
Intelligent Control and Automation, 2012, 3, 390-403 
http://dx.doi.org/10.4236/ica.2012.34043 Published Online November 2012 (http://www.SciRP.org/journal/ica) 

Stable Adaptive Fuzzy Control with Hysteresis Observer  
for Three-Axis Micro/Nano Motion Stages 

Lih-Chang Lin, Bor-Yih Chang, Biing-Der Liaw 
Department of Mechanical Engineering, National Chung Hsing University, Taichung, Chinese Taipei 

Email: lclin@mail.nchu.edu.tw 
 

Received July 31, 2012; revised August 31, 2012; accepted September 7, 2012 

ABSTRACT 

This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/ 
nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed using Lyapunov sta- 
bility theory. In the controller, a fuzzy function approximator with parameters update law is included to compensate for 
the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used to demon- 
strate the control performance. 
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1. Introduction 

Recently, control of micro/nano stages considering the 
piezoactuator hysteresis effects has found great interests 
in the literature. Effective ultrafine-resolution trajectory 
tracking performance of stages is limited by the intrinsic 
hysteretic behavior of the piezoceramic material and the 
structural vibration of the devices [1]. 

Many efforts were trying to decrease the hysteresis ef- 
fect of piezoactuators. Newcomb and Flinn [2] found that 
the relationship between the extension of a piezoceramic 
actuator and its applied electric charge has significantly 
less hysteresis nonlinearity than that between deforma- 
tion and applied voltage. Furutani et al. [3] proposed an 
induced charge feedback control for the piezoactuators. 
The approach needs measurement of the induced charge 
and a specially designed charge drive amplifier, and will 
cause an increase in the response time of the actuator. 

In order to linearize the control system, many re- 
searches focused on the inverse feedforward compensa- 
tion based on some inverse hysteresis model. Several 
models have been suggested for describing the complex 
hysteretic behavior, for example, the Preisach model in 
Ge and Jouaneh [4,5], Yu et al. [6], and Liu et al. [7], the 
generalized Preisach model in Ge and Jouaneh [8], the 
dynamic Preisach model in Yu et al. [9]; the general- 
ized Maxwell elasto-slip model in Goldfarb and Celano- 
vic [10]; the variable time-relay hysteresis model in Tsai 
and Chen [11]; the Prandtl-Ishlinskii (PI) model (a sub- 
class of the Preisach model) in Ang. et al. [1] and Has- 
sani and Tjahjowidodo [12]; the Duhem model in Ste- 
panenko and Su [13]; the polynomial approximation  

method in Croft and Devasia [14]; and the Jiles-Atherton 
model in Dupre et al. [15]. Ge and Jouaneh [5] proposed 
a PID feedback control using the classical Preisach 
model for the hysteresis. Song et al. [16] proposed a 
cascaded PD/lead-lag feedback controller based on a 
linear model for the piezoactuator with hysteresis being 
compensated via the feedforward cancellation using the 
inverse classical Preisach model. Recently, Maslan et al. 
[17] presented a discrete-time transfer function and its 
inverse for a highly nonlinear and hysteretic piezoelectric 
actuator, and traditional PID controller and PID with 
active force control were considered. 

To mitigate the effects of the unknown hysteresis, 
Wang et al. [18] suggested a model reference control for 
linear systems with unknown input hysteresis using an 
inverse KP (Krasnosel’skii-Pokrovskii) hysteresis model 
[19]. Hwang et al. [20] proposed a neural-network non- 
linear model for learning the hysteretic behavior of a 
piezoelectric actuator, and suggested a discrete-time va- 
riable-structure control for enhancing the nonlinear mo- 
del-based feedforward control performance. Based on the 
learned nonlinear model of piezoelectric actuator systems 
in [20], Hwang and Jan [21] proposeed a controller in- 
cluding a nonlinear inverse control and a discrete neuro- 
adaptive sliding mode control using a recurrent neural 
network to compensate for the residue dynamic uncer- 
tainty. Wai and Su [22] presented a supervisory genetic 
algorithm (SGA) control system for a piezoelectric ce- 
ramic motor. The controller consists of a GA control to 
search an optimum control effort online via gradient de- 
scent training process and a supervisory control to stabi- 
lize the system states around a predefined bound region.  
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Recently, Ronkanen et al. [23] presented a two-input 
(velocity and voltage) one-output (current) feedforward 
backpropagation network to model the inverse nonlinear 
velocity-current relation of a piezoelectric actuator, and 
then introduced a feedforward charge control scheme. 

