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ABSTRACT 

This paper introduces a stochastic hemodynamic sys- 
tem to describe the brain neural activity based on the 
balloon model. A continuous-discrete extended Kal- 
man filter is used to estimate the nonlinear model 
states. The stability, controllability and observability 
of the proposed model are described based on the 
simulation and measurement data analysis. The ob- 
servability and controllability characteristics are in- 
troduced as significant factors to validate the prefer- 
ence of different hemodynamic factors to be consid- 
ered for diagnosis and monitoring in clinical applica- 
tions. This model also can be efficiently applied in any 
monitoring and control platform include brain and 
for study of hemodynamics in brain imaging modali- 
ties such as pulse oximetry and functional near infra- 
red spectroscopy. The work is on progress to extend 
the proposed model to cover more hemodynamic and 
neural brain signals for real-time in-vivo application.  
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1. INTRODUCTION 

Brain function can be studied by monitoring two major 
types of signals: neuronal signal and hemodynamic sig- 
nal. Investigating functional principles of the human 
brain requires a multimodal approach. The most widely 
used imaging techniques are functional magnetic reso- 
nance imaging (fMRI) and functional near infra-red 
spectroscopy (fNIRS). They rely on an indirect signal, 
the blood oxygenation level-dependent (BOLD) contrast 
[1], which is caused by an increase in oxygen delivery, 
strongly exceeding the metabolic demand [2]. fNIRS is 
the only neuroimaging system capable of detecting both 
fast neuronal signal and slow hemodynamic signal [3]. 
The other brain monitoring methods such as electro en- 

cephalogram (EEG) and magneto encephalogram (MEG) 
can only measure the fast neuronal signal (electro- 
physiological aspect), the positron emission tomography 
(PET) and fMRI can measure only the slow hemody- 
namic signal (metabolic aspect). fNIRS obtains informa- 
tion on cerebral oxygenation, blood flow, activation, 
blood volume and metabolic status of the brain, not oth- 
erwise obtained with any single method and at a re- 
markably low cost.  

In fNIRS, the brain tissue is penetrated by near-infra- 
red (NIR) radiation and the backscattered signal is ob- 
served to investigate the brain’s function. In NIR range 
(650 nm - 950 nm), water has relatively low absorption 
while oxy- and deoxy-hemoglobin have high absorption. 
Due to these properties, NIR light can penetrate biologi- 
cal tissues in the range of 0.5 - 3 cm allowing investiga- 
tion of relatively deep brain tissues, and ability to differ- 
entiate between healthy and diseased tissues [4].  

However the mapping between NIRS signals and the 
underlying variables is not straightforward, as a number 
of different causes may give rise to the same signal 
changes. Thus in order to correctly interpret and maxi- 
mize the clinical usefulness of the information that can 
be extracted from NIRS data, a model of the underlying 
physiology is required [3]. The highly dependency and 
correlation of neurons processing, metabolic and vascu- 
lar responses are conceptually well known in time and 
state space [5], but still the details on the translation be- 
tween an ensemble of neurons firing and the ensuing 
increase in focal cerebral blood flow is a controversial 
issue. The most popular model to describe the neural 
activity according to the data from fMRI, is balloon 
model, which relates BOLD signal to the blood flow. 
This model is a nonlinear hemodynamic model and the 
measurements usually have a noisy behavior. Further- 
more, the electromagnetic field produced by neurons is 
very weak and noisy, so the signal-to-noise-ratio (SNR) 
is very low. 
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We have used a Kalman filter as a statistical method to 
extract data from the signal and increase the SNR. In 
order to use Kalman filter we should have a model which 
represents the relation between neural activity (hemody- 
namic response) and the BOLD signal. Here the balloon 
model is used. We have used NIRS data on a bal- 
loon-based model with a stochastic hemodynamic system 
model to describe noise. An extended Kalman filter is 
applied as a reasonable model to estimate the nonlinear 
model states and output of the balloon model.  

Since neuronal activity induces this hemodynamic re- 
sponse, the BOLD signal provides a noninvasive meas- 
ure of neuronal activity. Understanding the mechanisms 
that drive this BOLD response is fundamental for accu- 
rately inferring the underlying neuronal activity [4]. The 
goal of this study is to systematically predict spatiotem- 
poral hemodynamics from a biophysical model, then test 
these using fNIRS study of the visual cortex. Using this 
theory, we predict and empirically confirm the existence 
of hemodynamic waves in cortex and validate them re- 
garding to the stability, controllability and observability.   

As a consequence, in this paper the general back- 
ground of hemodynamic response and BOLD signal is 
explained in section 2 and the impact of stability is ad- 
dressed. The proposed model is introduced in section 3. 
Section 4 presents the simulation and experimental re- 
sults following by analysis and discussions on the stabil- 
ity, controllability and observability of the proposed sys- 
tem. 

