
Journal of Software Engineering and Applications, 2012, 5, 883-893
http://dx.doi.org/10.4236/jsea.2012.531103 Published Online November 2012 (http://www.SciRP.org/journal/jsea)

883

An Ubiquitous Service Mobility Mechanism in the Cross
Domain Service Framework

Jung-Sik Sung, Jongmoo Sohn, Yoon-Sik Yoo, Jaedoo Huh

Green Computing Department, ETRI, Daejoen, Korea.
Email: jssung@etri.re.kr

Received October 8th, 2012; revised November 6th, 2012; accepted November 16th, 2012

ABSTRACT

Service mobility has become a new issue in the area of service convergence with the advent of versatile mobile devices.
Hence, we propose an open service framework with support for service mobility that executes contents and applications
in a dynamic environment. For the framework, the concept and role of a device and its application for a service are re-
defined into the new concepts of device, execution engine, and service. Mechanisms for device profiling, user prefer-
ence learning, and profile-based service recommendation are designed to enable device-capability-aware service rec-
ommendation functionality. Furthermore, a seamless service syndication mechanism is added for continuity and syn-
chronization of service upon change of terminal, network status, or personal preference. A prototype system integrates
functionalities with proprietary protocol and a content transcoder to support multiple device platforms. The prototype
shows the capability of the framework in service mobility support and its advancement into an open international appli-
cation platform.

Keywords: Open Service Framework; Service Mobility; Service Synchronization; Profiling; Service Recommendation

1. Introduction

Beyond the convergence of simple networks, conver-
gence services that accept various contents, application
programs, service platforms, mobile devices, PCs, TVs,
and so on are beginning to earn interest. Current conver-
gence services focus more on network convergence,
where heterogeneous devices and services are provided
by a single network. On the other hand, device conver-
gence provides devices that support heterogeneous ser-
vices over several networks such that the services are
provided using a device’s capability of changing net-
works seamlessly. Recently, the convergence of services
with content streaming over multiple network domains
and devices using the unique characteristics of ubiquitous
devices, such as 3-screen play [1,2], are entering the
spotlight. The design of a convergence service should
address mobility, heterogeneity, and user-centric issues
[3]. There are two types of mobility: terminal and service
mobility. Terminal mobility, as the classical part of mo-
bility management, places devices at the endpoints of
communication, and focuses on connection continuity
over a change of access points [4]. Therefore, in order to
provide consecutive communication, location and hand-
off of a mobile terminal is managed at four different lay-
ers of the International Organization for Standardiza-
tion’s (ISO) Open Systems Interconnection (OSI) model,

namely, at the link, network, transport, and session layers.
It is well known that the representative research on net-
work layer terminal mobility is mobile IP [5]. Service
mobility, on the other hand, is considered as maintaining
a connection even when terminals or networks are chang-
ed due to user movement or personal preference [4]. Fo-
cusing on service mobility under user movement and
heterogeneous devices, a major problem with this service
convergence is to build a platform that is applicable to
services supported by heterogeneous service platforms
and devices with their own platforms. A platform for
convergence services plays the role of an infrastructure
to execute content and application programs smoothly
without obstacles, and provide interoperability between
devices and services. We propose an open service plat-
form to provide the facilities stated above.

The open service framework presented in this paper is
a platform that supports convergence services on devices,
such as Windows PCs, Linux PCs, mobile and smart
phones, and the service platforms of each device. The
framework recommends the best available service for the
user and device, and then constructs and executes a ser-
vice execution engine for the selected service on the
connected device. As the user changes the device due to
movement or personal preference, the service is provided
continuously with transformed content suitable for the

Copyright © 2012 SciRes. JSEA

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework 884

new device.
Starting with Section 2, where various service mobility

architectures are revised, we go on to present our open
service framework in Section 3, where the features of the
OSCD service framework to support convergence service
including various service platforms and service mobility
are described in detail. The prototype implementation
used to verify the feasibility of the proposed service
framework is described in Section 4. And finally, we
summarize and conclude the paper in Section 5.

