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ABSTRACT 

The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study 
the structural and electronic properties of the ternary ZnxCd1−xSe alloy, based on density functional theory (DFT). In 
this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were 
used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materi-
als CdSe, ZnSe and their alloy in cubic phase. In particular, the lattice constant, bulk modulus, electronic band struc-
tures and effective mass. We mainly showed deviation of the lattice parameter and bulk modulus from Vegard’s law of 
our alloys. We also presented the microscopic origins of the gap bowing using the approach of Zunger et al. The results 
are compared with other theoretical calculations and experimental data and are in reasonable agreement. 
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1. Introduction 

In recent years II-VI semiconductors have received much 
attention because of their technological potential applica- 
tions, ranging from optoelectronic devices such as light 
emitting diodes [1,2], solar cells [3,4], displays [5,6], 
photovoltaic cells [7,8] to luminescence biological tags 
[9,10]. Their mixed II-VI ternary semiconductors are 
used in optoelectronic devices ranging from blue to near- 
ultraviolet spectral region [9-11]. These materials are 
also used for manufacturing X-ray, γ-ray detectors [12, 
13]. Cd based compounds can also be used as an alterna-
tive material for short and medium wavelength infrared 
focal plane arrays [13,14]. Among them, ZnSe and CdSe 
which are members of the II-VI semiconductors are 
technologically important materials due to their direct 
and rather large gap. ZnSe compounds have cubic (zinc 
blende) structure [15,16], whereas CdSe compounds de- 
pending on the growth condition may have both zinc 
blende and wurtzite (hexagonal) structures at normal 
conditions. Theoretical studies indicate that CdSe com- 
pounds are stable in both zinc blende and wurtzite struc- 
tures [17-19], we choose the zinc-blende phase, since it 
has fewer atoms in unit cell, and is therefore computa- 
tionally easier to treat. The structural and electronic 
properties of these compounds have been investigated, 

both experimentally and theoretically during the past 50 
years. ZnxCd1−xSe mixed crystals have recently been stu- 
died theoretically [20,21] and experimentally [22,23]. With 
different methods for example, Suzuki and Adachi [24] 
have calculated the optical constants of ZnxCd1−xSe (for x 
= 0, 0.47, 0.53, 1) using the first-principle methods. Elec- 
tronic and optical properties of ZnxCd1−xSe (for x = 0, 0.25, 
0.75, 1) have been investigated using the empirical pseudo- 
potential method (EPM) by Benosman et al. [21]. Kim et 
al. [22] have investigated optical properties of ZnxCd1−xSe 
films grown on GaAs. Samarth et al. [23] have studied 
the composition (x) dependence of the fundamental gap 
of ZnxCd1−xSe based on the reflection spectroscopy. 

In this work, we have aimed to provide some addi- 
tional information to the existing data on disorder effect 
of ZnxCd1−xSe mixed crystals using the FP-LMTO me- 
thod [25,26] to have an idea about their behaviors. The 
physical origins of gap bowing are calculated following 
the approach of Zunger and co-workers, all first we com- 
pare and investigate the structural, and electronic proper- 
ties of ZnSe and CdSe compound using LDA, GGA. 

The paper is organized as follows: Section 2 describes 
briefly the method used, in Section 3 we present our re- 
sults concerning structural, electronic, bowing parame- 
ters, effective masses and we make a comparison with 
values reported in the literature, a final Section 4 presents 
our conclusions. *Corresponding author. 
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2. Method of Calculations 

In order to calculate the structural and electronic proper- 
ties of ZnxCd1−xSe alloys, we have employed the FP- 
LMTO method to solve the Kohn Sham equations. We 
have performed our calculations by Lmtart code [27] 
within the framework of density functional theory (DFT) 
[28] that has been shown to yield reliable results for the 
electronic and structural properties of various solids. For 
the exchange-correlation potential we have used both the 
local density approximation (LDA) [29] and the general-
ized gradient approximation (GGA) based on Perdew et 
al. [30]. The FP-LMTO method treats muffin-tin spheres 
(MTS) and interstitial regions (IR) on the same footing, 
leading to improvements in the precision of the eigen-
values. At the same time, the FP-LMTO method, in 
which the space is divided into (IR) and non overlapping 
(MTS) surrounding the atomic sites, uses a more com-
plete basis than its predecessors. In the IR regions, the 
basis functions are represented by Fourier series. Inside 
the MTS, the basis functions are represented in terms of 
numerical solutions of the radial Schrödinger equation 
for the spherical part of the potential multiplied by 
spherical harmonics. The charge density and the potential 
are represented inside the MTS by spherical harmonics 
up to lmax = 6. There is a parameter must be defined 
whenever a DFT calculation is performed the cut-off en- 
ergy Ecut. In many ways, this parameter is easier to define 
than k points. The integrals over the Brillouin zone are 
performed up to 22 special k-points for binary com- 
pounds, 24 special k-points for the x = 0.25, x = 0.75 and 
46 special k-points x = 0.5 of ZnxCd1−xSe alloys in the 