2. BOLD SIGNAL AND HEMODYNAMIC 
RESPONSE 

2.1. BOLD Signal 

In order to measure the neural activity of the brain the 
EEG and MEG could be applied for electrophysiological 
aspects and the MRI and PET for metabolic aspects. 
fMRI is one of the most popular methods of neuroimag- 
ing, which uses hemodynamic response to show the neu- 
ral activity of the brain. When the blood oxygenation 
changes in the brain, it shows that we have a neural ac- 
tivity. So, this is a way to track the neural activity by 
detecting the hemodynamic changes in the brain. Hemo- 
dynamic is the study of blood flow in the circulatory 
system and fMRI detects these hemodynamic changes. 
When a neural activity occurs, neurons need glucose and 
oxygen from blood and according to this need, blood 
sends glucose to the neuron. This process is called 
hemodynamic response and leads to increase in oxyhe- 
moglobin in the vein vessels and produces a detectable 
change for MRI which is called BOLD signal. This 
BOLD signal shows the brain activity and fMRI uses this 
signal to show this activity.  

Among all the fMRI methods, BOLD contrast is the 

dominant technique. The BOLD signal is sensitive to the 
local deoxyhemoglobin concentration; however the BOLD 
signal does not directly measure the neural activity itself. 
Instead the BOLD effect is sensitive to a series of 
physiological responses that are referred collectively as 
the hemodynamic response for activation. Changes in 
neural activity engender complex changes in physiologi- 
cal states, including the cerebral blood flow (CBF), cere- 
bral blood volume (CBV), and cerebral oxygen con- 
sumption rate (CMRO2), which in turn alters the local 
deoxyhemoglobin concentration. The most standard 
fMRI analysis methods use the General Linear Model 
(GLM), which assumes a linear relationship between the 
neural activity and the BOLD response. fNIRS is a 
non-invasive, minimally intrusive safe imaging system 
applied for long-term and bedside brain monitoring. 
Comparing to other brain imaging systems, fNIRS is the 
only neuroimaging system capable of detecting both fast 
neuronal signal and slow hemodynamic signal [6]. It 
allows determining the Δ[HbO], Δ[HbR] and Δ[HbT]. 
While offers a high temporal resolution, but it has a 
moderate spatial resolution (~1 cm concerning the to- 
pography of cortex).  

In fNIRS, the brain tissue is penetrated by near-infra- 
red (NIR) radiation and the reflected signal is observed 
to investigate the brain’s function. In NIR range (650 nm 
- 950 nm), water has relatively low absorption while 
oxy- and deoxy-hemoglobin have high absorption. Due 
to these properties, NIR light can penetrate biological 
tissues in the range of 0.5 - 3 cm allowing investigation 
of relatively deep brain tissues, and ability to differenti- 
ate between healthy and diseased tissues [7]. The light 
attenuation changes (ΔA) correlation to the changes in 
concentration (ΔC) of oxy- and deoxyhemoglobin are 
calculated based on Beer-Lambert law as follow:  

   
     oxy oxy Doxy Doxy

( )a

a

A rB

C C

   

  

  

       
   (1) 

where r is the source-detector separation distance and B 
is differential path-length factor implies the effect of 
scattering on attenuation. The main hypothesis that a 
homogenous change of absorption in the tissue under 
investigation, is violated by the fact that focal functional 
activation elicits focal changes in just one layer of the 
illuminated tissue of the cortex. This can cause some 
difficulties such as Cross talk, Extracerebral blood vol- 
ume changes and Partial volume effect. To reach the 
brain the near-infrared light must transverse the scalp 
and skull. A blood volume change in extra-cerebral tis- 
sue will lead to an artefactual reconstruction of cerebral 
activation changes.  

The partial volume effect is due to the mismatch be- 
tween the volume sampled and the volume, actually ac- 
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tivated NIRS underestimates the hemoglobin concentra- 
tion changes. If the wavelength dependency of the dif- 
ferential path-length factor is not adequately determined, 
the Δ[oxy-Hb] can mimic Δ[HbR] and vice-versa. This 
phenomenon called cross-talk and can be minimized us-
ing optimal wavelength combinations, down to a few 
percentages. Considering the morphological information 
for the analysis of the NIRS data also will reduce the 
cross-talk [5]. BOLD signal has been applied in several 
studies to understand the human brain function [6-15]. 
Cognitive neuroscientists applying BOLD signal to an 
extent that the terms activation and deactivation of the 
human cortex are now broadly used to denote changes in 
T2 and T2* caused by the hemodynamic response. Cur- 
rent works undergoing to uncover the correlation be- 
tween the BOLD signal and Δ[HbR] (or Δ[HbO]). The 
CBF variations also can be determined using arterial spin 
labelling (ASL). 

There are a higher correlation between [HbT] and 
BOLD or a similar level of correlation of the BOLD sig- 
nal to [HbR] and [HbO]. Mathematical and analytical 
models can be used to simulate the extra- and intravas- 
cular contributions to BOLD-signal variations. These 
models are based on this fact that the extra-vascular ef- 
fects on the BOLD signal depend on the field gradient 
around the vessel, which is mainly a function of [HbR]. 
Dependency on the total haemoglobin concentration 
(BOLD-CBV) and also on [HbR] (BOLD-deoxy), are the 
main components contributing to the global BOLD-sig- 
nal variations [5]. 

