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ABSTRACT

We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1].
It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the
U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 super-
symmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS
matrix theory and the 11B matrix model in a large N limit by taking appropriate vacua.
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1. Introduction

The BFSS matrix theory is conjectured to describe infi-
nite momentum frame (IMF) limit of M-theory in [2] and
many evidences were found. However, because of the
limit, SO(1,10) symmetry is not manifest in these models;
it includes only time and nine matrices corresponding to
nine spatial coordinates. As a result, it is very difficult to
derive full dynamics of M-theory. For example, we do
not know the manner to describe longitudinal momentum
transfer of DO-branes. Therefore, we need a covariant
matrix model for M-theory that possesses manifest SO
(1,10) symmetry.

Recently, structures of 3-algebras [3-5] were found in
the effective actions of the multiple M2-branes [6-14]*
and 3-algebras have been intensively studied [15-31].
One can expect that structures of 3-algebras play more
fundamental roles in M-theory? than the accidental struc-
tures in the effective descriptions.

The BFSS matrix theory and the 11B matrix model [35]
can be obtained by the matrix regularization of the Pois-
son brackets of the light-cone membrane theory [36] and
of Green-Schwarz string theory in Schild gauge [35],
respectively. Because the regularization replaces a two-
dimensional integral over a world volume by a trace
over matrices, the BFSS matrix theory and the 11B ma-
trix model are one-dimensional and zero-dimensional
field theories, respectively. On the other hand, the bos-
onic part of the membrane action has a structures of a

'ABJM theory can also be rewritten in a 3-algebra manifest form [14].
2A formulation of M-theory by a cubic matrix action was proposed by
Smolin [32-34].
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3-algebra. That is, it can be written in the 3-algebra
manifest form as

2
S =Ty, [d°c\fy —%[%{XL,XM,XN}J +A

where {,,} denotes Nambu-Poisson bracket [15,16].
Therefore, a bosonic covariant 3-algebra model for M-
theory was proposed in [1].

In this paper, we examine a natural supersymmetric
extension of the bosonic covariant model in [1]°,

sz—%<[xL,xM,xN]2>

o ()
+Z<‘I’FMN (XM XM w]),

The bosons X' and the Majorana fermions ¥ are
spanned by the elements of the Lorentzian Lie 3-algebra
associated with the U(N) Lie algebra. This action defines
a zero-dimensional field theory and possesses manifest
SO(1,10) symmetry. By expanding fields around appro-
priate vacua, we derive the BFSS matrix theory and the
1B matrix model in a large N limit.

2. A Supersymmetric Extension

We examine a following model,

sz—%<[xL,xM,x“]Z>

o )
+Z<‘I’FMN [x",x" \}']>
*This extension was originally proposed in Appendix of [1].
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where X" with L=0,1---,10 are vectors and ¥
are Majorana spinors of SO(1,10). This action defines a
zero-dimensional field theory and possesses manifest SO
(1,10) symmetry. There is no coupling constant.

XM and ¥ are spanned by the elements of the Lor-
entzian Lie 3-algebra associated with the U(N) Lie alge-
bra,

XM = XNT 4+ X' T+ XMT,

Y=Y T +¥T'+¥ T, @
where i=1,2,---,N?. The algebra is defined by

[T710]=0,

[To T T )= [T ] = £iT%, 3)

[TLT0,T = fT,

where a,b=-1012-,N? and f%=1f"h" is to-
tally anti-symmetrized. [T',T‘l is a Lie bracket of the
U(N) Lie algebra. The metric of the elements is defined

by

(17 =0,(T°,1%) =0, )
(T°,1')=0, (T',T7)=nh',
By using these relations, the action is rewritten as

s =t 20 Do X 00 Do )

+%X§"‘T’FMN[XN,‘P] (5)

_%‘TJOFMN‘P[XM,XNJJ,

where X" =XM"T' and W =W,T'. There is no ghost
in the theory, because X" or W_, does not appear in
the action”.

Let us summarize symmetry of the action. First, gauge
symmetry is the N?-dimensional translation and U(N)
symmetry associated with the Lorentzian Lie 3-algebra
[10].

