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ABSTRACT 

This paper describes a new method to generate discrete signals with arbitrary power spectral density (PSD) and first 
order probability density function (PDF) without any limitation on PDFs and PSDs. The first approximation has been 
achieved by using a nonlinear transform function. At the second stage the desired PDF was approximated by a number 
of symmetric PDFs with defined variance. Each one provides a part of energy from total signal with different ratios of 
remained desired PSD. These symmetric PDFs defined by sinusoidal components with random amplitude, frequency 
and phase variables. Both analytic results and examples areincluded. The proposed scheme has been proved to be useful 
in simulations involving non-Gaussian processes with specific PSDs and PDFs. 
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1. Introduction 

Generating and representing of a Gaussian variable with 
desired PSD is an easy job. A usual method is to use 
simple linear time invariant filter with a Gaussian ran-
dom variable as an input. The problem of generating 
correlated non-Gaussian random series has been of great 
interest during the last three decades in connection with 
the simulation of processes in communication systems 
such as radar, sonar and speech. Furthermore, it can be 
applicable in recent military approaches. Groups of 
stealth aircrafts generate random noise with K  distribu- 
tion to be hidden under clutter noise from active radars. 
The generation of non-Gaussian signals has given rise to 
a renewed interest in the mechanical vibration fields and 
defense industries for some reasons. The realization of 
many surface transportation and wave environments are 
non-Gaussian, also the development of shaker control 
systems that can replicate long time histories are 
non-Gaussian. Many original current shaker control sys-
tems, for generating random vibration tests generate only 
Gaussian random noise. However, waveform replication 
techniques now allow the reproduction of any waveforms 
whose characteristics are within the bounds of a shaker 
[1,2]. Most of the approaches suggested involve the 
non-linear transformation of colored Gaussian random 
series or use linear transformation of non-Gaussian no 
correlated time series. All these methods require a com-
plicated optimization procedure to achieve the de- 

sired properties [3,4]. The zero memory non-linear 
ZMNL in [3] is chosen so that the desired distribution is 
exactly realized and the digital filter is designed so that 
the specific auto-covariance is closely approximated. In 
this method, the autocorrelation of sequence at the output 
of the filter may be negative hence the method can fail 
because in this case we should calculate several hundreds 
or even thousands of unknowns, on the other hand er- 
godicity has not been mentioned in this paper. In addition, 
the method is too complex to be implemented but it can 
be helpful in this paper for first approximation with some 
promotion. In [5], a correlated Gaussian random process 
is multiplied by a modulating sequence. The main prob- 
lem is in determining the modulating sequence, which 
can be difficult if not impossible. Furthermore, the gen- 
erated sequence is not ergodic. In [6], a nonlinearity is 
used and due to the nonlinearities in these schemes, it 
seems that the results cannot be extended to the general 
cases such as multidimensional and multichannel random 
processes. The method suggested in [7], is based on [3] 
and decreases some problems and produces wide-sense 
stationary and ergodic sequences asymptotically or as the 
number of generated data goes to infinity. In [8] pro-
posed a method that decouples the problem into two 
separate ones for some signal characteristics such as even 
and infinitely divisible first-order PDF, but it can gener-
ate every continuous PSDs. The method can be limited 
because the Hankel transform of every PDFs cannot be 
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calculated easily. The restriction of an even PDF limits 
us to generate vast major PDFs such as Rayleigh, Naka- 
gami, flicker and square Gaussian noises. The assump- 
tion of an infinitely divisible PDF may be restrictive too. 
However, the strategy mentioned in [8] is a constructive 
tool to be used under some modifications. In this paper, 
we divide desired PDF with a number of symmetric and 
infinitely divisible ones that these PDFs depend on the 
first estimation. In contradiction to [8] there is not any 
restriction on the PDF. This paper consists of five section, 
in section 2 a basic function which has been derived from 
[8] is considered and extended to more general form and 
the nonlinear transform function is described for closed 
form first approximation. In section 3, with some as-
sumption we prove that this function has ergodicity 
properties in both means and variances and the way to 
compute a nonlinear transform function has been de-
scribed. In section 4, a complex signal with asymmetric 
PDF and desired PSD are generated. The conclusion has 
been given in section 5. 