Other analytical types of nonlinear differential hys- 
teresis models include the simplified Dahl model used in 
Lyshevski [24], Sun and Chang [25], Sain et al. [26], and 
the Bouc-Wen model in Low and Guo [27], Chen et al. 
[28], and Gomis-Bellmunt et al. [29]. Chen et al. [28] 
proposed an H∞ almost disturbance decoupling robust 
control based on the Bouc-Wen hysteretic model. Shieh 
et al. [30] proposed an adaptive displacement control for 
a piezopositioning mechanism with the LuGre (hysteretic) 
friction model suggested by De Wit et al. [31]. Gu and 
Zhu [32] suggested a new mathematic model to describe 
the frequency-dependent and amplitude-dependent hys- 
teresis in a piezoelectric actuator using a family of ellip- 
ses. These analytical hysteresis models will be much 
easier for precision positioning control design. 

In this work, we consider the precision control of a 
three-axis piezoactuated micro/nano stage. An adaptive 
controller with simplified Dahl model-based hysteresis 
variables observer is designed using the Lyapunov stabil- 
ity theory. In the adaptive controller, a fuzzy function 
approximator with parameters update law is included to 
compensate for the identification inaccuracy, model un- 
certainty, and flexure coupling effects. Simulation results 
are used for illustrating the possible control performance. 

2. Dynamic Model for a Three-Axis 
Micro/Nano Motion Stage 

The dynamic model for a single-axis piezoactuated flex- 
ure stage with analytic simplified Dahl hysteresis model 
is as below [24]: 

2 3
1 2mx k x k x k x k x      3x u fk u k f      (1) 

1

fx

f x x f
k

                   (2) 

where x  is the output displacement of the flexure stage; 
 is the mass of the flexure mover; m xk

,k k
k

is the damping 
coefficient; 1 , 2 and 3 are the stiffness constants; u is 
the input voltage of the piezoelectric actuator; u  is the 
input gain; 

k

f  is the hysteresis variable; f  and  
govern the scale and the shape of the hysteresis loop. 

k fxk

Consider a 

 

Figure 1. Three-axis flexure stage. 
 

2 3
1 2 3x u f      Mx K x K x K x K x K u K f    (3) 

xyz  three-axis flexure micro/nano stage 
(P-517.3CL, Physik Instrumente, PI) [33] driven by pie- 
zoelectric actuators shown in Figure 1. The hysteresis 
phenomena and the coupling effects among the three 
axes induced by the flexure structure, can be taken into 
account via the following complete matrix-vector model: 

1
fv
 f x K x f  

  
T

              (4) 

x y zx

2 2 2 2  ;
T

x y z

 is the output displacements vector;  where 

   x

3 3 3 3  ;
T

x y z

  

   x  

diag   ;x y z   x   

  
T

x y zD D D

  

   

diag   ,   ,
T

x y z x y zm m m u u u

 

is used to consider the coupling effects among the axes 
and the model uncertainty;  

       M u

1 1 1 1diag   , diag   ,x x y z x y zk k k k k k

 

       K K

2 2 2 2 3 3 3 3diag   , diag   ,x y z x y zk k k k k k

 

       K K

   , diag   ,
T

x y z u ux uy uzf f f k k k

 

       f K

, , ,diag   , diag   .f fx fy fz fv fx x fx y fx zk k k k k k

 