irreducible Brillouin zone (IBZ), using the Blöchl’s 
modified tetrahedron method [31]. The self-consistent 
calculations are considered to be converged when the 
total energy of the system is stable within 10–5 Ry. In 
order to avoid the overlap of atomic spheres the MTS 
radius for each atomic position is taken to be different for 
each case. Both the plane waves’ cut-off is varied to en- 
sure the total energy convergence. The values of the 
sphere radii MTS, number of plane waves (NPLW), and 
cut-off energy Ecut used in our calculation are summa- 
rized in Table 1. 

3. Results and Discussion 

3.1. Structural Properties 

At first, a set of total energy calculation versus unit cell 
volume E (V), for binary compounds CdSe, ZnSe struc- 
ture and their ternary alloys in zinc-blende were carried 
out in order to determine the structural parameters. We 
model the alloys at some selected compositions x = 0.25, 
0.5 and 0.75, with ordered structures described in terms 
of periodically repeated supercells containing eight at- 
oms. The corresponding values are fitted with the Mur- 
naghan equation of state [32]. The equilibrium structural 
properties such as the lattice constants a0 and bulk 
modulus B0 were obtained for both binary compounds 
and their alloys, the results are given in Table 2. Consid- 
ering the general trend that GGA usually overestimates 
the lattice parameters [33] on the other side are underes- 
timated through local density approximation (LDA). The 
results obtained in this work are in close agreement with 
those obtained experimentally and are better than results 

 
Table 1. The plane wave number PW, energy cut-off (in Ry) and muffin-tin radius (RMT) (in a.u.) used in calculation for 
binary CdSe, ZnSe and their alloys in Zinc-blende structure. 

 PW Ecut total (Ry)  RMT (a.u.) 

x LDA GGA LDA GGA  LDA GGA 

0 5064 1205 87.333 144.4309 
Cd 

Se 

2.561 

2.561 

2.470 

2.470 

0.25 33,400 65,266 123.6696 181.4858 

Cd 

Zn 

Se 

2.446 

2.446 

2.446 

2.524 

2.524 

2.524 

0.50 33,400 65,266 128.0740 188.2040 

Cd 

Zn 

Se 

2.404 

2.404 

2.404 

2.478 

2.478 

2.478 

0.75 33,400 65,266 133.500 196.3489 

Cd 

Zn 

Se 

2.354 

2.354 

2.354 

2.427 

2.427 

2.427 

1 5064 1205 101.000 168.8865 
Zn 

Se 

2.273 

2.463 

2.205 

2.389 
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Table 2. Calculated lattice parameter (a0), bulk modulus (B) and its pressure derivative (B’) compared to experimental and 
theoretical values of CdSe, ZnSe and ZnxCd1−x Se alloy. 

Lattice constant a0 (Ǻ) Bulk modulus B (GPa) B’ 

 This work Exp. Theo. This work Exp. Theo. This work Theo. 

x LDA GGA   LDA GGA   LDA GGA  

0 6.037 6.262 

 
 

6.05a,b,c,d 
 
 

 
6.19g     6.05b  
6.084h   6.210i 
6.15i      6.195i

6.07j,k    6.05l 
6.017m 

58.9 44.55
53a,e 
69 f 

 
 

45.94g  65.12b 
66j       57.20l 

59.2k       
58.68m 

3.16 3.01 
4.20b 

5.12m 

4.58j 

0.25 5.98 6.172   56.9 43.67   3.34 3.63  

0.5 5.876 6.058   59.7 46.46   3.47 3.126  

0.75 5.755 5.933   62.37 49.40   3.41 3.335  

1 5.616 5.789 
5.667n,o 
5.650n 
5.670p 

5,624q  5.688r 
5.79s      5.667t 

5.681u 

5.730g    5.57g 

68.37 55.43
64.7n 
69.3o 
62.5p 

71.82q      63.9r 

59.01 s     56.55g 

59t       
66 u 

70.93g 

3.03 3.01 

4.77n 
4.88q 

6.53s 

5.41t 

3.8r 

aRef. [40], bRef. [41], cRef. [42], dRef. [43], eRef. [44], fRef. [45], gRef. [46], hRef. [47], iRef. [48], jRef. [49], lRef. [50], kRef. [51], mRef. [52], nRef. [53], oRef. 
[54], pRef. [55], qRef. [56], rRef. [57], sRef. [58], tRef. [59], uRef. [60]. 
 