2.2. Hemodynamic Response  

The hemodynamic response function (HRF) is the BOLD 
response for a very short stimulus. In the GLM analysis, 
the BOLD response is modeled as a convolution of the 
neural activity with a HRF; however, the neural activities 
are usually approximated by the stimulus function rather 
than being directly measured. The shape of the HRF is 
often approximated by a single or sum of two Gamma 
functions. Deconvolving the fMRI response with the 
HRF is important in understanding the dynamics of the 
underlying neural activity [16,17]. However a large 
variation can be noticed across individual subjects in 
terms of HRFs and this variation can affect parameter 
estimation and detection of significant voxels.  

However the validity of a linear framework analysis 
has been debatable and many studies have come to an 
agreement of the linear assumption on the interstimulus 
intervals (ISI) larger than a threshold. A threshold value 
of 2 - 3 s is agreed in [18] while the work presented in 
[17] agrees on a 4 - 6 s. Nevertheless, many experimental 
observations have provided evidence of the deviation of 
BOLD from linearity [19]. With these observations of 

nonlinearity of the BOLD response, several researchers 
have attempted to handle nonlinear characterization for 
these underlying brain processes. In [20], the linear 
model of heomodynamic response presented in [21] is 
extended to cover nonlinear responses using a Volterra 
series expansion. At the same time the first compelling 
model for heomodynamic signal transduction in fMRI 
was presented in [10], namely the Balloon Model. Sev- 
eral works have recently used this physiological model in 
the analysis of fMRI data, in the context of parameter 
estimation.  

The work presented in [13] uses the Buxton-Fritson 
model, where the Buxton’s balloon model [22] is added 
with a damped oscillator to model the blood flow [2]. 
They used a local linearization transfer function in the 
Kalman filter methodology, allowing physiological noise 
in addition to the measurement noise. The work pre- 
sented in [23] investigates the above physiological model 
plus the integrated version of the balloon model [24]. 
They use a maximum likelihood approach for the model 
based optimization of the parameter estimation, however 
only the measurement noise is dealt with the system 
modeling. Other than the state space linearized filter ap- 
proaches, nonlinear filtering strategies have been applied 
for the estimation of the states and parameters from the 
BOLD responses. A particle filter approach is proposed 
in [25], while [26] applies an unscented Kalman filter 
(UKF) methodology for fMRI data analysis [16]. Models 
of the underlying hemodynamic and physiologic proc- 
esses which give rise to the BOLD response have re- 
cently been incorporated into a more complete nonlinear 
system. The system can be considered as consisting of 
five subsystems linking: 1) neural activity to changes in 
flow; 2) changes in flow to oxygen delivery to tissue; 3) 
changes in flow to the changes in blood volume and ve- 
nous outflow; 4) changes in flow, volume and oxygen 
extraction fraction to changes in deoxyhemoglobin, and 
finally; 5) changes in volume and deoxyhemoglobin to 
the BOLD response [9]. 

Hemodynamic responses to neuronal activity are ob- 
served experimentally in fMRI data via the BOLD signal, 
which provides a noninvasive measure of neuronal activ- 
ity. Understanding the mechanisms that drive this BOLD 
response, combined with detailed characterization of its 
spatial and temporal properties, is fundamental for accu- 
rately inferring the underlying neuronal activity [10]. 
Such an understanding has clear benefits for many areas 
of neuroscience, particularly those concerned with de-
tailed functional mapping of the cortex [6], those using 
multivariate classifiers that implicitly incorporate the 
spatial distribution of BOLD [7], and those that focus on 
understanding and modeling spatiotemporal cortical ac- 
tivity [13,14]. The temporal properties of the hemody- 
namic BOLD response have been well characterized by 
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existing physiologically based models, such as the bal- 
loon model [15]. Although the spatial response of BOLD 
has been characterized experimentally via hemodynamic 
point spread functions [27], it is commonly agreed that 
the spatial and spatiotemporal properties are relatively 
poorly understood [28].  

Developed biophysical model in [15] is motivated by 
Davis model but incorporates the oxygen limitation 
model and blood volume changes as integral parts. This 
model is based on the dynamic changes in Δ[HbR] dur- 
ing brain activation. The model incorporates the con- 
flicting effects of dynamic changes in both blood oxy- 
genation and blood volume. It shows distinct transients 
in the Δ[HbR] and the BOLD signal including initial dips 
and overshoots and a prolonged post-stimulus under-
shoot of the BOLD signal. The initial validation of this 
model comparing to the experimental measurements of 
flow and BOLD changes during a finger-tapping task 
shows reasonable agreement [15]. Both works presented 
at [15,28] are developed and validated only based on the 
experimental measurements acquired from MRI data on 
a specific region of the brain cortex and no specific ap- 
plication is proposed and validated based on the devel- 
oped models. Despite the widespread use of functional 
neuroimaging techniques [13-16,22-32], the physiologi- 
cal changes in the brain that accompanying neural acti- 
vation are still poorly understood [15-27,29].  