       K K  

For ease of numerical simulation and implementation, 
the system parameters in SI units could be scaled in 
terms of more suitable units: displacement in nm, mass in 
g, time in ms, and input voltage in mV. After scaling, the 
scaled models keep the same forms as Equations (3) and 
(4). The parameters of the stage are identified, based on 
input/output data pairs via genetic algorithms by Chang 
[34], and are given as follows: 

30.2903 10 g; 249.27g ms;x y x ym m k k      

2 2
1 1 4.579 10 g ms ;x yk k    
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3 2g nm ms ;2 2 1.6958 10x yk k      

9 2 2g nm ms ;3 3 8.6767 10x yk k     

3 2m mV ms ; 0.4716 10 g nux uyk k    

2 2g ms ;3.6339 10k k  fx fy  

2 2
18.783 10 g ms ;fz zk k  3 2 1.8344 10 g ms ;   

2 2ms ;2 1.9910 10 g nmzk      

7 2 2g nm ms ;3 2.4296 10zk    

3 2nm mV ms ; 

4 110 nm 

1 4 110 nm .  

x x

0.4653 10 guzk    

1 1
, , 1.6242fx x fx yk k    

, 4.9758fx zk    

After defining the state vector as 1 , 2 x x

 

, 
the stage’s dynamic model can be written in the follow- 
ing vector state equations: 

1 2

1 2 3
2 3





     





x x

x M K x K x K x K x2 2 1 1

1 1

1
2

      

x

u f

f

fv

 



 

  

  

M K u M K f

A Bu B f

f x k x f



  (5) 

where 

 1 2 3
1 1 2 3x

     2A M K x K x K x K x   

1 1,    f
   u fB M K B M K

1x 1 2x x

1 1x ν

1 1 d e x x

x

1 1 1d d   e x x ν x   

 

3. Stable Fuzzy Approximator-Based 
Adaptive Control for Micro/Nano Stages 

3.1. Control Design Using Backstepping Method 

Based on the nonlinear dynamics model (5), this subsec- 
tion considers the backstepping-based stable control law 
design for the three-axis flexure stage. 

First consider the  subsystem, . Let  

                   (6) 

where 1  is a virtual input. Define the tracking error 
signal as 

ν

                 (7) 

where d  is the desired trajectory for the three-axis mo- 
tion. Differentiating Equation (7), we have 

             (8) 

Considering the Lyapunov function candidate 

1 1 1 1

1

2
TV  e P e

3 3

                (9) 

where 1 P R

 1 1 1 1 1 1 1
T T

dV   e P e e P ν x  

1ν

1 1d

 is symmetric and positive definite, and 
differentiating Equation (9), we have 

         (10) 

Thus, we can choose the virtual input  as 

 ν x κe                  (11) 

with positive definite feedback gain matrix  

 1 2 3diag κ κ κκ

1 1 1 1 0TV

, 

such that 

  e Pκe

1lim ( ) 0,
t

t


              (12) 

and e

1 2

2 f

 that is, the subsystem is asymptoti-  

cally stable. 
Further, the actual whole nonlinear system is consid- 

ered: 


  



x x

x A Bu B
            (13) 

f

After introducing new error signal 

2 2 1, e x ν

1 1 2 1

2
2 2 1 2 1

d

f d

                 (14) 

we can obtain 

   

       

  

   
e x x e κe

e x ν A Bu B f x κe κ e
 (15) 

Then by considering the Lyapunov function candidate 
as 

1 2 2 2

1 1

2 2
T T

sV V + e P e e Pe

1 2

TT T

         (16) 

where    e e e , 1 2diag ,P P P 3 3
2, P R   

is symmetric and positive definite, and taking the time 
derivative of Equation (16), we have 

 

 
1 1 2 1

2
2 2 2 1

T
s

T
f d

V  

     





e P e κe

e P A Bu B f x κe κ e

 1 2 1
2 1 2 1 12

s

d f
 



     

u u

B x κe κ e A B f P P e

1 1 1 2 2 2
T T T

sV     e Pκe e P κe e PΚe

diag[ ]

 (17) 

Thus we can choose the nonlinear control law as fol- 
lows: 

(18) 

and obtain 

    (19) 

where             Κ κ κ . 