2. Definition and Properties 

We propose a new method to generate arbitrary continu- 
ous PSDs and first-order PDFs. In this method, one can 
generate a discrete signal by dividing the desired PDF 
into a number of symmetric PDFs. In general form we 
define  Z n  for  as follows n   

   
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where and show real and imaginary parts of  
respectively that are independent from each other. In (1) 
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In all sections of this article, we assume ,x L  and 
,y L  each have equal distributions. By considering the 

above-mentioned relations the following are shown in 
appendix 

1) The mean of  Z n  is 

     E Z n E x jE y                  (7) 

The mean of every PDFs is a deterministic value and it 

forces the PSD to have a   function in zero. Therefore, 
it can be subtracted from       0, 0E x E y Z n . 

1) The random process is the wide sense stationary 
with the following autocorrelation function 
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where ,r B B are    ,n n r n n rE L L E L L    respectively. 

Actually, the power spectral density is equal to  
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Now we can use the nonlinear transform function in 
order to achieve the first approximation of the desired 
spectrum and the first order statistical probability density 
function. This spectrum can be converged exactly on  

desired one by using  2

4 F

M
E A p f    and 

 2

4 F

M
E B p f  

 
terms, with negligible deviation from 

main PDF. Because of positive definition of  Fp f
 

and  Fp f  we should have 
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where  SP f  is the desired power spectrum. 
3) The PDF of iA and  can be written as iB
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where    ,Re L LZ n   and    ,Im L LZ n   are the two 

characteristic functions for symmetric PDFs with proper 
variance and zero mean, for a Gaussian  20,N   we 
have 

     

2 2ω
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and we can solve the above relation by using Hankel 

transformation of 
2 2

exp
2M

  

 

 , hence 
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similarly, we have 
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In order to use the nonlinear transform function, con- 
sider the following relation between two random vari- 
ables of x  and t  

    d

dX T

t
L p x p t

x
                 (16) 

where  and  are probability density 
functions for 

 Xp x  Tp t
x  and  random variables respectively. 

Similarly, for both random variables of  and t
t
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have 
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It is understood that in Equations (16) and (17), ,t t   
stands for  1

1t g x  and , the  1
2t g y   1x g t  

and  2y g t
 

are the density functions which are de-
pendent on x  and  variables. In this paper all the 
relations and calculations on ,  variables can be 
modified to ,  variables. 

y

L t
L t

If  is not monotonically increasing, the 
function must be broken into parts, and each part is han- 
dled separately. For the purposes of this article 

 1L g t

 1x g t  
will be restricted to its derivation function. Therefore, the 
sign of d dx t can be negative or positive. The conversion 
of a realization of  to t x  using a nonlinear function 
will always produce a PSD for x that is different from 
the PSD of . The effect is to add harmonics to all the 
Fourier components of . This will make the trans-
formed data appear “whiter” than the original data [9,10]. 
However, most of the spectral information is contained in 
the zero crossings which are preserved, and if the 
nonlinear- ity is not too great, the spectral change is usu-
ally accept- able and the PSD of 

t
t

X  will be near the 
PSD of . The practical utility of these results is that the 
PSD may be approximated from (9) by using nonlinear 
transform function on n  and is converged to exact 
form by choosing the PDF of frequencies 

t
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and 

 properly. Fp  f 

3. Ergodicity Properties, Nonlinear Function 
Synthesizing 

The main problem in applications of stochastic processes 
is the estimation of various statistical parameters in terms 
of real and imaginary parts. It is clear that the basic 
Equation (1) contains two mathematical terms, the first 
one is 
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which its ergodicity of mean and variance has been proven 
in [1]. The second term is , where nL jL n   ,n XL p x  
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both n and n  have ergodicity properties 
too. In other words, Equation1 under certain conditions 
has ergodicity properties. Now it is clear, that 
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the main problem is to synthesize  1g t  and  2g t
 

under the limitation of Equation (10). The total power 
spectrum can be divided as follows 
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Both strategies on imaginary and real parts are like 
each other. Equation (18) can be simplified as 

   
1 0

0

2 cos 2π 0S r
r

P f fr




 
   