obtained using other methods. It can be seen that the lat- 
tice constant of ZnxCd1−xSe alloy linear decreases as the 
composition x increases. Also, the order of compressibil- 
ity from high to low is: CdSe > Cd 0.75Zn0.25 SeCd 0.5Zn0.5 

Se Cd 0.25Zn0.75 Se ZnSe. This diminution may stem from 
the lower mass of Zn atom than that of the Cd atom. For 
these configurations, the largest value of bulk modulus 
(68.37 GPa; 55, 43 GPa) with LDA and GGA respec- 
tively, was obtained for ZnSe, therefore it has the higher 
compressibility and it may be a more compressible com- 
pound. Usually, in the treatment of alloys, it is assumed 
that the atoms are located at the ideal lattice sites and the 
lattice constant varies linearly with the composition x 
according to the so-called Vegard’s law [34]:  

   1 1x x ACa A B C xa x a    BC       (1) 

where aAC and aBC are the equilibrium lattice constants of 
the binary compounds AC and BC, respectively, and a 
(AxB1−x C) is the alloy lattice constant. However, devia-
tion from Vegard’s law has been observed in semicon-
ductor alloys both experimentally [35] and theoretically 
[36,65]. Hence, the lattice constant can be written as: 

     1  1 1x x AC BCa A B C x a x a x x b         (2) 

where the quadratic term (b) is the bowing parameter.  
Figures 1 and 2, shows the calculated lattice constants 

and bulk modulus for each x of ZnxCd1−xSe along with 
Vegard’s law (v.z. the lattice constant of alloys should  

vary linearly with composition x [35]). Our calculated 
lattice parameters at different compositions of ZnxCd1−xSe 
alloy were found to vary almost linearly with a marginal 
upward bowing parameter. Using the LDA approxima- 
tion equals to –0.206 Å and 15.21 GPa for the lattice 
constant and bulk modulus, respectively. While, the 
GGA approximation gave values of –0.139 Å and 15.96 
GPa for the bowing lattice parameter and the bulk 
modulus, respectively, Hence the Vegard’s law is valid 
for this alloy. The physical origin of this marginal bow- 
ing parameter should be mainly due to the weak mis- 
matches of the lattice constants of ZnSe and CdSe com- 
pounds. 

3.2. Electronic Properties 

To investigate the electronic properties of ZnSe and 
CdSe compounds as well as their alloy, we have calcu- 
lated the band structure the high symmetry directions in 
the first Brillouin zone in the cubic phase structures 
within LDA and GGA using calculated equilibrium lat-
tice constants as obtained previously. The valence band 
maximum (VBM) and the conduction band minimum 
(CBM) occur at the  point; hence these compounds 
are semiconductors with direct energy band gaps 

Γ
-  . 

This direct energy band gap increased from CdSe (x = 0) 
to Zn (x = 1). The results of this calculation are compared 
with experimental values and results from other works in 
Table 3, the band gaps are smaller than the experimental 
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Figure 1. Composition dependence of the calculated lattice constants within LDA (solid circle) and GGA (solid square) of 
ZnxCd1−xSe alloy compared with experimental (solid triangle). 
 

 

Figure 2. Composition dependence of the calculated bulk modulus within GGA (solid square) and LDA (solid circle) of 
ZnxCd1−xSe alloy compared with experimental (solid triangle). 
 
values, one can note that the GGA approach underesti- 
mates the experimental values of the band gaps for all 
materials of interest. This is an expected result since the 
GGA usually underestimates the energy band gaps [37]. 
The GGA has a simple form which is not sufficiently 
flexible for accurately reproducing both exchange-co- 
rrelation energy and its charge derivative. 

The variation of the concentration (x) versus the value 
of the band structure (direct Γ-Γ  and indirect Γ-X  
band gaps) with both LDA and GGA approximations is 
given in Figure 3. Afterwards this figure we notice the 
wide difference of direct and indirect band gaps of the 
composition x. has a behavior linear. The study of the 
polynomial function represents that our alloy has a direct 
gap with different concentration (0.25, 0.5 and 0.75), this  

E E

alloy ZnxCd1−xSe is different compared with other alloys, 
stabilizes and is not subject to change.  