Second, there are two kinds of shift symmetry. First
one is the eleven-dimensional translation symmetry ge-

where ¥ eU(N), & €U(1) and the other fields are
not transformed.

Third, the action is invariant under another part of su-
persymmetry transformation, so called the dynamical su-
persymmetry transformation,

S, XM =ig,r"¥y (8)

5,X) =ig,T"¥, )
[

52‘P=—E[XL,XM]XUNFLMN52 (10)

(6,%,)¥ =-5,8, (11)

where ‘i‘zétr(FMN‘P[XM,XN]) and 6,5 is the

variation of the action (5) under (8), (9) and (10).

We should note that the above super transformation is
slightly different with a 3-algebra manifest super trans-
formation, which is a straightforward analogue to that of
the BLG theory for multiple M2-branes;

SXM =igMy
i LMN (12)
4 :_E[XL' Xy Xy [T,

If we decompose this transformation, (8), (9) and (10)
are the same, but (11) is different. In the analogue case,
0¥, =0. There is no such symmetry® because
0,S #0.

In the Lorentzian case, the action does possess super-
symmetry because &,%, cancels &,S . However,
0,¥, is inconsistent with the 3-algebra symmetry. As a
result, the supersymmetry algebra does not close, al-
though it closes ina X" sector as one can see below.

The commutators among the supersymmetry transfor-
mations acton X" as

(6.5 - 80, ) XM =—ige,

(6,6,-5,6,)XM =0

(8,8, -8,8,) XM = A, [T2T0, XM | T,
where A, =—ig,[ & XXy .

If we change a basis of the supersymmetry transforma-
tions as

0, =0,+0
nerated by 1 .2 1 (13)
5XM :77M7 (6) 52=I(52—5l),
Where X" eU(N), 7" eU(1) and the other fields P the gauge Ereinsfcjr[nation, we obtain
are not transformed. Second one is a part of supersym- (51'51—5151') XM = 6,X M
metry, so called the kinematical supersymmetry, gener- Y "
ated by (5252 - 5252) X" =0,X (14)
SY =g, @ (836, 6,5,) X" =0,
“Ghost-free Lorentzian 3-algebra theories were studied in [37,38]. 5This fact was originally shown in [39].
Copyright © 2012 SciRes. JMP
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where ¢, is a translation.

These 64 supersymmetry transformations are summa-
rised as A=(5,,5,) and (14) implies the A =2 su-
persymmetry algebra in eleven dimensions in the X"
sector,

(AA"-A'A) XM =5 XM, (15)

Because the low energy effective description of M-
theory is given by the N =1 eleven-dimensional su-
pergravity, the A =2 supersymmetry in this sector is
necessarily broken into the A =1 supersymmetry,
spontaneously. In the next section, we will show that the
model reduces to the BFSS matrix theory and the 11B
matrix model in a large N limit if appropriate vacua are
chosen.

Because the commutators among the supersymmetry
transformations of X" result in the eleven-dimensional
translation (6), eigen values of X U (N) should be
interpreted as eleven-dimensional space-time®. In the
next section, when we derive the BFSS matrix theory and
the 1B matrix model, X'(i=1,--,9)eU(N) and
X'(i=0,---,9)eU(N) are identified with matrices in
the BFSS matrix theory and the 1IB matrix model
respectively. Therefore, our interpretation is consistent
with the space-time interpretation in these models.

3. BFSS Matrix Theory and 11B Matrix
Model from Covariant 3-Algebra Model
for M-Theory

The covariant 3-algebra model for M-theory possesses a
large moduli that includes simultaneously diagonalizable
configurations. By treating appropriate configurations as
backgrounds, we derive the BFSS matrix theory and the
1B matrix model in the large N limit.

We consider backgrounds

X+ = p* =diag( p{’, ps.-+-, pi) (1)
X'=0 2
xu =L su ®

g
¥Y=y¥,=0, 4)

where 4 =0,1,---,d-1(d <10) and 1=d,--,10.

(ph, ol pyy) (i=1-,N) represent N points
randomly distributed in a d-dimensional space. There are
infinitely many such configurations. X' represents an
eleven-dimensional constant vector. By using SO(1,10)
symmetry, we can choose (3) as a background without
loss of generality. g will be identified with a coupling
constant. g — oo corresponds to  X)' =0, which leads

This kind of mechanism and interpretation was originally found in
[35].