2. Related Works

There have been several studies on service mobility with
user migration. The authors in Ref. [6-8] have addressed
the issue of integration of heterogeneous networks. The
authors in Ref. [6] and Ref. [7] have proposed the Mobile
People Architecture (MPA), which aims to put a person,
rather than the devices the person uses, at the endpoints
of a communication session. MPA enables users to con-
tact each other from anywhere, using a variety of com-
munication media such as email, telephones, and ICQ
messages. MPA uses a globally unique Personal Online
ID to identify a user, and utilizes the personal proxy lo-
cated at the user’s home network for location tracking. In
this architecture, the personal proxy achieves the func-
tion of personalized and continuous service. The ICEB-
ERG project [8] aimed to integrate cellular telephony
networks with the Internet. Just like MPA, ICEBERG
had the view that people will continue to use multiple
devices and networks for communication. As the ICE-
BERG network is an overlay network of iPOPs on top of
the Internet, it needs a modification of existing network
components. MPA and ICEBERG emphasize providing
contactability and reachability rather than a user-centric
personal operating environment.

Mobile agent based frameworks [9,10] were proposed
to provide personal mobility in accessing Internet ser-
vices. NetChaser [9] supports three Internet services,
namely, Web, e-mail, and FTP using four assistants: user,
HTTP, mail, and FTP assistants. Assistants operate at a
proxy server close to the user. NetChaser traces the
user’s network location and records the history of service,
so as to offer users the ability of maintaining service in
spite of the change of terminal identity. NetChaser sup-
ports a personalization scheme only. In order to provide
true personal mobility that requires the integration of
contactability and personalization, Ref. [10] suggested an
Integrated Personal Mobility Architecture (IPMoA). IP-
MoA is a mobile agent based personal mobility frame-
work that utilizes mobile agents. There are three agents:
personal application assistant (PAA), personal file assis-
tant (PFA), and personal communication assistant (PCA).
These three assistants migrate to the visiting network’s

agent execution environment. These mobile agent based
frameworks are organized similarly to how home agents
and foreign agents are organized in Mobile IP, since they
also use two subnets to locate and trace the user in this
model. Therefore, the session establishment may take
longer than a direct connection. Furthermore, the appli-
cation time may also be longer than executing the appli-
cations on a local machine.

One important thing in service mobility is to keep the
service session even when terminals or networks are
changed due to user migration or personal preference.
Maintaining the service session means providing people
with seamless and continuous service when they change
networks or terminals as they migrate. Also, it provides
service synchronization by managing personal-service-
specific information in a heterogeneous service platform.
However, previous works have not addressed this session
mobility issue

3. One-Service-Cross-Domain Service
Framework

We propose a one-service-cross-domain (OSCD) service
framework as an open service framework to support con-
vergence services. It is a technology to generalize a ubi-
quitous computing environment by providing an envi-
ronment that eases execution and combination of do-
main-subordinated services and/or contents by organi-
cally integrating independent service domains. Therefore,
the OSCD service framework is an optimized integrated
service framework that provides continuous services that
are not constrained by physical user environments such
as multimedia transmission, integrated information man-
agement and preservation, educational broadcasting, and
games. Figure 1 shows the structure of the OSCD ser-
vice framework.

The OSCD service framework supports the registra-
tion of service and execution engines using profiling mo-
dels, and performs automatic detection of a suitable ser-
vice execution engine. The framework also supports a
search function for services that are suitable for the user
and the targeted terminal device. Moreover, it supports
real-time content adaptation for targeted terminals, se-
mantic translation including a communication protocol
translation, and seamless service continuity so that a user
can continue using a service across different terminals.

3.1. Profile Modeling

In order to provide the best service depending on a
particular user context, support for flexible management
and a decision process based on an accurate and clear
description of contextual information is required. In the
proposed system, a particular context is divided into
three conceptual domains: terminal device, service, and

Copyright © 2012 SciRes. JSEA

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework

Copyright © 2012 SciRes. JSEA

885

Figure 1. The proposed service framework.

bility of service. Attribute value types are defined in the
schema, and include Boolean, number, literal, literal-bag
(set of literal arguments without sequence), literal-seq
(set of literal arguments with sequence), dimension, and
range.

execution engine, which provides a running environment
for the service. Each domain is described by the name of
the profile.
 Device Profile. The device profile describes the cur-

rently available resources and status of the terminal
device available for running execution engines. The
resource and status are represented by sets of terminal
device attributes including specifications of hardware/
software/network characteristics and data gathered by
sensors in the device.

The proposed system needs contextual information to
be delivered from a device to a server upon the server’s
request only when a user is logged into the designated
server using the user’s terminal device. Since the deliv-
ery is always initiated by the server, self notification of
changed context as in SLP [14], Jini [15], and uPnP [16]
are not required. Moreover, since user preference infor-
mation and service/engine profiles are always located at
the server side, it leaves the device profile as the only
contextual information that needs to be delivered.

