client, and the block size is more significant than the 
cache size. 

2) Strategy B: FMPQ algorithm is used in the server 
cache and client cache as a two-level cache strategy. 

3) Strategy C: A disk cache at the client is deployed to 
localize the accesses to “shadow image”. Given the ca- 
pabilities of the cheap disks today, the disk cache can be 
considered as large enough to contain all a user’s modi- 
fied blocks. The shadow image localization absorbs near- 
ly all the write accesses and partial read accesses at the 
client, which greatly reduce the overhead of both the ser- 
ver and the network. 
 
Table 2. Hits and misses distribution with a 256 MBytes 
buffer cache. 

Distance < 32 k Distance ≥ 32 k 
Algorithms 

Hits Misses Hits Misses 

FMPQ 1483 k 338 k 1834 k 2573 k 

2Q 1763 k 0 1138 k 3256 k 

FBR 1492 k 321 k 1046 k 3312 k 

LRU 1793 k 0 394 k 3892 k 

4) Strategy D: As shown in Section 4, the network is 
the primary bottleneck, if the cache works effectively. 
We investigate the efficiency of the UDP transmission in 
different OSes, and the result presents Linux is much 
more efficient than Windows. Therefore, using Linux as 
the platform of TransCom server applications is much 
better in term of the performance. 

OS boot is a typical I/O intensive procedure in Trans- 
Com. The concurrent boot time in multi-clients is a met- 
ric used frequently to evaluate the performance of the 
system. In this experiment, we emulate a scale of 50 cli- 
ents and compare the boot time with the four optimiza- 
tions mentioned above. 

In the experiment, hardware configurations of the 
server and the client are the same as the baseline system 
described in Section 3. There are 50 clients and a server 
connected by a switch in LAN. We develop an I/O emu- 
lator, called IOEmu, which is deployed on each client. 
IOEmu is a software which is used to emulate multi- 
clients’ behaviours. An emulated client is a thread run- 
ning on a workstation, which sends requests continu- 
ously instructed by a trace file. The trace files are the 
logs of Vdisk requests, and each entry of the log records 
the information of a request, such as the initial block 
number, the requested block length, and the request is- 
sued time. Therefore a trace file can be considered as a 
script of the workload. In addition, IOEmu is able to 
emulate more than one client on a workstation by creat- 
ing multiple emulation threads. 

We enable the 4 optimizations incrementally to ob- 
serve the benefits of each one. As shown in Figure 10, 
each optimization is able to reduce the boot time. A 
combination effect of the four optimizations can decrease 
the boot time by 63%. The results not only prove the 
optimizations we proposed are effective in TransCom, 
but also prove the correctness of our analysis method for 
this kind of systems. 
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zation strategy. 
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7. Conclusions and Future Work 

TransCom is a novel pervasive computing system which 
allows users to download and execute heterogeneous 
commodity OSes and their applications on demand. This 
paper analyses the characteristics of its real usage work- 
load, builds a queuing model to locate the bottlenecks of 
the system, and studies the client and server cache access 
patterns in TransCom system. Finally, we evaluate sev- 
eral design alternatives which are able to improve the 
capability of TransCom server.  

Research in this paper aims to increase the throughput 
and the capability of the server so as to achieve a high 
scalability by reducing the server demands of the bottle- 
neck resources. To solve this problem, another solution is 
to combine the clients’ cache to form a cooperative cache 
system. A p2p protocol should be introduced to locate 
and download required block from other clients’ memory. 
Our research discovers that the workload of Vdisk sys- 
tem is lack of temporal locality. The multi-level buffer 
cache has been well studied in the data centres and sev- 
eral replace algorithms about the weak locality have been 
already proposed. All these replace algorithms could be 
carefully evaluated in the transparent computing envi- 
ronment. 
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