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ABSTRACT 

We will present some restrictions for a rigidity sequence of a nontrivial topological dynamical system. For instance, any 
finite linear combination of a rigidity sequence by integers has upper Banach density zero. However, there are rigidity 
sequences for some uniformly rigid systems whose reciprocal sums are infinite. We also show that if  is a family of 

subsets of natural numbers whose dual  is filter, then a minimal 


  F -mixing system does not have 

F 
-rigid factor 

for .  
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1. Introduction 

A topological dynamical system (TDS) is a pair  ,X T  
such that X is a compact metric space and T is a homeo- 
morphism. Our main concern is rigidity. This notion was 
first introduced by Furstenberg and Wiess for measure 
theoretical dynamical system (MDS); then Glasner and 
Maon defined the topological version of this notion [1].  

A comprehensive study for rigidity in MDS has been 
done in [2]. In MDS, these are interesting; because, it is 
well-known that a generic transformation is rigid [3]. In 
this respect and in TDS, Glasner and Maon [1] estab- 
lished examples to show that even in minimal weakly 
mixing systems, there are plenty of examples with uni- 
formly rigidity.  

Let us recall the main definitions. An MDS  , , ,X T    

is rigid along   1t t
n




 if 0tnf T  t f , as  for  

all  2 ,Xf L  . A TDS  ,X T
 n


 is called rigid if there 

exists a sequence 
1t t
, called the rigidity sequence, 

such that  for any tnT x x x X
idt 

A 

; it is called uni- 
formly rigid if  uniformly on X. limt

nT
Let , then  

   1,
limsupn

A n

n





d A          (1.1) 

is called the upper density of A and it is called lower 
density or density if we replace limsup in (1.1) with li-
minf or lim respectively. We call   

   
* limsup M N

,

1

A N M

M N


 

A 

d A    

the upper Banach density of a set . 
In a TDS, the return time set is defined to be  

    , : nN U V n T U V   where U and V are  

opene (nonempty and open) sets. A TDS  ,X T
U

 is 
transitive if for any two opene sets  and V , we have 

 ,N U V   ; and it is weak mixing if the product sys- 
tem    ,X ,X T T X   is transitive. A TDS T

 ,Y S
 is 

mild mixing if for any transitive , the product sys- 
tem  X ,Y T S   is transitive; and it is strong mixing 
if  ,N U V ,U V


1F  1 2

 is cofinite for opene sets . 
A collection of subsets of integers  is called family 

if it is hereditary upward: if  and F F
2F

, then 
 . 

It is well-known that mild mixing systems do not have 
uniformly rigid factors while minimal equicontinuous 
systems have comparatively large rigidity sequences. 
Therefore, one expects to have rigidity along large se- 
quences is system with low complexity. In this note, we 
define some other classes of mixings. These are defined 
when    , : , are openeN U V U V


Δ

 generates a certain 
family of integers . In particular, we use this concept 
and define  -mixings and we show that minimal Δ - 
mixings do not have any rigidity factor.  

2. Main Results 

It is well known that in a transitive TDS, any almost 
equicontinuous is uniformly rigid [1]. In [4] the authors 
showed that a uniformly rigid mild mixing dynamical 
system is trivial. Also in [1], Glasner and Maon con- 
structed a generic minimal uniformly rigid weakly mix- 
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ing. On the other hand, any system with rigidity sequence 
has zero entropy [1]. Therefore, a uniformly rigid TDS 
with zero entropy is generic. However, there are some 
restrictions for a sequence to be a rigidity sequence. The 
following shows some of these restrictions which are 
compatible with the rigidity sequences in MDS [5, 
Proposition 2.20 (b), 2.24 and 2.26]. 

Theorem 2.1. Let t A n
  kT id

,
N

 be an increasing sequence 
in  and suppose that for any , . k

1) If T is rigid along A, then A has gaps tending to 
infinity. 

2) Suppose  1, 
1

N i i
i

F x x  c x

  where  0ic  . 

If for each 1M  , there is  , , Nt t    1, ,
N

M1


 

such that  1
, ,

Nt tF n n d , then A is not a rigidity 

sequence for any TDS.  
3) Suppose A has the property that for some integers 

L . Then A cannot be a 
rigidity sequence for a TDS. In particular, 

  0c A  
 * 0d A

*
1 2 1, , , ,Lc c c d c A

 . 
Proof. We prove only (1) and the two others follow 

similarly. Let  , X T  be rigid along t . Then  
 for every 

n
tnT x  x x X . By the dominated conver- 

gence theorem for every invariant measure and in par- 
ticular for ergodic measure   and any  2f L 

f  , ,X T
 we 

have . This shows that lim tnT f    is rigid 
along  tn  in measure theoretical sense. By [5, Propo- 
sition 2.20(b)], if  t  is a rigidity sequence for ergodic n
 , X T , then  tn  has gaps tending to infinity. 