 Service Profile. Each service in the proposed system
has a service profile to describe its attributes. A ser-
vice profile implicitly declares the minimum require-
ment of the execution engine for proper delivery of
service.

 (Execution) Engine Profile. The execution engine,
software that runs on the terminal device to deliver a
service to the end user, has device resource require-
ments and service attributes the engine can provide.
The engine profile implicitly declares the minimum
resource requirements of the device and the func-
tional specifications of the engine.

Each profile is described by a proprietary description
scheme similar to UAProf [11], a concrete implemen-
tation version of CC/PP [12] based on RDF [13]. Each
profile, according to the representation scheme of CC/PP,
contains one or more components, where each compo-
nent consists of sets of attribute-value pairs where attri-
bute/component names, data value types, and their re-
solution types are defined and constrained by the voca-
bulary and schema. Attributes in the implemented vo-
cabulary are categorized into five components by their
logical relativity: hardware, software, network characte-
ristics of terminal device, multimedia, and network capa-

The device profile is presented by a combination of
reference profile Unified Resource Identifier (URI) and/
or profile fragments with static/dynamic attributes. While
URI and static attributes are required to be delivered only
once at the initial phase, dynamic attributes should be
delivered at any time upon a server’s request in order to
reflect a change of device status. Therefore, unlike HTTP
or Wireless Session Protocol (WSP)-based profile ex-
change mechanisms [17,18] used in CC/PP and UAProf,
a new delivery mechanism supporting both partial and
on-demand profile delivery is proposed. The proposed
delivery mechanism separates on-the-run profile delivery
from the initial static/dynamic profile delivery. Hence,
only the updated status is transferred to the server at the
minimum network cost by sending a profile fragment
containing updated attribute values only. Figure 2 illus-
trates the device profile delivery scheme for the proposed
system.

The fact that all profiles in the proposed system use a

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework 886

Profile Request

Profile Response
(URI/static/dynamic attributes)

Profile Update Request

Profile Update Response
(dynamic attributes)

Device Profi le
Repository

ServerDevice

URI
Static
attributes

Figure 2. Profile delivery in the proposed system.

common description scheme based on a single schema,
lead to the use of a single modeling mechanism, it en-
ables the implementation of a simple comparator for sim-
ple reasoning and decision processes. Each profile is
processed into an RDF-based model with functions for
merging and updating profile fragments and dynamic
attribute values, using Jena [19], a Java framework for
semantic Web applications.

Based on the fact that all profiles are modeled into a
common RDF based model, a simple profile comparator
is implemented for simple reasoning and decision pro-
cesses based on the modeled profiles without any ad-
ditional semantic/ontology techniques such as OWL [20],
SWRL [21], or Jess [22]. The implemented comparator
simply decides whether two profiles comply with a given
comparison rule. Comparison rules are described in the
form of the schema used in the profile description and
modeling, and specifies the attributes to compare, the
comparison policies, conditions, and whether or not to
store the difference of two attributes in case the condi-
tion/policy is not satisfied. The comparison condition
specifies whether the rule is “mandatory” or “optional”,
and the policy specifies how two attribute values such as
“match”, “included” and “within range” are compared.
The comparator outputs the final comparison results in-
cluding the compliance with the comparison rule, quan-
tified score, and the difference of attribute values in XML
format. The result is used in the following reasoning or
other decision procedures.

3.2. Dynamic Configuration of Execution Engine

An execution engine, defined as software that runs on a
user device to mediate a particular service to the end user,
is provided dynamically for the end user’s device on the
user’s connection to the OSCD service framework. This
execution engine conventionally is run directly by the
user, assuming it is already installed on the user device.
However, using the dynamic service execution environ-
ment provision function of the proposed framework, the
user simply selects one of the recommended services,

and the according execution engine is then downloaded
automatically/dynamically forming an optimized service
execution environment. The dynamic configuration of a
service execution environment includes the following
procedures: user device profiling, a search for user and
device specific services, execution engine search proce-
dure to find an engine that suites both the service se-
lected by the user and the user device profile, transfer of
selected execution engine to the user’s device, and auto-
matic installation/execution of downloaded engine.