Many studies work from the premise that the hemo- 
dynamic BOLD response is space-time separable, i.e. is 
the product of a temporal HRF and a simple Gaussian 
spatial kernel. Neglecting spatial effects such as voxel- 
voxel interactions and boundary conditions (e.g., blood 
outflow from one voxel must enter neighboring ones) 
ignores important phenomena and physical constraints 
that could be used to increase signal to noise ratios and to 
improve inferences of neural activity and its spatial 
structure.  

Here we have presented a modified and integrated 
version of the balloon model, using state space system 
realization to be easily applied in any control system. We 
prefer to use this particular version of the balloon model 
since it has many degrees of freedom comparing to the 
other models [2,22] and can therefore produce a more 
desired behavior. Using this model one can analyze the 
fMRI data with robust nonlinear filtering techniques 
[16].  

2.3. BOLD/Hemodynamic Stability  

Every state requires pharmacologic or mechanical sup- 
port to maintain a normal blood pressure or adequate 
cardiac output. The human body possesses a unique set 
of organs that are responsible for providing homeostatic 
balance to the body’s fluids. The kidneys regulate fluid 

and electrolyte balance in order to maintain the intracel- 
lular and extracellular fluid volumes and ion composition 
within tight limits. When kidneys fail to function nor- 
mally, fluid is retained and several ions and solutes ac- 
cumulate. The consequences may be life threatening. The 
major compensatory mechanisms include sympathetic 
nervous system activation of peripheral vasoconstriction 
together with modest heart rate acceleration to ensure the 
haemodynamic stability of the patient. Over the years, 
many monitoring tools have been developed in the hope 
of predicting intra-dialytic hypotensive episodes. Simi- 
larly many methods have been utilized to prevent dialy- 
sis induced complications: ultrafiltration and dialysate 
sodium profiling, varying ultrafiltration based on fre- 
quent BP measurements, etc. [32,33]. In the brain, real- 
time monitoring of hemodynamic states and preserve 
their stability provides a significant mechanism for fast 
and reliable brain monitoring especially in early detec- 
tion of seizure and epilepsy or in brain-machine interac- 
tion studies.   

3. PROPOSED MODEL 

3.1. The Extended Balloon Model 

The most popular biophysical model detailing different 
aspects of the hemodynamic response to describe the 
neural activity according to the data from fMRI and 
fNIRS is the balloon model which relates BOLD signal 
to the blood flow. Balloon model [22] is a Linear Model 
which an epileptic tip generates a localized hemody- 
namic response. It allows calculating normalized changes 
in the hemodynamic observables such as the CBV or 
[HbR]. It was initially based on the simplifying assump- 
tion of a venous balloon, an oxygen extractor and a 
trapezoidal change in CBF.  

While this model is of supreme relevance to any mul- 
timodal assessment of the vascular response, it has been 
neglected by most of the combined fNIRS–fMRI ex- 
periments. The major assumption is that the venous bal- 
loon constitutes the only origin of the change in CBV 
and [HbR] generating the BOLD signal. The balloon 
model is expanded by a difference in normalized venous 
out-flow  out ,f v t  and normalized arterial inflow 

 inf t . The CBF is also considered identical to  inf t  
in most works [4,5,8-10]. Conservation of mass then 
defines the change in the normalized blood volume v in 
the venous balloon as follow: 

    

 

in out
0

1
out /

d 1
,

d

d

d
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f t f v t
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

 

 
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here 0  is the mean transit time through the compart- 

Copyright © 2012 SciRes.                                                                       OPEN ACCESS 



E. Kamrani et al. / J. Biomedical Science and Engineering 5 (2012) 609-628 

Copyright © 2012 SciRes.                                                                      

613

 OPEN ACCESS 

ment,   (0 - 30 s) indicated the viscoelastic time con- 
stant (inflation) and   (0 - 30 s) is the viscoelastic 
time constant (deflation). Equation (2) thereby introduces 
a fundamental nonlinearity, sufficient to generate all 
transients of the BOLD response, thus rendering the 
model extremely flexible. The variation of the normal- 
ized [HbR] concentration (q), can be defined as: 

       
 in out

0 0

d 1
,

E t q tq
f t f v t

t E v t
 

   
 

signal (y). The BOLD signal is partitioned into an extra 
and intravascular component, weighted by their respect- 
tive volumes. These signal components depend on the 
deoxyhemoglobin content and render the signal a 
nonlinear function of v and q. The effect of flow on v and 
q determines the output and it is these effects that are the 
essence of the Balloon model: Increases in flow effect- 
tively inflate a venous “balloon” such that deoxygenated 
blood is diluted and expelled at a greater rate. The clear- 
ance of deoxyhemoglobin reduces intravoxel dephasing 
and engenders an increase in signal.  

      (3) 
d

where the inflow of HbR depends on the normalized 
oxygen extraction   0E t E , since an increase in  E t  
will increase [HbR] while reducing [HbO]. The outflow 
of HbR is proportional to the percentage of the HbR 
content    q t v t . The core of the model is the physic- 
cal necessity to largely increase CBF  inf t  to achieve 
a small increase in oxygen delivery. An increase in cere- 
bral blood flow is very closely linked to the underlying 
neuronal activity [34]. The model proposed by Buxton et 
al. [34] is very flexible with respect to the prediction of 
hemodynamic response parameters [5]. Here we have 
applied a similar model presented in Figure 1. 