Note that the second part of the conclusion in (2) fol-
lows from the fact that sets having positive upper Banach 
density have a certain distance appearing infinitely many 
times. 

If  2A n : 0n  , then 2 1:n n  A A   and 
so it has positive density. Therefore, A  cannot be a 
uniformly rigidity sequence for any  ,X T . This is also 
true for sequence of prime numbers and polynomial se- 
quence with integer coefficients. 

Let 

1
:

a A a

 
  

 


Σ

Σ A   .          (2.1) 

From largeness point of view,  is next to the family 
of positive upper density, that is, if   0d B 

ΣB

Σ

 then 
 [6]. This family has many interesting properties 

and it is a long standing conjecture by Erdös that any 
member of this family has arbitrary long arithmetic pro- 
gression. In the following example we show that there 
are some uniformly rigid TDS whose rigidity sequence is 
in . 

Example 2.2. Let 1X S
1S

 and T the irrational rotation 
on  (or consider any equicontinuous minimal system). 
Note that for any x X   and any opene set U, the 

return time set ,N x U  is syndetic and if rigidity is 
established for a point 0x , that is if there exists  t  
such that 

n
 tnT x x

 n

0 0 , then rigidity is established for 
all points. Also rigidity and uniform rigidity are equiva- 
lent for our system. 

First we construct a rigidity sequence t  and then 
we will show that  1t tA n n   which is trivially a 
rigidity sequence is in  . So let 0  and let 0x   

 ib

ib   0, 0
i

N B

0 : 0l

i  
be a decreasing sequence to zero and set  to be the  

sequence with  the maximum gap for .  

X

Set  , 11 1 0:k l l b   and pick consecutive  

  11 2, , , 0, 0
iln n n N B  . 1 1l For any 1 i  have 

1 1in 

  we 

in b   and 
1

1
lk

b n


1

11 1

1
.

i i in



  
 

 
Use induction argument and let  

 11, , 0, 0
i i il ln n N B

     
such that

So 

 1 1 1:i i i ik l l b     . 

1 1
1

11 1

1i

i

l
i

t li t t

k

b n

 


  


n

 

and thus  
1 1 1

i

i ti t t

k

b n  


1

n 

But for any 

. 

, i

i

k
i

b
 es 1  which impli

1 1i i in n 

1
 


. 

1) Let 


Remark 2.3.  D A A A  . Then  

   2D A D D  and in general  nD A  can be de- 
fin

A
ed for any n .  n , an explicit

as 
In [7], for any  

subset of   such A  depend  n is given 
such that 

ing on
  * 0d nD A  . Now the nce of such 

sets is established by th  above example and Theorem 
2.1(3). In f ore: there is ΣB  such that 
for any n

existe
e

act, we have m
 ,   * 0nd D B  . 

2) If    τtnT x x  along a subs quence e  tn , 
then T  id alon  1is rig g t tA n n  is uniform 
rig

 and it 
id if   tn x x   rigiT is uniform. If S  is also d 

along A , then T S  is rigi is uniform if both 
T  and ifo ly rigid along 

d and it 
S  are un rm A . 

SuppTheorem 2.4. ose  ,X T  is rigid along  tn  
d an  ,Y S  a TDS. Then  ,X Y T S   is rigid if there 

exists 1, , kc c    and  , 0kN    s  

that 

1 2, , uch  N N

,Y S
1 1

k

i t i
i t

c n N
 

is rigid along 
 

 




oof. If


. 

Pr   ,X T  is rigid along  tn , then it is also 

rig
1

k

i
i

c n


id along 
1

t i

t

N


 
   for any , , kc

 
 1c    and 

 0k   .　 

Corollary 2.5. Let 
1 2, , ,N N N

   ,,G X  be a rotation and T  
a rigid (resp. uniformly ) system. Then  rigid
 ,X TG   is rigi . uniformly rigid). 

Proof. Suppose 
d (resp

 ,X T  is rigid along some se  quence
   x xtn . Let     be the rotation map. For any 
 tn , by passi we have ng to a subsequence if necessary, 
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t   for some Gn    . This means that tn S   
e wher S x x   . He

pose 

nce 1 1 idt tn n S S      uni- 
ly and  form

The
 1 , id , idt tn n

TT     . 
m 2.6. Sup ore ,X T  is rigid. T  hen any

is clearly true for  factor. So let 


factor i
Proof. Th

s rigid. 
is 

 
the trivial

,X T  be rigid along  tn 
t  and ,Y S  a nontrivial 

factor with factor map π : X Y . We show that 
 , S  is rigid along a subsequence of Y tn . To this end, 

be an arbitrary in Y , 1let y π point x y  and V  
an opene set containing y


nce . Si ,X T  is rigid there 

N   such that for any exists   1, πt N T V  . 
Thus 

tn x
π tnT x V  and so tnS y V . 