Figure 3 shows the entire procedure. When a user
connects and logs into the OSCD service framework, as
shown in  of Figure 3, the framework processes the
user authentication, and the corresponding user informa-
tion is inserted in a user DB, shown in A. Then, a device
DB is created by obtaining profiling information from
the user device executing the device profiling function,
shown as B in Figure 3. For performance purposes, at
the same time when the device profile is requested, the
OSCD service framework simply reads the recently used
service list, frequently used service list, and recom-
mended service list from the DB using the user DB, and
then sends the lists to the device,  in Figure 3. In addi-
tion, the service ensembler in the OSCD service frame-
work creates an execution engine list that enlists the ser-
vice execution engines for the user’s device through a
comparison of execution engine profiles against the user
device profile, as shown in C of Figure 3. When the user
tries to select a service from the provided device-based
service list,  in Figure 3, the framework transmits the
service list corresponding to the device-based execution
engine lists, D of Figure 3. When the user selects a ser-
vice,  of Figure 3, the framework detects the suitable
execution engine by looking at the session DB, device
DB, and service DB, E of Figure 3, and then downloads
the selected engine to the device. After the execution
engine is downloaded to the device, the corresponding
execution engine is installed or executed automatically
depending on its type, as shown in  of Figure 3.

The detection of an execution engine optimized to a
user-selected service and user device is performed in two
steps, as shown in Figure 4, and by the service ensem-
bler in the OSCD service framework. The service en-
sembler chooses an execution engine that most satisfies
the requirements of the selected services and user device
simultaneously. Detection of the most suitable execution
engine is achieved by comparing functions offered by the
execution engine and functions required by the service.
The comparison is possible because of the fact that pro-
files are stated by the common sets of vocabulary and
schema. In the first step of a profile comparison, the de-
vice profile is compared with each engine profile to
check if the corresponding execution engine can be in-
stalled/executed in the device, as shown in  of Figure 4.

Copyright © 2012 SciRes. JSEA

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework

Copyright © 2012 SciRes. JSEA

887

DBDownloader
Server

OSCD
Client GUI

Profile
Client

login

Service
Framework

Manager

User Authentication Request

Initial User Interface
1. Recent Service List
2. Frequent Service List
3. Recommended Service List

- User ID
- Password

Execution
Engine

Downloader

Profile
Server

DB Insert or Update(User Profile : Online)

- User ID
- Status : Online
- IP Address

Device Profile Request
Device Profile Response DB Insert or Update(Device Profile)

Userbase Recommend Service Request

User Authentication Response
User Page(Specific) Loading

- Device Profile

DB Select
User & Device

Profile

OSCD Service Framework

Userbase Recommend Service Response
Service List (Recommeded , Recent,

Frequent Service List)

Available Service Request

Available Service Response

Devicebase Recommend Service Request

4. Recommand & Available Service Click

DB Select
User &
Service
Profile

Devicebase Recommend Service
Response (Service ID List)

USER

Service
Ensembler

Select Service

Service Select Request
Service Ready Request

Execution Engine TRANSE Request

Execution Engine TRANSE Response

Execute the
Exec. Engine

DB Insert
Service
Session
(UserID,

ServiceID, …)

DB Select
Service &

Engine Profile

Detect the profit
Exec.Engine

Service Ready Response (Done)

Engine
Download
Request

Engine
Download
Response

(Done)

Execution Engine Start Notify

Excution Engine Start Notify

Notify

Service Select Response

Server Device Profile Request

Server Device Profile Response

1

2

4

5

A

B

E

Make device-based
Exec.Engine list

C

DB Select
Device,

Exec.Engine

Select device-based
Exec.Engine list

D

Parallel processing

3

Figure 3. The procedure for dynamic configuration of an execution engine.

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework 888

Device
Profile

Engine
Profile

Engine
Rule+

Comparator

Execution Engine List

Service
Profile

Service
Rule

+

Comparator

Engine
Profile

List of engines that can be
installed on the device

1

2

The best
execution engine

Figure 4. The execution engine detection procedure.

The device profile used in the comparison is the profile
of the current user’s device and refers to the contents
already registered in the DB at a log-in procedure. In the
second step, each profile of the installable/executable
engine is compared with the chosen service profile to
check whether the relationship between final services and
execution engine is satisfied,  of Figure 4. The final
results of the decision procedures are scores for each
compared engine using a proprietary quantization me-
chanism. The most suitable execution engine among the
condition-satisfying engines is chosen by comparing the
resulting scores.