Before the balloon has inflated sufficiently the expul- 
sion and dilution may be insufficient to counteract the 
increased delivery of deoxygenated blood to the venous 
compartment and an “early dip” in signal may be ex- 
pressed. After the flow has peaked, and the balloon has 
relaxed again, reduced clearance and dilution contribute 
to the poststimulus undershoot commonly observed. This 
is a simple and plausible model that is predicated on a 
minimal set of assumptions and is relates closely to the 
windkessel formulation [35]. Furthermore the predictions 
of the Balloon model concur with the steady-state mod- 
els of Hoge and colleagues, and their studies of the rela- 
tionship between blood flow and oxygen consumption in 
human visual cortex [36]. 

Balloon model is a nonlinear hemodynamic model. 
Due to the significant noise induced by measurements 
we have applied a stochastic hemodynamic system 
model to describe it. A continuous-discrete extended 
Kalman filter (Kalman filter for nonlinear systems) is 
used as a reasonable model to estimate the nonlinear 
states of the balloon model. The Balloon model [22] is an 
input-state-output model with two state variables volume 
(v) and deoxy-hemoglobin content (q). The input to the 
system is blood flow (fin) and the output is the BOLD  

The Balloon model is inherently nonlinear [2,16,37] 
and may account for the sorts of nonlinear interactions 
revealed by the Volterra formulation [37]. One simple 
test of this hypothesis is to see if the Volterra kernels 
associated with the Balloon model is comparable with 
those derived empirically. The Volterra kernels estimated 
in Friston et al. [2] clearly did not use flow as input 
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Figure 1. Overview diagram of the applied brain hemodynamic model.   
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because flow is not measurable with BOLD fMRI. The 
input comprises a stimulus function as an index of syn-
aptic activity. In order to evaluate the Balloon model in 
terms of these Volterra kernels it has to be extended to 
accommodate the dynamics of how flow is coupled to a 
synaptic activity encoded in the stimulus function.  

In summary the Balloon model deals with the link 
between flow and BOLD signal. By extending the model 
to cover the dynamic coupling of synaptic activity and 
flow a complete model, relating experimentally induced 
changes in neuronal activity to BOLD signal, obtains. 
The input-output behavior of this model can be com- 
pared to the real brain in terms of their respective 
Volterra kernels.  

In 1998 Buxton published an input-output model 
which provided a relation between blood flow and 
BOLD signal and called it balloon model. Balloon model 
is a nonlinear dynamic state space model which is com- 
posed of two main states and one output which is the - 
BOLD signal. But one of its variables depends on an-
other state and a neural activity signal (input). So, we 
have four states which are v cerebral blood volume 
(CBV), q deoxyhaemoglobin content, s flow inducing 
signal, f cerebral blood flow (CBF). These equations are 
acquired from the magnetic properties of hemoglobin 
which is diamagnetic for oxy-hemoglobin and paramag-
netic for deoxy-hemoglobin. Using the electromagnetic 
equations around a cylinder and variation with oxygen 
saturation we can find the balloon model. The balloon 
model is a hemodynamic model. The neural activity sig- 
nal u is the input of the model. The mathematical expres- 
sion of hemodynamic balloon model is as follows: 
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And output which is BOLD signal is: 

   0 1 21 1y V a q a v                 (8) 

We can measure a new parameter , which is 
CMRO2 normalized to baseline too. 
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In this model 0  is baseline oxygen extraction frac- 
tion, 0  is baseline blood volume, 1  is weight for 
deoxyHb change and 2  is the weight for blood volume. 

0

E
V a

a
  is the mean transit time of the venous compartment, 
α is the stiffness component of the balloon model, s  is 
the signal decay time constant, f  is the autoregulatory 
time constant, and ɛ is the neuronal efficacy. Now, we 
can describe the state space equations as a nonlinear dy- 
namic system. The state of the system is a vector: 
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We can write the state space equation as a nonlinear 
form with an additional noise, which is a stochastic 
nonlinear dynamical system. 

            , ; 0,x t F x t u t Gw t w t N Q     (11) 

    ,;  ~ 0k k k ky H x v v N R          (12) 

This model includes perturbation and measurement 
noise, because of weak signal of fMRI. In this state space 
equation,  x t  is the state which is dependent on time 
(note that all of the states in the balloon model are time 
dependent but for simplicity we haven’t shown them in 
the balloon model),  u t  is input stimulus,  w t  is 
the perturbation noise (a white noise) which has mean 0 
and variance Q. vk is measurement noise which is a white 
noise with mean 0 and variance R.  