ΚIf further choose  I 0  with , then we can 
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have 

2 0sV  e



T
sV   e P           (20) 

and lim 0
t

t


e 0. Thus, the equilibrium point e

f

 of  

the closed-loop system is exponentially stable. 
The internal state variables  can also be shown to 

be bounded. Consider the Lyapunov function  

1

2
T

fV  f f                  (21) 

By choosing the class- K  functions  

   1 2f f  1

2
Tf f f f , 

then since 

   2f f f f f1 V ,          (22) 

we know that fV  is positive definite, decrescent, and 
radially unbounded [35]. Differentiating Equation (21) 
and substituting in the internal dynamics 

1
2 ,fv

  k x ff x               (23) 

we have 

 1
2 fv

T T
fV  f f f x k x f 

   2 dt tx x

  0d  x
lim 0ft

V




0 0x

0f

        (24) 

Since           lim
t

if the desired trajectory satisfies , then we  
can have  Thus, f is bounded and the overall  .

closed-loop system is stable. 
Let the output vector 1 , 2 , we can obtain 

the system’s zero dynamics as follows: 
x

                  (25) 

That is, the hysteresis variables will become constants 
when the flexure mover returns to the origin and remains 
there. 

In order to further enhance the system’s active damping 
capability, we can introduce a nonlinear damping term 

s 
    

T
V

e

  0 B

 

where    into the control law (18). That is, 
the control law can be modified as 

TT






1 2
2 1

2 1 1

1 1
2 1 1 2 2

ˆ ˆ 2

ˆ ˆ ˆ ˆ

ˆ ˆ

T

s
a s

u d

f x

E u

 







 

     

  

  

  



V
u u

e

K M x κe κ e

M K f K x K x

P P e M K P e

1 2 3
2 3

1

ˆ ˆ

ˆ
u


 



K x K x

K 

1ˆ ,

 (26) 

where M ˆ ,f
ˆ ,u

ˆ , 1
ˆ , 2

ˆ , 3
ˆK K K K K and x K  are the 

nominal matrices for 1,M ,fK ,uK ,xK 1,K 2 ,K and 

3K , respectively, obtained by substituting in the esti- 
mated parameters, and E  represents the discrepancy 
due to the estimate error. Let t E u  be the 
integral uncertainty, we can further design a fuzzy func- 
tion approximator fs

1ˆ  + K  

  to compensate for its effect. The 
modified control law can be written as follows: 

 


 


1 2
2 1

1 2 3
2 1 1 2 3

1 1
2 1 1 2 2

ˆ

ˆ ˆ 2

ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

u d

f x

u fs





 

 

  

    

   



u z,θ

K M x κe κ e

M K f K x K x K x K x

P P e M K P e

ˆ

 

(27) 

f  is the observed hysteresis vector for where f , z is 
the input vector of the controller, and  is the pa- 
rameters vector to be updated for the fuzzy compensator. 
Here 

 ˆ tθ

ˆ ˆdiag , , , diag , , ,x y z u ux uy uzm m m k k k       M K

ˆ ˆdiag   , diag   ,f fx fy fz x x y zk k k k k k

  

       K K

1 1 1 1 2 2 2 2
ˆ ˆdiag   , diag   ,x y z x y zk k k k k k

  

       K K

3 3 3 3
ˆ diag   

 

and  

 x y zk k k   K  

are used in Equation (27). The hysteresis observer and 
the fuzzy compensator design will be considered in the 
sequel. 