3.3. User & Device Available Service
Recommendation

The proposed framework can recommend currently avail-
able services based on user preference and device cha-
racteristics. The following sections describe a learning
algorithm according to user preference gathered by exa-
mining the service usage history and a recommendation
algorithm for services that can be run on the used device.
Table 1 lists four DB structures used for learning about
user preference.

When a service is explicitly selected, keywords and
categories of the service are stored in KH-TBL and CH-
TBL. When specific keywords and categories are search-
ed, they are stored in KS-TBL and CS-TBL. Each of the
four DB tables has frequency and recency values, where
each entry is ordered by the weighted sum of these val-
ues. The user preference learning algorithm for each ta-
ble is summarized in Table 2.

The recommended service list for a specific user is

Table 1. Data structures for user preference learning.

Table Description

KH-TBL User selected keyword historic table

CH-TBL User selected service category historic table

KS-TBL User searched keyword table

CS-TBL User searched category table

Table 2. User preference learning algorithm.

Initialize KH-TBL, CH-TBL, KS-TBL, CS-TBL are zero

Repeat the following steps:

Observe the user action

Calculate frequency & recency of KH-TBL, CH-TBL,
KS-TBL, CS-TBL according to user action

Plus frequency, recency each TBL respectively

Multiply each above value by each weighted value

Lined up in a row from the highest value

created by searching and re-ordering services that are
categorized by keywords and categories with the highest
scores from the learning algorithm. Since enlisted ser-
vices may not have an appropriate execution engine reg-
istered for all types of devices, the framework creates an
execution engine list for engines that are executable on
the device, when an arbitrary device is connected. Indeed,
the execution engine list by device is a service execution
engine list file by device that records the score value
from the device and engine profiles each time a new de-
vice is registered.

Recommendations of user and device available ser-
vices are determined by these two lists. Services that
exist in both the recommendation list by the user and
service execution engine list by device are added to the
final recommendation service list. For the implemented
system, a candidate service with the highest score has the
highest ranking in the list.

3.4. Seamless Service Syndicator

3.4.1. Architecture of Seamless Service Syndicator
A seamless service syndicator in the OSCD service fra-
mework provides the service synchronization function
with mainly a syndication process for service synchroni-
zation between heterogeneous terminals and service ser-
vers.

Figure 5 illustrates the message flow of a seamless
service syndication for a service synchronization. The
seamless service syndicator consists of two parts. The
first part is related to Syndication Index Save (SIS), and

Copyright © 2012 SciRes. JSEA

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework 889

Service Current Position Save Request

Service Total Position Request

Service Position
Offset Save

Service Current Position Index

Service Total Position Response

Service Current Position Notify

S
yn

d
ic

a
tio

n
 In

d
e
x

S
a
v
e Service Session Index

User Session Index

S
yn

d
ic

a
tio

n
 In

d
e
x

R
e
trie

v
a
l

Service List Request

Service List Response

Service Select

Service Session Index

User Session Index
Service Position
Offset Retrieval

Service Syndication Request

Service Syndication

Service Syndication Response

Service
Server

OSCD Terminal

Figure 5. Message flow of seamless service syndicator.

the second part is related to Syndication Index Retrieval
(SIR) for service synchronization.

First, the SIS procedure for service synchronization is
as follows.

1) A user on a terminal invokes a command of service
pause, service stop, or user logout from the Service
Server through the OSCD service framework.

2) Current position offset of the service being used is
stored in a seamless DB upon service synchronization
command.

3) The OSCD service framework requests the service’s
complete position to provide to the user and obtains the
position offset from the service server.

4) The terminal sends the service session information
and user session information to the OSCD service frame-
work.

5) The OSCD service framework calculates the ser-
vice’s complete position to be offered to the user and the
current position offset. Calculation of the service po-
sition offset of the service being used is performed using
a user session key (USK) and service session.

The next process is SIR, as the user moves to a het-
erogeneous terminal in order to resume a paused service.
The procedure for SIR is as follows.

1) The user in a terminal requests a service list from
the OSCD service framework.

2) The OSCD service framework confirms the USK
and delivers the service list to the terminal.

3) The user selects the paused service to resume from
the given service list.

4) A service resume command invokes a delivery

com- mand. The delivery command sends service session
key (SSK) and USK of the user selected service to the
OSCD service framework.

5) The OSCD service framework retrieves a user’s ser-
vice position offset from the seamless DB.