3.2. The Extended Kalman Filter 

Extended Kalman filter is a nonlinear version of Kalman 
filter using for nonlinear dynamic systems. So, we esti- 
mate the states of balloon model using continuous-dis- 
crete extended Kalman filter. Suppose that a nonlinear 
stochastic dynamical system is described by: 

            , ; ~ 0,x t F t u t Gw t w t N Q x   (13) 

  ; ~ 0,k k k k y H x v v N R          (14) 

and 

 k kx x t                (15) 

 w t , k  are independent Gaussian sequences having 
the following properties: 

v

    0kE w t E v    ;    TE w t w t Q    ; 

T
k kE v v R    ;    0;T

kE w t v   

( ) 0T
kE w t x    ;  0T

k jE v x               (9) 
Prediction: 
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

 

 
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 

                  (16) 

   

 
 

1| 1k k k

k k

t

t
   

  



1|
ˆ ˆk k

T
T

k k k
x t x t

F F
GQG

x x

  
     


    (17) 

Update: 

1

1

1| 1| 1| 1|

k

T T

k k k k k k k k

H H H H
R





  

 

    
         x x x x 

 (18) 

1
1 1

T

k k

H
K R

 


 
x

           (19) 

 1 1| 1 1 1 1|ˆ ˆ ˆk k k k k k k kK y H       x x x     (20) 

Initialization: 

 0ˆ E t x x 0                (21) 

 0 var t  x

For the balloon model, we use the extended Kalman 
filter to predict BOLD signal. So, we should implement 
the Kalman filter equations according to the balloon 
model. First, the Jacobian matrix is needed which can be 
written as: 

1 1 1 1

2 2 2 2

3 33 3

4 4 4 4

F F F F

v q s f

F F F FF

x v q s f

F FF F
q fv s

F F F F

v q s f

 
 
 
    
     
    

       
    

   
    
 
    

         (23) 

where: 

 

 

1

1 0

1 2 1
10 0 0

3 4

1 1
1 1

,

1 1
1 ,

f

s f

f E
q

F f v F
E

v

F u s f F s




 


 



                   
 

    

(24) 

0               (22) So, the Jacobian matrix will be written as: 

 

     

1
1

0 0

1
11 1 12

0 0
0 0 0 0

1 1
0 0

1 1 1
0 1 1 1 ln 1

11
0 0

0 0
1 0

f f

fs

v

F q v
v E E

E f






  


   








 
 

 
 
 

 
0E

             


        
 

 
 
 
 

x
           (25) 

 

also, we need to calculate 
H

x




: 

      0 1 21 1kH V a q a v   x        (26) 

 2 0 1 0 0 0
H

a V a V


 
x

           (27) 

Other parts of the extended Kalman filter are very 
clear to calculate according to the above representations. 

3.3. Neural Activity Dynamics 

The input signal u in the balloon model is the neural ac- 
tivity and it is created by a square stimulus signal  a t . 

The relation between the neural activity and the stimulus 
signal can be stated by: 

    u t a t I t                (28) 

   d

d u

ku t I tI

t 


              (29) 

where  a t  is the stimulus signal and  I t  is an in- 
hibitory feedback signal and k is a gain factor. u  is a 
time constant. So, first the neural activity  u t  will be 
produced from  a t  and then use neural activity as an 
input to the balloon model. The  is a step function 
as represented in Figure 2 by red line. In this figure the 
blue line signal is the neural activity and obtained by the  

 a t
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Figure 2. Neural activity response to a step function. 
 
above differential equation. There are several models for 
neural activity. For example one simple estimation for 
neural activity is . In this model the neural 
activity is estimated to be same as stimulus. 

   u t a t

3.4. Nonlinear Controller 

In this part a nonlinear controller for the balloon model 
will be proposed. At the first the equilibrium point 
should be calculated. At the equilibrium point the deriva- 
tive of state will be zero and we obtain these values for 
the equilibrium point: 

1 fv u                   (30) 

   
1

1
0

0

1 1
1

fu

f

E
q u

E

 
 


       
 

      (31) 

0s                   (32) 

1 ff u                 (33) 

As we see the important parameters for the equilib- 
rium point are 0 , E  , f ,   and we have investi- 
gated their effects in the bifurcation analysis. 

4. SIMULATION AND EXPERIMENTAL 
RESULTS 

4.1. Simulation Parameters 

The values of parameters in the model are set to achieve 
the least error:  

0 0 0

1 2

8
4 4 4 4

0.3, 0.02, 1, 0.3, 1.25, 6.25,

1, 3.4, 1.5, 1 1.00, 0.1

0.01 , 0.1 , 10

s f

u

E V

a a u k

G I Q I R

   

 


 

     

     

    

，  

And the initial value is: , 0ˆ 0.1 1 0.0001 1
T

x  
0 4 4I   . 

4.2. Simulated Results 

By implementing the extended Kalman filter the BOLD 

signal will be estimated: First we simulated the balloon 
model in simulink (Figure 3(a)), and produced reason- 
able neural activity input and then we obtained output as 
a BOLD signal. Then we added white noise to this signal 
in order to produce a noisy BOLD signal. Using the ex- 
tended Kalman filter in MATLAB to the noisy signal, 
produced a signal, which follows the measurements. The 
results are shown in the Figures 3(a) and (b). 