3.2. Hysteresis Observer Design 

Since the hysteresis variables are difficult to measure for 
feedback, a nonlinear observer can be suggested as: 

1ˆ ˆ , 0, , ,i i i i oi fi oi
fii

f x x f k e k i x y z
k

      

ˆ

  (28) 

where if  are the estimated hysteresis variables, fi  
are the observer’s input variables to be defined later in 
the derivation of the stable control law and parameters 
update law, and  are the input gains. Define es- 
timate errors as  

e

0oik 

     ˆ
i i if t f t f t  , 

we have 

1
,  0,  , ,i i i oi fi oi

fii

f x f k e k i x y z
k

         (29) 

And Equation (29) can be written in the following 
vector form: 
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f o ff K f + K e 

   
T

zt f t  


                (30) 1,1 1,2 1,3  1 ,
T

e e e 

where 

   x yt f t ff    

is the estimate error vector, and  

=diagf fxxx k yK   fyy fzzk z k 

  ,ox oy ozk k k  

     
T

fy fzt e t  

, ,  and 

,  

diago K  

   f fxt e t ee . 

3.3. Fuzzy Function Approximators Design 

This subsection will construct the fuzzy function ap- 
proximators using T-S fuzzy systems to compensate for 
the modeling errors and coupling effects among the three 
axes. The tracking errors 1, 1, 1,x y z  are chosen 
respectively as the input variable of the fuzzy approxi- 
mator for each axis, and the compensating voltage of 
each axis is the output variable. In the universe of dis- 
course of each input variable, five fuzzy sets are defined 
as in Figure 2. The rule base of the fuzzy approximator 
for the i-th ( i ) axis is considered as follows:  
  Rule j: If  is 

e e e

1, 2,3
1,ie jA  

Then 

, , 1,1 , 1,2 , 1,3 ,i j i j i j i j i j

s

, 1,2, ,5e d j  y a e b e c     (31) 

where jA  are the fuzzy sets defined over the universe 
of discourse of each input variable 1,i , , 
stands for the

e 1, 2,and 3i 
x , y, and axis, respectively. z

Using singleton fuzzifier, product inference engine, 
and center average defuzzifier [36], the mapping of the 
fuzzy approximator for the i-th axis is 

 
5

1,3i, j i, jc e + d 

 

1,1 1,2
1

5

1

i, j i, j i, j
j

i

i, j
j

a e +b e +

y =












    (32) 

where , 1,i j j iA e  is the degree of firing of the j-th 
rule’s antecedent. Let  
 

 

Figure 2. Membership functions for each axis. 

 ψ

T

, , , , ,  ,i j i j i j i j i ja b c d

 

   θ

,1 ,2 ,5 ,1 ,2 ,5μ  μ  μ    
TT T T T T T

i i i i i i iy

 

then 

      ψ ψ ψ θ θ θ 

,1 ,2 ,5μ  μ  μ
TT T T

i i i i

  (33) 

Defining the regressor vector  

   φ ψ ψ ψ

,1 ,2 ,5

TT T T
i i i i

 

and the unknown parameter vector  

   θ θ θ θ 

T
i iy 

, 

Equation (33) can be written as 

 i

ˆ
fs f 

                  (34) 

And the fuzzy approximators for the three axes can be 
written in the vector form as 

 

1 2 3diag   ,T T T
f

                  (35) 

where  

      

1 2 3
ˆ ˆ ˆ ˆ  .

T
T T T

 

      

  
T

f fx fy fze e e

 

3.4. Derivation of Parameters Update Law and 
Stability of Overall System 

In this subsection, the input signals  

   e  

of the hysteresis observer, and the parameters update 
laws of the fuzzy function approximators will be selected 
in the stability consideration of the overall adaptive 
feedback control system for a three-axis piezoelectric 
flexure stage. 

Consider the following Lyapunov function candidate, 

1 1

1 1
1 1 1 2 2 2

1 1

2 2
1 1 1 1

2 2 2 2

T T
a s o

T T T T
o

V V  

 





Γ

Γ

   

   

+ θ θ + f K f

e P e + e P e + θ θ + f K f

Γ ˆ .