And obey the following variations: 

ZnxCd1−xSe

2
-

2
-

2
-

2
-

0.42 0.036 0.04 ,
(GGA)(3)

 4.68 0.93 0.27 ,

0.421 0.015 0.05
(LDA)(4)

 4.8 0.61 0.18

X

X

E x x

E x x

E x x

E x x

 



 



   


  
   


  

 

The overall bowing coefficient at each composition x 
measures the change in the band gap according to the 
formal reaction 

       1 1  AC BC x x eqx AC a x BC a A B C a     (5) 

Copyright © 2012 SciRes.                                                                                 MSA 



Physical Properties of the ZnxCd1–xSe Alloys: Ab-Initio Method 772 

 
Table 3. Direct (Γ-Γ) and indirect (Γ-X) band gaps of CdSe and ZnSe and their alloy at different concentrations (all values 
are in eV). 

Energy gap (eV) (Γ-Γ) Energy gap (eV) (Γ-X) 

 This work Exp. Other cal This work Expt Other cal 

x LDA GGA   LDA GGA   

0 0.42 0.41 1.9a 

1.9c 1.08d 0.71e 

1.48f 0.47g 0.75g 

0.76h 2.01h 2.65i 

4.95 4.87 5.4a 5.4b 

0.25 0.48 0.49   4.26 3.89   

0.5 0.62 0.58   4.29 3.94   

0.75 0.83 0.76   4.73 4.36   

1 1.18 1.00 
2.80a 

2.82a 

2.8j 1.39c 2.76k 

1.176g 1.86l 

1.6m 1.2n 

5.11 5.06 4.5a - 4.3b 
4.49 j 4.54k 3.5m

2.5o 

aRef. [61], bRef. [62], cRef. [63], dRef. [40], eRef. [46], fRef. [64], gRef. [65], hRef. [50], iRef. [66], jRef. [67], kRef. [68], lRef. [69], mRef. [70], nRef. [52]. 

 

 

 

Figure 3. Energy band gap of ZnxCd1−xSe alloy as a function of Se composition using LDA and GGA approximations. 
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where AC  and a BC  are the equilibrium lattice con- 
stants of the CdSe, ZnSe compounds and eqa  is the 
equilibrium lattice constant of the ZnxCd1−xSe alloy with 
the average composition x. 

a

The physical origins of the bowing gap were investi- 
gated following the approach of Zunger and co-workers 
[38,39], which decompose it into three contributions: 

        AC BCAC a BC a AC a BC a       (6) 

      11 x x  xAC a x BC a A B C a       (7) 

   1 1x x x x eqA B C a A B C a         (8) 

The first step measures the volume deformation (VD) 
effect on the bowing. The corresponding contributions 
bVD to the bowing parameter represents the relative re-
sponse of the band structure of the binary compounds AC 
and BC to hydrostatic pressure, which here arises from 
the change of their individual equilibrium lattice con-
stants to the alloy value a = a(x). The second contribution, 
the charge exchange (CE) contribution bCE, reflects the 
charge transfer effect which is due to the different (aver-
aged) bonding behaviour at the lattice constant a. The 
last contribution, the so called “structural relaxation” 
(SR), measures changes in passing from the unrelaxed to 
the relaxed alloy by bSR. Consequently, the total bowing 
parameter is defined as: 

VD CE SRb b b b               (9) 

The general representation of the composition de- 
pendent band gap of the alloy in terms of the binary 
compounds gaps is ECdSe(aCdSe), EZnSe(aZnSe), and the total 
bowing parameter b is given by 

        1g AC AC BC BCE x xE a x E a bx x    1  (10) 

where EAC and EBC corresponds to the energy gap of 
ZnSe and CdSe for the ZnxCd1−xSe alloy. This allows a 
splitting of the total bowing b into three contributions 
according to  

       
   

1
AC AC AC BC BC BC

VD

E a E a E a E a
b

x x

 
 


 (11) 

     
 

      
1 1
AC BC ABC

CE

E a E a E a
b

x x x
  

  x
     (12) 

   
 1

ABC ABC eq

SR

E a E a
b

x x





         (13) 

All of these energy gaps occurring in expressions (11)- 
(13) have been calculated for the indicated atomic struc- 
tures and lattice constants.  

The calculated bowing coefficients b calculated at mo- 
lar fractions x = 0.25, 0.50 and 0.75 for ZnxCd1−xSe alloy 
are listed in Table 4 using FP-LMTO method within  

LDA and GGA approximations we notice that the struc- 
tural relaxation effect is the smaller for the studied com- 
positions x = 0.25, 0.50 and 0.75 and the main contribu- 
tion to the band gap bowing is essentially due to the 
charge exchange (CE) contribution for x = 0.25 x = 0.5 
and 0.75. It is clearly seen that our LDA values for total 
bowing parameters are better than the corresponding with 
in GGA. Figure 4 shows the variation of the band gap 
bowing versus concentration. It is shown that the optical 
bowing decreases slightly from 0.25 to 0.5, and beyond 
0.5 it increases rapidly, to the best of our knowledge, 
there are no theoretical or experimental data on the band 
gap bowing to check our predicted results. 