4.3. Experimental Results 

The proposed system is verified using real clinical meas- 
ured data plotted in Figure 4. The extended Kalman fil- 
ter is used to estimate the BOLD signal.  

4.4. Bifurcation Analysis 

Bifurcation analysis investigates the stability of the sys- 
tem under change of parameters. Thus, it is important to 
first investigate nonlinear stability of the system and then 
use MatCont for Bifurcation analysis. For bifurcation 
analysis first the equilibrium point should be calculated. 
At the equilibrium point the derivative of state will be 
zero:  
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







     (34) 

and we obtain these values for the equilibrium point: 

 

   
1

1
0

0

1

1 1
1

0

1

f

f

u

f

f

v u

E
q u
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s

f u


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 

 

 



  
             
 
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       (35) 

As we see the important parameters for the equilib- 
rium point are 0 , E  , f ,   and we have investi- 
gated their effects in the bifurcation analysis. Now, we 
put this equilibrium point in the Jacobian matrix and then 
find the eigenvalues of that matrix to investigate the 
nonlinear stability of balloon model for different pa- 
rameters. 

T  he Jacobian matrix is: 
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Figure 3. (a) Simulink diagram presenting dynamics of the hemodynamic model; (b) The BOLD signal and its estimation; (c) The 
estimation error of BOLD signal. 
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(a)                                                           (b) 

Figure 4. (a) Real experimental measurement of output data and its estimation; (b) the Experimental error. 
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So, for the equilibrium point the Jacobian matrix is: 
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The eigen-values of this matrix will be: 
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       (36) 

As we see all of the eigen-values are negative and this 
system for every choice of parameters is always stable. 
This is very interesting achievement regarding to the 
stability characteristics of the proposed system to de- 
scribe the hemodynamic parameters. These eigenvalues 
depend on 0, , , ,s f      and independent of 0 . For 
the bifurcation analysis, in this paper MatCont is used to 
analyse stability of the system with change of different 
effective parameters of the system. Using MatCont 
forces us to change and augment our system to ODE’s 
type. So, we have:  
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So, by this definition, we start to get results for bifur- 

cation analysis: These figures show the behaviour of real 
part of eigenvalues which are important for Bifurcation 
analysis versus the variation of parameters. 

Relation between eigenvalues and different parameters 
are depicted in Figures 5-10 shows the effects of chang- 
ing the model parameters on the evoked BOLD response. 
Figure 11 shows the simulated, measured, and the esti- 
mated BOLD signals. The Figure 12 shows the variation 
of states v cerebral blood volume and q deoxyhemoglo- 
bin versus the parameters of the model. As we see, the 
effect of τs is very important especially on the time of 
reaching to steady state. For higher τs the system will reach 
to steady state later and, so if our purpose is to reach to 
steady state condition, we should have a small τs.  

4.5. The Effect of Initialized Variance  0Σ

As it is supposed when the initialized variance ( 0 ) in- 

creases that is the initial conditions are unknown and it 
causes that the contribution of measurements in the up- 
date equation increases which results the faster conver- 
gence. For higher 0  especially when the system starts, 
Kalman gain is more than the case of the lower 0  and 
this can be seen in Figure 13. The convergence is slower 
when 0  is low which means we trust to the initial 
values. Figure 14 shows the typical variation of variance 
of state q for different values of 0 . It is obvious that 
after convergence, the variance of estimated parameter is 
acceptable. 



4.6. The Effect of R 

Due to the relationship between R and Kalman gain, 
when the level of the noise at the measured value in- 
creases(R increases) the gain will decrease and the con- 
tribution of measurement in the update equation will 
decrease. Therefore slower convergence is a direct result  
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Figure 5. Relation between eigenvalues and stimulation function (u); Relation between eigenvalues and α in present of stimulation. 
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Figure 6. Relation between eigenvalues and α without stimulation; Relation between eigenvalues and τ0 (u = 1). 
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Figure 7. Relation between eigenvalues and 0  (u = 0); Relation between eigenvalues and ε (u = 1). 
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Figure 8. Relation between eigenvalues and ε (u = 0); Relation between eigenvalues and s  (u = 0 or 1). 
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Figure 9. Relation between eigenvalues and f  (u = 1); Relation between eigenvalues and f  (u = 0). 
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(i)                                                           (j) 

Figure 10. The effects of changing the model parameters on the evoked BOLD response. Solid lines correspond to the response after 
changing the parameter and the broken line is the response for the original parameter values (the e is the neuronal efficacy, τs is signal 
decay, τf is autoregulation, τ0 is transit time, α is stiffness, and E0 is oxygen extraction as in [2]). 
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Figure 11. The simulated, measured, and the estimated BOLD 
signals. 
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of the higher noise level at the output. 