6) The OSCD service framework requests a service re-
sume from the Service Server and computes the re-
trieved service position offset at the point where the ser-
vice resumes.

7) Synchronized service is provided to the user from
the point of service pause, service stop, or user’s logout.

Finally, following the described SIS and SIR proce-
dures, the service resumes from the service synchroniza-
tion point, and the user migrates to a heterogeneous ter-
minal.

A simple architecture of the proposed seamless service
syndication, as shown in Figure 6, may be constructed
with two end terminals, a service server, and an OSCD
server where the proposed framework resides. The im-
plications of the architecture in Figure 6 are as follows.
 Step 1: The user accesses the OSCD server for a ser-

vice invocation. Execution engine on terminal 1 con-
nects to the OSCD server for a user session initiation
through a gateway between terminal 1 and the OSCD
server.

 Step 2: The OSCD server sends control messages to
the service server for delivery of service to terminal 1
after confirmation of a user session and receiving a
user session initiation and service invocation com-
mand.

 Step 3: The user is provided with selected service

Copyright © 2012 SciRes. JSEA

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework 890

from the service server.
 Step 4: After the user migrates to terminal 2, the ser-

vice position index and user session move to terminal
2. The service position offset and user session are
synchronized at terminal 2 for service synchroniza-
tion.

 Step 5: The OSCD server sends control messages to
the service server for resuming service to terminal 2
after confirmation of the user session and service po-
sition.

 Step 6: Resumed service is delivered to the user on
terminal 2.

3.4.2. Seamless Service Syndicator Algorithm
As summarized in Table 3, a seamless service syndica-
tion algorithm for service synchronization requires sup-
port of the OSCD service framework to keep track of
service mobility by recording service pause or stop be-
haviors for a heterogeneous terminal, where j

kT is the
k-th terminal of the i-th user in the j-th session. If a user
wants to request service position preservation on a ter-
minal before user and service movement to a heteroge-
neous terminal, the complete service position taken from
the service server is stored in the OSCD service frame-
work. Also, the terminal informs the OSCD service
framework of the service current position index (CPI).
Then, the OSCD service framework maps SSK and USK
to CPI. The mapped service position offset is stored in a
seamless DB in the OSCD service framework. The saved
service position offset information is notified to the ter-
minal for user confirmation.

When the user wants to resume a paused service from
a migrated heterogeneous terminal, the user again re-
quests a service list from the OSCD service framework.
If the user selects a paused service, the service position
offset is retrieved from the seamless DB. The service
obtained from the service server resumes from the re-
trieved service position offset.

4. Prototype Implementation

A prototype is implemented to verify the feasibility of
the proposed service framework for service mobility.

The prototype provides a Web and proprietary GUI-
based method for access of the framework so that devices
with conventional Web browsers connect to the frame-
work through a Web site, while devices without Web
browsers use a proprietary GUI to access the framework.
Figure 7 shows the two connection methods to the
framework. Both user interfaces provide basic user log-
in/out and service search, view, and selection functions,
while Web-based UI provides more pages for compre-
hensive management of the framework including service/
engine registration and management.

Figure 8 illustrates a VoD service scenario with ser-
vice synchronization where the contents in the VoD ser-
ver are streamed to user terminals through the service
framework. Several users are assumed to move to/from
different zones with their mobile devices. Since devices
have different performances and capabilities, protocol
and content transcoding are also performed by the trans-
lators based on the profile and predefined service char-
acteristics in the service framework.

Figure 9 shows the actual demonstration environment
for the scenario in Figure 8. The service framework is
implemented on Linux 2.6.9 using Java and GNU C++
developing languages. The database is implemented with
MySQL 14.12. Also, Gtk+ 2.0 for GUI and Apache
HTTP Server are used as the components for develop-
ment. Three terminals use openSUSE11, Windows CE
5.0, and Windows Mobile6 classic operating systems.
Embedded Visual C++ 4.0 is used as a developing lan-
guage, and FFplay and TCPMP are utilized as media
players for content rendering. Hence, the devices for the
service are categorized into Linux-based PC, Windows
CE-based PMP, and Windows Mobile-based PDA for
simplicity. The scenario is as follows: User-1 is watch-
ing VoD using a PC in his home through the framework
with a log-in to the OSCD server. The content is trans-
ferred in HD-level MPEG-4 at 30 fps because the PC has
the capability to support the content. After a while,
User-1 stops (or pauses) the content, logs out of the
OSCD server, and moves to a hotspot zone with a mobile
device, i.e., a PMP or PDA. The server saves the user
and content information. To resume the service on the
mobile device, User-1 logs in again to the server he was

Table 3. Seamless service syndication algorithm.