Let   be a family of non mpty subs   . The 
dual of  , denote , is defined to be all subsets 

s in  : 

 
ete s of

d by *
of   l set

pa

meeting al

ily

 * : , .G G F F        

A fam    is called rtition regular if F   is 
partitioned to finite sets 1 kF F F  then there is 
  . ple of a family 

with fin d as (2.1). 

at i
then 

  ,
An exam

ily Σ  de

   is pa

1

A

i k  such 

f



that iF 
partition regularity is the fam

 th
 filter

e
 nonempty amily closed under finite intersections is 

called a filter. It is known rtition regular, 
*  is a filter. A  which is partition regular is 

called an ultrafilter. 
Now let  n n

A a


   be an increasing sequence of 

integers. Then    1 2 1:
ni i i j j

f

FS A a a a i i       is 

the finite sums of A. A

 

 set F   is called an IP-set if it 
co s

 
ntains the  of some sequence of integers. A 

set 
finite sum

F    is ca ers 
 S s  exist

lled
s suc

 a ∆-set if  of integ
h that the di  

 

ts

all IP-sets (resp. 
 and 

 a sequence
fference set n n

   Δ :i jS s s i j F    . Let ∆ be the family of all 

∆-se .  IP-set is a ∆-set for let  
2 1 2 3, ,a a a   . Let   (resp. ∆) be 

 Any

1 1, a a 
ily of 
ilies 

S a
the fam
the fam *

∆-sets). It is known that 
 are filters [8]. *Δ

Definition 2.7. A TDS  ,X T  is called 
e ha

 -transitive 
if for sets ,U V any two opene 

,

X  w ve  
 ,N U V  , and it is called  -mixing if the product 

system  X X T T   is  -transitive. 
Theorem 2.8. [9] Let  ,X T  be a TDS. he follow- 

ing conditions are equival
T

ent: 
1)  ,X T  is  -mixing; 
2)  ,X T  is we g tive; 

  
ak mixin  and  -transi

3)   , ,N U V N U U for any opene sets U, V. 
For a family   and k shifted family is , the 

define d as :k F k F       where 
 :F k k n F  . If kn      for any k , 

invathe
if 

n riant family. For instance,   is called a shift 
 :F F     , both   and *  are 

shift invaria families a
then 

families. But not re shift in- 

variant. There are two ways to build a

nt all 

 shift invariant fa- 
mily from a given   [8]. These are   and  •  
where  

   •,: : .
k k

k k  
         

We have •     and both •  d  an    

shift inva

are  

riant families with  •


   [8]. Also, if  

   then     and      which implies 
that • •

  . If   is an of

Theor 1) 

   a filter so is y shift    
 of filters are again filters and since the finite intersections

•  is a filter. 
 ,em 2.9. X T  is • itive if and only 

if it is
2) Suppose   is a filter. Then  ,

 -trans
  -transitive.  

X T  is • -mix- 
if and only ifing  it is  -mixing. 

e •   , s
uppose 

Proof. 1) We hav o • -transitive is  - 
transitive. Conversely, s  X ,T  is  -transitive. 
Th ave en for any opene U and V, we h  ,U VN  . 
Since kT U  is opene or k f  ,  

   , ,kT U V N U VN k   is o. Th  means that f r 
k ,  ,N U V k   which  implies   in turn
  •,N U V  . 
2) T nce 

orem be a filter and  ,

his is a direct conseque of the first part and 
Theorem 2.8.　 

The  2.10. Let   X T  an  - 
mixing system. Then any non-trivial factor of  ,X T  is 
al

e 
so  -mixing. 
Proof. Suppos  , X T  is  -mixing and ,Y S  a 

non-trivial factor and   the factor map: T S   . 
For any two opene sets U, V X ,  

   , ,V UN U N U   . We will show that this will 
hold for  ,Y S  as 

Let ,U V
well. 

   be two o ene sets in Y and le  
such that 

p t ,U V X
  , (U U V    hen

   
)V . T   

 : nN U n S U V   

  : nn T U V   

  
   

,

:

: , .

n

n

V

n T U V

n T U V N U V



 

  

    



 

 

Since   is a family, so  ,N U V   . Also,  
  is a filter 

 since
   , ,N U V N U U       which implies 

 ,Y S  is  -mixing. 
Let   be a family of subsets of integers closed under 

fin rs l like a filter). 
that a sequence 

ite inte ections (in genera Then we say 
 nx  is  -convergent to x  if for 

ighbo hood U  of xany ne r   we have  

  n x U:n T     and we write lim n
n

x x


  . 