4.7. Stability  

The nonlinear stability of balloon model (directly) is 
investigated before and is proved that it is stable in Sec- 
tion 4.4. Bifurcation Analysis. Here in this part the stabil- 
ity is represented based on linearization of the balloon 
model.According to our review and investigations, we 
found that the stability, observability, and controllability 
that we were followed are based on non-linear model 
directly and our investigations are true. This is a simpler 
model of stability when all of the eigenvalues of the sys- 
tem are negative  1 2 3 4, , ,     . In this situation, the 
system is linearizable and it is possible to linearize the 
state space equation and then use the definition of stabil- 
ity, observability, and controllability in the linear case.  

(b) 

Figure 12. Comparison between simulated and experimental 
results. (a)The blood volume v and (b) The deoxyhaemoglobin 
ontent q. c 

 OPEN ACCESS 



E. Kamrani et al. / J. Biomedical Science and Engineering 5 (2012) 609-628 623

  

0 20 40 60 80 100 120
-25

-20

-15

-10

-5

0

Time

G
ai

n 
 0

 
0 10 20 30 40 50 60 70 80 90 100

0

1

2

x 10
-4

Time

V
ar

ia
nc

e 
q

 
(a)                                                         (b) 

Figure 13. The effect of Σ0 on the extended Kalman filter Blue: Σ0 = I, R = 0.00012, Red: Σ0 = 0.001.I, R = 0.00012; The effect of Σ0 
on the extended Kalman filter Blue: Σ0 = 0.00001I, R = 0.00012, Red: Σ0 = 0.001I, R = 0.00012. 
 
As we know, the balloon model is described as: 
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And output which is BOLD signal is: 

    0 1 21 1y V a q a v     

The linear model is in the form of: 

x Ax Bu

y Cx Du
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  


 

where: 
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and ,e ex u  are the equilibrium point. 
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The eigenvalues of A are:   

1
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1


  ; 2
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1 1 1
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All of these eigenvalues are negative and equal to the 
case of nonlinear stability analysis when u = 0. So, the 
system is stable. Root-Locus and Nyquist curves are 
plotted in Figure 15. 

4.8. Controllability and Observability 

The linear and nonlinear controllability and observability 
has been investigated at this section. Here first the model 
is linearized and then controllability and observability 
have been verified. Based on the controllability matrix 

 and observability index  2 3 B AB A B A B
2 3 T

C CA CA CA


 , we can determine their determi-  

nant to investigate if the system is controllable and ob-
servable or not. The determinant of each matrix is as 
followed: 
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And for nonlinear observability the controlability and 
observability of the system using balloon model without 
linearizing the dynamic system (nonlinear controllability 
and observability) have been investigated as follow. For 
nonlinear controllability we have: 
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(a)                                                          (b) 

Figure 14. The effect of R on the extended Kalman filter Blue: Σ0 = I, R = 0.0012, Red: Σ0 = I, R = 0.000012; The effect of Q on the 
output of the extended Kalman filter Blue: Σ0 = I, R = 0.000012, Q = 0.1.I, Red: Σ0 = I, R = 0.000012, Q = 0.001.I. 
 

  
(a)                                                          (b)  

  
(c)                                                          (d) 

F igure 15. Stability analysis using (a): Bode diagram, (b): nyquist, (c): open-loop root locus, and (d): closed-loop root locus. 
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The determination of the hemodynamic observables 

(BOLD, CBF, [HbR], oxyhemoglobin concentration 
[HbO] and total hemoglobin concentration [HbT]) is 
subject of this study. This technique with a better quanti- 
fication and specificity has so far not been implemented 
in combined studies, giving hope to increase the homo- 
geneity of observations in future experiments. The Equi- 
librium point is calculated as: 
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The observability matrix is: 
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where: 
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As the observability and controllability of linear and 
nonlinear systems depend on many parameters, we have 
calculated them in equilibrium point and for the parame- 
ters before introduced in 4.1. It shows that for these val- 
ues the system is controllable and observable.  

5. CONCLUSION AND FUTURE WORK   

We presented a state space model realization of the inte- 
grated version of the balloon model. In addition to the 

nonlinear filter techniques used in previous approaches 
[15-27,29] this new modeling can utilize the advantages of 
using more sophisticated and robust techniques in linear 
and nonlinear estimation. Proposed stochastic hemody- 
namic systems describe the brain neural activity accord- 
ing to balloon model. The continuous-discrete extended 
Kalman filter is used to estimate the nonlinear model 
states. The stability, controllability and observability of 
the proposed model are described based on the simula- 
tion and measurement data analysis. Up to our knowl- 
edge this is the first work on evaluation of these control 
parameters and introducing their practical impacts on 
clinical application. Surprisingly we realized that the 
system is always stable independent from any variation 
in blood flow and HbR/HbO variation. The observability 
and controllability characteristics are introduced as sig- 
nificant factors to be considered as an evaluation tool to 
verify the preference of different hemodynamic factors. 
The preferred factors then can be considered based on 
their specified priority for further diagnosis and moni- 
toring in clinical applications. This model can also be 
efficiently applied in any monitoring and control plat- 
form include brain and for study of hemodynamic and 
brain imaging modalities such as pulse oximetry and 
functional near infra-red spectroscopy. The work is on 
progress to extend the proposed model to cover more 
hemodynamic and neural brain signals for real-time in- 
vivo applications.  
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