 (36) 

where  is symmetric and positive definite,  θ θ θ

 
 

 

1 1
1 1 1 2 2 2

1 1 2 1

2
2 2 2 1

1 1

ˆ

ˆ+

T T T T
a o

T

T
d

T T
o f o f

V  

 

   

 

    

  

Γ
     



  

e P e e P e θ θ f K f

e P e κe

e P A Bu x κe κ e

θ Γ θ f K K f K e

 
Taking the time derivative, we have 

  (37) 

After substituting in Equations (30) and (17), Equation 
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 ˆ ˆ ,M I + εI

1 1ˆ ,m
 M M + ε I

1 2 3

Copyright © 2012 SciRes.    

(37) becomes (38). 
Let 

 1 1
u u

 M K K  

 

where 

diag     



ε  

and  

1 2 3  m m m m=diag   

I
ˆf f +

ˆ ˆ ˆ[ ]T
x y z

ε  

are the error matrices,  is the identity matrix. Since 
, where f

ˆ f f ff , 

we have 

 
  ˆ

f

f f f

 







ˆˆ ˆ

ˆ

f f f 

 

K f K f K f f K f

K K f K f

 


1

1 1
2 2

1 1

ˆ

ˆ ˆ

T
a o f

u u

T T

, 

and Equation (38) can be written as 

 


 

1 1 1 2 2 2

2 2

1
2 2

2 2

ˆ ˆ ˆ

ˆˆ ˆ 

ˆ ˆ

T T

T

T
f f

u f

V



 



   



  

 

e Pκe e P κe 

  

  





f K K f

e P M K M

e P M K f e

e P M K Φ θ

K P e

f

θ Γ θ 

     (39) 

where   is defined as (40). 
Choosing the input vector of the hysteresis observer 

fe
1

2 2
ˆ ˆT T

 as:  

f f
e e P M K

1
2 2

ˆ ˆ
f f

e K M P e

   
 

1
1 1 1 2 2 2

1 1
2 2 2 2

1 1
2 2

ˆ ˆ ˆ ˆ  

ˆ ˆˆ ˆ  

T T T
a o f

T
u u

T T
u f

V

             (41) 

That is, 

              (42) 

we can obtain 







 

 

   



  

e Pκe e P κe f K K f

e P M K M K P e

e P M K Φ θ θ Γ θ

  



   (43) 



By further representing the uncertainty as:  

 1
2 2

ˆ ˆ ,T
u 

  e P M K   

and substituting  

 ˆ
f f f f Φ θ Φ θ + θ Φ θ +Φ θ 

   
 
  

1
1 1 1 2 2 2

1 1
2 2 2 2

1 1
2

1
2 2

ˆ ˆ ˆ ˆ 

ˆˆ ˆ 

ˆ ˆ 

T T T
a o f

T
u u

T T
u f

T
u f

V







 

 



   



 

 

Γ

  

 
2

e Pκe e P κe f K K f

e P M K M K P e

e P M K Φ θ θ θ

e P M K Φ θ 

 

 

in Equation (43), we have 

      (44) 

Thus, we can choose the parameters adaptation law of 
the fuzzy approximators as: 

   1 0
2 2

ˆ ˆˆ ˆ
T

T
u      

 
Γ


fθ e P M K Φ θ θ  (45) 

If further choose κ I , η I
  f

, and assume the 
approximation error fs       Φ θ ω θ  be 
bounded, i.e., ω W , then we can obtain 

 
   

 
 

   

1
1 1 1 2 2 2

2
1 1

2 2 2 2 2 2

1

0 0

ˆ ˆ ˆ ˆ  

ˆ 

2
2

 
2

T T T
a o f

T T
u u

T T
s o f

T

V

W

W
V

4














 



   

 

 

    

  

  

   

0

e P e e P e f K K f

e P M K P e e P M K

θ θ

f K K f θ θ

θ θ θ θ

 

    


1 2 3
2 1 1 2 3

1 1 2 2 3 1
2 1 2 1 1 2 3 2 1 1

1 2 1 1
2 2 2 1

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ

a f x

u u d f x

T T T
u fs d o f f

   