Copyright © 2012 SciRes.

to SO(1,10) symmetric vacua.

We assume all the backgrounds (1), (2), (3) and (4) as
independent vacua and fix them in the large N limit [40].
Thus, we do not integrate X', ¥, or the diagonal
elements of a, and we expand the fields around the
backgrounds as,

Xﬂ =p,+a,
X, =X, (5)
Y=y,

where we impose a chirality condition

My =y. (6)

Under these conditions, the first term of the action (5)
is rewritten as

1

s, :tr(—Z(XOL)Z[XM , xN]Zj
= _4—}“([ P, +a,.p, +av]2 +2[pﬂ +aﬂ,x']2 (7

+[x',xJ ]2)

The second term is
s, :%tr((xgﬂ [xM,xN])Z)
= étr([ P, +aﬂ,x1°]2 +[x1°,x' ]2)

As a result, the total action is independent of x'° as
follows,

®)

1 1
S= _?tr(z[p# +a,,p, +av}2

2pra X o2 [xx ] ©

[EN

«

-7 T p, +a,,,u/]+%v7 r [xi,v/]),

N

where i, j=d,---,9. In the large N limit, this action is
equivalent to

1 1 1 V2Ll i
S = _?Jddo.tr[zlzﬂzv —E(Dﬂx ) +Z|:X .XJ:I
i 1o
w4 F”D,J//Jr?// r [Xi*‘/’]]’

where  is redefined to %y/. This fact is proved
g
perturbatively and non-perturbatively in the large N limit
as in the case of the large N reduced model [41-44].
Under the conditions (1)-(6), the super transforma-
tions (8) and (10) reduces to

JMP
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sa’ =iz Ty

ox' =ig Ty
5w:—%([pﬂ+a#, pv+av]l“’”+[x‘,xj]l"”)g,

by which (9) is invariant. Moreover, (9) and (11) reduces

to

SXM =0
’ (10)
5%, =0,

because the action (5) reduces to the action (9) and
5,5 =0. This is consistent with the fact that X' and
Y, are fixed.

Therefore, if we choose the backgrounds with d =1,
we obtain the BFSS matrix theory in the large N limit,

4;2 _|'drtr[2(Doxi )2 —[x‘ X1 ]2

o L
—ll//FODol//—E!//F [Xi,l//]j-

S =

(11)

2

If we choose those with d =0, we obtain the IIB
matrix model in the large N limit,

S = _étr([xi , X3 ]2 +%l/7 I'[x W]j (12)

We also obtain matrix string theory [45-47] when
d=2 and AdS,/CFT, [48]when d=4.

4. Conclusion and Discussion

In this paper, we have studied a natural supersymmetric
extension of the bosonic covariant 3-algebra model for
M-theory proposed in [1]. It possesses manifest SO(1,10)
symmetry. The action is invariant under 64 supersym-
metry transformations, although the supersymmetry al-
gebra does not close. In this model, the eleven-dimen-
sional space-time is given by eigen values of the U(N)
part of the bosonic fields X" . From this action, by
choosing appropriate vacua, we have derived the BFSS
matrix theory and the 1IB matrix model in a large N
limit.

In order to obtain a covariant 3-algebra model for
M-theory by means of a matrix regularization of a super-
membrane action, the action must be written only with
the Nambu brackets. Then, the action must be invariant
under constant shifts of the fermions, that is under the
kinematical supersymmetry transformations. The number
of them is 32 because the Majorana fermions possess 32
components for covariance. Thus, the total number of the
dynamical and kinematical supersymmetries exceeds the
number of the A =1 supersymmetries. Therefore,
there does not exist a A =1 supersymmetric covariant

Copyright © 2012 SciRes.

3-algebra model for M-theory that is obtained by a ma-
trix regularization of a supermembrane action. As a result,
there are two possibilities for 3-algebra models for M-
theory. One is a covariant 3-algebra model for M-theory
that possesses more than 32 supersymmetries as in this
paper. Another is a N =1 supersymmetric 3-algebra
model for M-theory that is obtained by a matrix regu-
larization of a non-covariant supermembrane action’.
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