1: if Tk
j(i) requests Service Position Save, i.e. I = j = k then

2: if OSCD  Service Total Position then

3: Tkj(i) informs Current Posistion Index

4: if OSCD maps {SSK + USK + CPI} then

5: if OSCD  Service Position Offset then

6:  j

kT i  Current Posistion Offset Notify

7: if  j

kT i requests Service List, i.e. I = j ≠ k then

8: if I = j then

9: OSCD  Service Position Offset Retrieve

10: else

11:  j

kT i selects Service

12: if OSCD requests Service Synchronization then

13: if SS responses Service Synchronization then

14:  j

kT i  Service Synchronization

Copyright © 2012 SciRes. JSEA

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework

Copyright © 2012 SciRes. JSEA

891

Figure 7. Two types of OSCD initial scr.

Figure 8. A scenario for supporting service synchronization.

using. At this time, the service recognizes that transla-
tions are needed to cope with the capability difference of
the devices. For example, the protocol is translated from
TCP to RTSP if the player on the device cannot play
datastreamed using TCP. Also, for a PDA, the resolution
is pulled from HD-level to VGA (640 × 480) at 15fps,
and for PDA, the content is transcoded into QVGA (320
× 240) at 24fps to fit the capabilities of the device. User-
1 can then view the transformed content from the very
point where he paused on the PC, because the server
saved the information of the user and the service when he
logged out.

supports convergence services including heterogeneous
service platforms and devices with their own independent
platforms. It plays the role of an infrastructure to execute
content and application programs with a dynamic con-
figuration using mechanisms such as user preference
learning, service and execution engine profiling, and
real-time device profiling. It also supports service mobil-
ity to provide continuity and service synchronization
when terminals or networks are changed due to user
movement or a change of personal preference. We im-
plemented a prototype service framework to verify con-
tinuity and synchronization of service. We showed not
only service mobility of one user’s migration but also of
multiple users’ sharing one single session among them.
Interest in App stores is growing with the rapid expansion

5. Conclusion

The paper proposed an open service framework that

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework 892

Figure 9. Demonstration environment for supporting ser-
vice synchronization.

of smart phones [23]. The current App stores are organi-
zed into application programs based on the same plat-
form or device such as Apple’s iPhone or Google’s An-
droid phone. Since the current App stores have a closed
ecosystem, at least by the operators, developers have to
develop applications for each platform and users have to
choose from several independent App stores with their
devices. To solve this problem, mobile operators have
agreed to develop an open international application plat-
form and have organized a Wholesale Applications Com-
munity (WAC) with the establishment of a common
standard to be completed by the end of 2010. However,
no resolution of this work is available at present. The
OSCD service framework can perform the activity of an
open App store before an open international application
platform is completed. If developers enroll application
programs and the device characteristics of the application
programs into the framework, then users will be able to
access the OSCD service framework and can automa-
tically detect application programs suitable for their de-
vice and perform a selfinstallation after dynamic down-
loading. Since the major purpose of an open international
application platform is to provide an open application
program interface (API) to developers, the OSCD service
framework may well evolve into an open international
application platform if some sort of open API concept is
adopted.

6. Acknowledgements

This work was supported by the IT R&D Standardiza-
tion program of MKE/KATS, [2011-PM10-02, Devel-
opment of Smart Utility based Green WPAN Standardi-
zation]

REFERENCES
[1] Z. Chen, C. Lin and X. Wei, “Enabling On-Demand In-

ternet Video Streaming Services to Multi-Terminal Users

in Large Scale,” IEEE Transactions on Consumer Elec-
tronics, Vol. 55, No. 4, 2009, pp. 1988-1996.
doi:10.1109/TCE.2009.5373760

[2] Y.-F. Chen, et al., “Project GeoTV—A Three-Screen
Service: Navigate on Smart Phone, Browse on PC, Watch
on HDTV,” 6th IEEE Consumer Communications and Net-
working Conference, Las Vegas, 10-13 January 2009, pp.
1-2. doi:10.1109/CCNC.2009.4785025