3.3. Effective Masses 

Although the effective mass approximation is used ex- 
tensively throughout the literature, the actual electron 
and hole effective masses for the alloys in the whole 
range of x, are unknown. The transport and optical phe- 
nomena usually are governed by the band structures in 
the immediate vicinity of the Brillouin zone center. Thus 
the effective mass approximation turns to be an appro- 
priate method to make the analysis of the electronic en- 
ergy band curvatures. Generally, the effective mass is a 
tensor with nine components, however for the much  
 
Table 4. Decomposition of optical bowing into volume de-
formation (VD), charge exchange (CE) and structural re-
laxation (SR) contributions (all values in eV). 

  This work 

x  LDA GGA 

0.25 bVD 0.3980 0.3461 

 bCE 5.6990 5.4295 

 bSR 0.3082 0.1657 

 b 6.4052 5.9413 

0.5 bVD 0.42625 0.3832 

 bCE 5.5010 4.9792 

 bSR 0.2784 0.1665 

 b 6.2056 5.5289 

0.75 bVD 0.4571 0.4029 

 bCE 9.5785 8.706 

 bSR 0.3350 0.2103 

 b 10.3706 9.3192 
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Figure 4. Calculated band gap bowing parameter as a function of Se concentration within GGA (solid square) and LDA 
(solid triangle). 
 
Table 5. Electron (me

*), light hole (mlh
*) and heavy hole (mhh

*) effective masses (in units of free electron mass m0) of the ter-
nary alloy ZnxCd1−xSe compared with the available experimental data and theoretical result. 

me
* mhh

* mlh
* 

 This work Exp. Other calc This work Other calc This work Other calc

x LDA GGA   LDA GGA  LDA GGA  

0 0.100 0.007   0.240 0.360  0.160 0.230  

0.25 0.198 0.260   0.130 0.180  0.300 0.410  

0.5 0.300 0.400   0.135 0.185  0.330 0.440  

0.75 0.190 0.240   0.110 0.150  0.240 0.320  

1 0.100 0.008 0.147a 
0.112b  

0.214c 
0.160 0.230 

1.024b 
0.265c 0.100 0.140 

0.104b 

0.064c 

aRef. [71], bRef. [72], cRef. [65]. 

 
idealized simple case, where the E-k diagram can be fit- 
ted by a parabola E = ћ2k2/2 m*, the effective mass be- 
comes a scalar at high symmetry point in Brillouin zone. 
We have computed the electron effective mass at the 
conduction band minima (CBM) and the hole effective 
mass at the valence band maxima (VBM) for CdSe, ZnSe 
and their ternary alloys, the results of our calculations 
were investigated in Table 5, that shows the calculated 
electron and hole (heavy and light) effective masses from 
0 to 1.0 for ZnxCd1−xSe alloys at point Γ of the Brillouin 
zone. Our results concerning the electrons, heavy holes 
and light hole effective mass are shown in Figure 5. 
From Table 5, we can outline that the calculated electron 
effective masses for the studied composition are much 
smaller, predicting a higher mobility of electrons, for all  

concentrations in ZnxCd1−xSe alloy, the carrier transport 
in this alloy should be dominated by electrons. Our cal- 
culated effective masses for ZnSe are found comparable 
by Baaziz et al. [72]. 

4. Conclusion 

The (FP-LMTO) method is used to calculate the struc- 
tural and electronic properties zinc-blende phase of CdSe, 
ZnSe and their ZnxCd1−xSe alloy within LDA and GGA 
approximations. We observed that GGA somewhat over- 
estimates the experimental data on the other side are un- 
derestimated with the LDA approximation. A small de- 
viation of the lattice constant from Vegard’s law was ob- 
served for ZnxCd1−xSe alloy. The electronic band struc- 
ture is in good agreement with the experimental and other 
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Figure 5. (a) Electron effective mass at point Γ as function of Se composition within LDA and GGA. (b) Heavy hole effective 
mass (in units of free electron mass m0) of Se composition within LDA and GGA. (c) Light hole effective mass at point Γ as 
function of Se composition within LDA and GGA. 
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computational work. Our results show a strong depend- 
ence of the band gap bowing factor using Zunger ap- 
proach on composition. The effective masses are inves- 
tigated and showed good accordance using LDA and 
GGA especially for electron mass. 
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