 

B B       (19) 

and 
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If    1g t t    and t has a Gaussian distribution  
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Now we propose a computational method to generate a 
proper function of  1g t , set    1 meang t x   
where we select µ  as large as possible, considering 
small positive value for t , we have 
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end 
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Where   is a large number which µ  , Figure 1 

shows nonlinear function synthesizing to generate uni- 
form PDF in [–0.5, 0.5] interval. It is clear that generated 
function guarantees the Equations (20) and (21). 
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and 4. Some Examples of Generating 
Asymmetric and PDF with Desired PSD  
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4.1. One Dimensional Real Signal 
Therefore, the frequency PDF can be calculated as the 

following relation 
Consider the representation of a WSS Rayleigh random  

process with the variance of 2π
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π 2 , and a given continuous PSD. To represent and 
generate this process we need determining a nonlinear 
transform function to convert Gaussian distribution of  
to Rayleigh PDF, the PDFs of the amplitude and fre- 
quency can be calculated after the first approximation of 
desired PSD. Figure 2 shows a nonlinear transform 
function to convert Gaussian with shaped spectrum to 
Rayleigh one. Figure 3 depicts the Rayleigh PDF, the 
blue curve in Figure 4 shows the first approximated 
power spectral density and the red dashed line shows 
desired spectrum. We define the following error function 
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The average of 10,000 realizations of a periodogram 
along with the true PSD (indicated by the black curve) is 
shown in Figure 4. It is interesting to note that the gen-
erated PDF has less accuracy than what is calculated be-
fore adding sinusoidal term and it is depicted in Figure 5. 
First approximation play an important role in having a 
more accurate results.  
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4.2. Two Dimensional Complex Signal This error function can be decreased by the use of si-
nusoidal terms Consider the WSS complex signal  with ar- S x jy 
 

 

Figure 1. Proper nonlinear transform function  1g t ,  210 = 0 25t N , .   and    1= ~ 0 5 0 5x g t U - . , . .
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Figure 2. Nonlinear transform function converting non zero mean Gaussian PDF to Rayleigh random process. 
 

 

Figure 3. Generated Rayleigh random process after applying g(t) on Gaussian PDF. 
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Figure 4. Power spectral density synthesizing. 
 

 

Figure 5. First order probability density function of Z[n], red line depicts Rayleigh PDF.   
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bitrary power spectral density, where x and  are in- 
dependent from each other and represent the real and 
complex parts of  respectively. Both 

y

S x and have 
desired PDF and every one generates a part of total 
power spectrum which depends on its variance. There- 
fore , where 

 
is the PDF of 

a complex signal and , 

y
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 x Y  represent the 

PDF of real and imaginary parts of the signal. Figure 6 
shows a joint PDF of 

p y

x and . If we consider y

Section 3 we can achieve to proper nonlinear transform 
function. Figure 7 shows generated PDF and Figure 8 
depicts imaginary and real parts of this discrete signal. 
The power spectrum can be converged to its correct re- 
sponse by considering proper PDF for both F  and F   
values as follows 
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Therefore 

   
1

2π

1

e j fr
S rr

F

P f
p f

 



  B


          (33) and 

   

 

2

2

1

2
0

1
2 2

0 0

[ ] 2 cos 2π d

[ ] 4 d

r n n r S

n S

E L L P f fr f

E L P f f

   

  





B

B

    (29)    
2

2π

2

e j fr
S rr

F

P f
p f

 





   B


         (34) 

Generated and desired power spectral density also has 
been shown in Figure 9. where 
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5. Conclusion 

A new method has been presented which can generate a 
complex WSS random process with a desired PSD and a 
given first-order PDF. One of the advantages of this 
method is that we have no limitation on PDF to be infi- After applying the algorithm that was mentioned in  

 

 

Figure 6. Joint PDF of x and y. 
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Figure 7. Generated joint PDF of Re{Z} and Im{Z}. 
 