  

     

         

      



   

1

K f K x K x K x K x

K M x κe κ e M K f K x K x K x K x P P e

M K P e x + κe κ e θ Γ θ f K K f + f e



 (46) 

 

 1 1 2 1 2 2+

 

T TV   


 e P e κe e P M

M K  

(38) 

          
   
        

2 3
2 1 1 1 2 2 3 3

2 3 2 1
2 1 1 2 3 2 1 2 1 1

1 2 3 1 1 1
2 1 1 2 3 2 2

ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

f f x x

m f x d

f x u u u f



   

           

        

     



K f K K x K K x K K x K K x

K x K x K x K x ε x 2κe κ e εP P e

f K x K x K x K x ε M K M K P e ε M K Φ θ





2 2
ˆ ˆ

 

T


 

 

1e P M K

ε K f



   (40) 

ˆˆ ˆ+εM K
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Letting θ  2d

   0 0T
 θ θ

class-

2

W
d

4




  θ θ         (47) 

and defining K  functions: 

 1 1

2e sV  Te e Pe ,  

and            1f
 f f

   1T
o f
K K f , 

Equation (46) can be rewritten as 

   1 1
2a e f

V    e f


2
T d


 θ θ       (48) 

Hence, when      1
1 2e d e  

or                 

or               1
1f

d f 
 0aV 

, ,  and 

, , 

and thus the overall adaptive control system is boundedly 
stable. 

4. Results and Discussion 

In this section computer simulation will be used to illus- 
trate the performance of the proposed adaptive fuzzy 
control with hysteresis observer for a three-axis flexure 
stage. Triangular uncertainties for the x, y, and z axes 
( x y z ) shown in Figure 3 are selected in the 
simulation. The desired trajectories for the x, y, and z 
axes are selected as follows (t in ms): 
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Figure 3. Triangular uncertainties for the x, y, and z axes. (a) Dx, (b) Dy, (c) Dz. 
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Controller parameters are selected as follows: 
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The simulation results are shown in Figure 4. From Fig- 
ures 4(a)-(c), we know that the tracking performances 
are very good. The tracking errors of x- and y-axes are 
within –2.5 nm - 2.2 nm, and the tracking error of z-axis 
is within ±2 nm. From Figures 4(d)-(f), the hysteresis- 
variable estimate errors of x- and y-axes are within ±0.5 
nm, and the estimate error of z-axis is within ±1 nm. The 
control voltages x y z are shown in Figure 4(g), 
and the fuzzy compensation voltages ,fs x , ,fs y

u u u
  , and 

,fs z  are shown in Figure 4(h). And the parameters 
update processes of the function approximators for x-, y-, 
and z-axes are shown in Figures 4(i)-(k), respectively. 
The parameters of the first and fifth rules are not updated 
since the tracking errors are small and they are nearly not 
fired. Although the persistent exciting of the system sig- 
nals of this considered simulation case are not sufficient 
enough to let the other parameters converge to constants, 
the adaptive control system can guarantee the tracking 
control performance to be still very good. 

5. Conclusion 

In this work, a stable adaptive control law with nonlinear 
dynamic hysteresis observer for a three-axis flexure stage  
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Figure 4. Control results. (a) x-axis, (b) y-axis, (c) z-axis tracking errors; Hysteresis es erro ) timate rs, (d xf  y; (e) f ; (f) zf ; 

ages , yu  and zu ,fs , y  and  ; Param process 

(i) x-axis; (j) y-axis; (k) z-axis. 
 
is proposed. Fuzzy function approximators are included 
in the control law to compensate for the identification 
inaccuracy, model uncertainty, and flexure coupling ef- 
fect. The stability of the overall closed-loop system is 
guaranteed using the Lyapunov theory. Simulation re- 
sults are shown to illustrate the effectiveness of the sug- 
gested control approach. In the future study, actual im- 
plementation can be considered for the development of a 
precision stage for testing the control performance. 
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