A family is called

 

 an    family if any member 
contains the differe e set o  an IP-set. 


nc f

Theorem 2.11. Let  X T  be uniformly rigid along ,
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  1n n
A a


. Then  id .  lim n

n T 

Proof. First we prov lim n

n
T


  id. Let 

 ,
e that 

X T  be uniformly rigid along  A a
1n n

. Fix 
0  and let kN   increasing sequence and 

each kN  
 be an

sufficiently large so that  

 , id
2

Nk
a

kd T 

Hence for any 1, , .ki i  we have 


 

 


 
  
  

 

1

1

2

1

, id

,

,

, id

.
2

N Ni ik

N NN i ii

N NN i ii

Nik

n

a a

a aa

a aa

a

k

i
n

d T

d T T T

d T T

d T

 

 

 







 

 





 

2 2

3 3

N Ni ik k

N Ni ik k

a a

a a
T

 

 

 

 
   (2.2) 

:Now set  iNB F   : , idnTS a . Then n d    con- 

tains B and so is an IP-set. 
m idn

n T  , note that if 
 tn . Then an ine-  

 , idd T     

To see that   li  
 tn  is a rigidity sequence so is 

quality such as (2.2) implies that where 

, B   .  

Now we inve dity (not nec-
rily uniform) in minimal system th some sort of 

stigate the existence of rigi
essa s wi

stem is mild m
 -mixing if and only if it is  

 

mixings. Recall that a minimal sy ixing if 
*

* -transitive [10]. 
and only if it is 

 
A pair  ,x y X X   is said to be a proximal pair if  

    liminf , 0n n

n
d T x T y


  

and  ,X T em pair of  is proximal syst  if any X X  is 
a . A TDS proxima  ,l pair X T  is called distal if  

    liminfn ,n nT y  0d T x for every x y  and  
 ,x y X

a
X  . In

l strong mi
 [1], th ed that any 

se *  l
* -mixing

e authors show
minim xing system admits only trivial rigid 
factors. An extension of that result is the following. 

Theorem 2.12. Suppo is a filter. Then a minima
 does not have 

 
 system F -rigid factor where 

F  . 
Proof. Let  ,


X T  be a minimal * -mixing. Then by 
Theorem 2.9 and Theorem 2.10, every factor of  ,X T  

*
• -mixing. Thus it is sufficient to show that if 
,

is 
X T  is F -rigid, then it must be trivial. Assume that 
 ,X T  is rigid with respect to an F  sequence  kn .  

Let    , ,k kx x U V X X    , where 
1

kU B    

and 

,x
k 

 

1
,k B x
k

 
V  

 
. Note that  ,k kN U V  is *

•  and 

so  
 ,k kV FN U   . Therefo ists a subse-

 
re, there ex

quence  kn  kn  such that    of 

  ,k k k k
k kn nx T T U V  x x   a x nd kn

kT x  hich  

implies that 

. W

 ,  , x x x x is a proximal pair. Since  
rbitrary the system  was a  is proximal. But in a minimal

system,  ,x Tx
t 

 is distal for any x and this in turn im-
plies tha  ,X T  t be trivial. mus

Corollary 2.13. 1) A minim mixing sys
gid fa

al *Δ - tem does 
not have any ri ctor.  

2) A minimal    -transitive system is not rigid. 
3) Any  - ixing, IP*-mixing or  m

   -transitive 
system doe  have a non-trivial uniformly rigid factor. 

 s
s not

uProof. 1) By Theorem 2.10, it ffices to show that a 
minimal  -mixing  ,X T  is ot rigid along any  n
 t . Assume t ry and let n he contra k  be a sequenc

 to 
e 

decreasing zero. Let   , ,k k x x U V X   , where 
,k kU V  are k -balls containing 

X 
x  and x  respectively. 

Then there exists 0kM   such that for any  

 :
k

k t t M
a A n


  ,  , kx   . Since ad T x  ,X T  is  

 ,  ,k k kN U V A   . Now then there 
exists a subsequence 

 if 0k  , 
 ,k k ka a A  an  a sequence 

k

 d
x x  such that ka

kT x x  and kT x x . Now 
an argument as in of of Theorem 2.12

a

 the pro  gives the 
proof. 

 proof is similar 2) The to (1). 
3) Recall that any  -m * ixing and  

 
ixing, IP -m

  -transitive is    -transitive. 
Now the conclusion follows from the fact that mild mix-
ing systems do not have non-trivial uniform rigid factors.  

trivially an 
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