[3] E. Lavinal, N. Simoni, M. Song, et al., “A Next-Genera-
tion Service Overlay Architecture,” Annals of Telecom-
munications, Vol. 64, No. 3-4, 2009, pp. 175-185.
doi:10.1007/s12243-008-0082-x

[4] H. Si, Y. Wang, J. Yuan, et al., “A Framework and Pro-
totype for Service Mobility,” 2009 World Congress on
Computer Science and Information Engineering, Los An-
geles, 31 March-2 April 2009, pp. 315-319.
doi:10.1109/CSIE.2009.667

[5] C. E. Perkins, “Mobile Networking through Mobile IP,”
IEEE Internet Computing, Vol. 2, 1998, pp. 58-69.
doi:10.1109/4236.656077

[6] P. Maniatis, et al., “The Mobile People Architecture,”
Mobile Computing and Communications Review, Vol. 1,
No. 2, 1999, pp. 36-42. doi:10.1145/329124.329153

[7] M. Roussopoulos, et al., “Person-Level Routing in the
Mobile People Architecture,” Proceedings of the 2nd
USENIX Symposium on Internet Technologies & Systems,
Boulder, 11-14 October 1999, pp. 36-42.

[8] H. J. Wang, et al., “ICEBERG: An Internet-Core Net-
work Architecture for Integrated Communication,” IEEE
Personal Communications, Vol. 7, No. 4, 2000, pp. 10-19.
doi:10.1109/98.863991

[9] A. D. Stefano and C. Santoro, “Net Chaser: Agent Sup-
port for Personal Mobility,” IEEE Internet Computing,
Vol. 4, No. 2, 2000, pp. 74-79. doi:10.1109/4236.832949

[10] B. Thai, et al., “Integrated Personal Mobility Architecture:
A Complete Personal Mobility Solution,” ACM Mobile
Networks and Applications, Vol. 8, No. 1, 2003, pp. 27-
36.

[11] UAProf, “User Agent Profile,” Open Mobile Alliance,
Approved Version 2.0, 6 February 2006.

[12] CC/PP, “Composite Capabilities/Preference Profiles: Re-
quirements and Architecture,” W3C Working Draft, World
Wide Web Consoritum, 21 July 2000.

[13] RDF, “Resource Description Framework (RDF): Concepts
and Abstract Syntax,” W3C Recommendation, World
Wide Web Consoritum, 10 February 2004.

[14] SLP, “Service Location Protocol, Version 2,” Request for
Comments (RFC) 2608, Internet Engineering Task Force
(IETF), 1999.

[15] Jini, “Jini Community Resources: Jini Specification v1.
0.1.” http://java.net/projects/jini/

[16] uPnP, “Universal Plug and Play Device Architecture Ver-
sion 1.0,” UPnP Forum, 2008. http://www.upnp.org/

[17] CC/PPex, “CC/PP Exchange Protocol Based on HTTP
Extension Framework,” W3C Note, World Wide Web
Consoritum, 24 June 1999.

[18] W-HTTP, “Wireless Profiled HTTP,” Wireless Applica-

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/TCE.2009.5373760
http://dx.doi.org/10.1109/CCNC.2009.4785025
http://dx.doi.org/10.1007/s12243-008-0082-x
http://dx.doi.org/10.1109/CSIE.2009.667
http://dx.doi.org/10.1109/4236.656077
http://dx.doi.org/10.1145/329124.329153
http://dx.doi.org/10.1109/98.863991
http://dx.doi.org/10.1109/4236.832949

An Ubiquitous Service Mobility Mechanism in the Cross Domain Service Framework

Copyright © 2012 SciRes. JSEA

893

tion Protocol Forum, Ltd., Version 29, 2001.
http://www.wapforum.org/

[19] Jena, “Jena—A Semantic Web Framework for Java.”
http://jena.sourceforge.net/index.html

[20] OWL, “OWL Web Ontology Language Overview,” W3C
Recommendation, World Wide Web Consoritum, 10 Feb-
ruary 2004.

[21] SWRL, “SWRL: A Semantic Web Rule Language Com-

bining OWL and RuleML,” W3C Member Submission,
World Wide Web Consoritum, 21 May 2004.

[22] Jess, “Jess: the Rule Engine for the Java™ Platform.”
http://www.jessrules.com/

[23] D. Chamblerlain, “The Apps Store Is Born: Smartphones
Enable New Marketing and Advertising Opportunities
Worldwide,” In-Stat, 2009. http://www.instat.com.