 

Figure 8. Discrete imaginary and real parts of generated signal. 
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Figure 9. Synthesized power spectral density. 
 
nitely divisible or symmetric. Also with simple computa- 
tional method we can calculate proper transform function 
to generate desired PDF from Gaussian PDF with shaped 
spectrum. Furthermore, this computational method guar- 
antees generated spectrum to be under the wanted spec- 
trum for the first approximation. The error function is 
reduced to zero by the means of sinusoidal component 
with proper frequency and amplitude PDF, but with 
small deviation from exact desired PDF. In other words, 
there is some tradeoff between exact PDF and PSD. The 
ergodicity in the mean and variance has been proven un- 
der certain conditions. We have avoided bottleneck cal- 
culation of Hankel transform function that [8] faces di- 
rectly to it. Because of negligible deviation from exact 
PDF it can be used in any practical system. 
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the above relation can be simplified as 
 

     
1 1

1 1

cos 2π 2π cos 2π 2π
2

2

M M
i k

i k k i i k i k
k i

M M
i k

j i

A A
E F n F n r F n F n r

A A
E

   
 

 

 
         

 
    




 

    

       

1

1 1
2 2 2

2

1 0 0

cos 2π 2π cos 2π
2

cos 2π d cos 2π d
2 2

M
i i

i k i j ik i
i

M
i

F F
i

A A
E F n F n r E E F

A M
E fr p f f E A fr p f

  




   r

f

           

 
     

 



  

 

similarly 

Copyright © 2012 SciRes.                                                                                 JSIP 



Generation of Non-Gaussian Wide-Sense Stationary Random Processes with Desired PSDs and PDFs 437

     

   

1 1

1

2
2

0

cos 2π 2π cos 2π 2π
2

cos 2π d
2

M M
i k

i k k i i k i k
k i

F

B B
E F n F n r F n F n r

M
E B f r p f f

   
 

                 
 

      





 

 
on the other hand 

  

  
1

1

cos 2π 0

cos 2π 0

M

n i i i
i

M

n r i i i
i

E L A F n r

E L A F n r










 
   

 
 

   
 




 

and 

 
 

r n n

r n n

E L L

E L L







  

B

B

r

r

 

therefore 

   

   

   

1

2
2

0

1

2
2

0

cos 2π d
2

cos 2π d
2

F

F

E Z n Z n r

M
E A fr p f f

M
E B f r p f f

  

   

      



 B B

 

C) PDF of A and B 
Assume  are constant values, with this assump- 

tion  
,n nL L

      
 

Re

1

exp Re

exp cos 2π

n nL LZ n

M

A F i i i
i

E j Z n

E E E j A F n



 


    
  

   
  


 

      
 

Im

1

exp Im

exp cos 2π

n nL LZ n

M

B F i i i
i

E j Z n

E E E j B F n



 



 


    
      

  


 

     

  

Re
1

exp cos 2π

exp cos 2π

n

M

L i iZ n
i

M

i i i

E j A F n

E j A F n

 

 



    

   

 i





 

if we consider 

    
  

exp cos 2π

( ) exp cos 2π

i i i

i i i

E j A F n

E j B F n

 

 

    
     

 

then 

    exp cos 2πA F i i iE E E j A F n       

and 

 

    
π

0
π

exp cos 2π

1
exp cos 2π d

2π

n
i i i

i i i

L
E j A F n

M

j A F n J A

  

  


       
   

  i

 

and 

     0 0
0

dA F i A iE E J A p a J A a 


      

Therefore,   Re nLZ n
  in x  domain can be mod- 

eled as 

      0Re
0

d
n

M

L AZ n
p a J a a

 
   

 
  

by considering Bessel function characteristics we have 

     
0 0

0

d
a a

J av J a v v v
a

 
 

 
Therefore 

      
1

0Re
0

d
n

M
L AZ n

p a J a a


  
    

    

     

     

   

 

1

0 Re
0

0 0
0 0

0 0
0 0

0

d

d d

d d

d

n

M
LZ n

A

A

A

A

J a

J a p a J a a

p a J a J a a

a a
p a a

a

p a

a

  

  

   





 

 



 





















 

 





 

suddenly 

      
1

0Re
0

d
n

M
A LZ n

p a a J a  

 



  

similarly 

      
1

0Im
0

d
n

M
B LZ n

p b b J b  

 



  

Copyright © 2012 SciRes.                                                                                 JSIP 


