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ABSTRACT 

In this study we propose an approach to solve a partial differential equation (PDE), the boundary integral method, for 
the valuation of both discrete and continuous window barrier options, as well as multi-window barrier options within a 
deterministic term structure of volatility and interest rates. Numerical results reveal that the proposed method yields 
rapid and highly accurate closed-form approximate solutions. In addition, the term structure will have a significant im-
pact on the valuation. 
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1. Introduction 

Barrier options are widely used and traded in financial 
markets to manage the risk related to foreign exchange, 
interest rates, and equity in the global market. A barrier 
option is a path-dependent option that is activated (i.e. 
knocked in), or extinguished (i.e. knocked out) when the 
price of the underlying asset breaches the pre-specified 
barrier level at any time before maturity. There are two 
main reasons for the prevalence of barrier options. First, 
barrier options are useful for limiting the risk exposure 
of clients, specifically in the foreign exchange market. 
Second, barrier options are cheaper than vanilla options 
with similar attributes. Therefore, they are more af-
fordable financial instruments that can match investors’ 
views regarding the degree of volatility in the underlying 
asset price change. Additionally, they offer an appropri-
ate level of downside protection for hedging purposes. 
For example, if long hedgers believe that only a mild 
volatility exists in the market over a given period, the 
hedgers will prefer to buy a knock-out option with fewer 
premiums than to pay the full premium for a plain vanilla 
option. Alternatively, when speculators believe that the 
price change will be volatile for a period of time, they 
will prefer to purchase a knock-in option rather than to 
obtain the plain option with a higher price. Since an or-
dinary option can be decomposed into two otherwise 
identical knock-in and knock-out options, this feature 
makes the barrier option a highly suitable instrument for 
tailor-made structured deals. 

Partial barrier options are the extension of barrier op-
tions, however there is a major difference between the 
two. Partial barrier options assume that the barrier pre-
vails only for some fraction of the option’s lifetime, 
while barrier options prevail through the entire life of the 
option. Heynan and Kat [1] studied two types of con-
tinuous partial single barrier options: 1) an option with a 
monitoring period which commences at the start date of 
the option and terminates at an arbitrary date before ex-
piration (this is referred to as an early-end partial barrier 
option); and 2) an option with a monitoring period which 
commences strictly at the starting date and ends strictly 
before the expiration date.   

A window barrier option incorporates a barrier which 
commences at an arbitrary date after the starting date and 
terminates at an arbitrary date before the expiration. 
Window barrier options are more flexible than standard 
barrier options because the adaptable monitoring period 
provides traders with the full flexibility to lock volatility 
risks during a specific time period. Window barrier op-
tions not only offer investors a hedge instrument maneu-
vered by investors’ views on the range of volatility, but 
these options also provide building blocks to create vari-
ous types of partial exotic options embedded in struc-
tured products. In recent years they have become more 
popular with investors, particularly in foreign exchange 
markets. Meanwhile, academics and practitioners have 
turned their attention to the more complicated structures 
of barrier options. 

Since Merton [2] first derived the analytical closed- 
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form solution to handle a down-and-out continuous mo- 
nitoring barrier call, there has been a variety of research 
concerning this issue. Cox and Rubinstein [3] provided a 
valuation formula for an up-and-out call, which is nulli-
fied whenever the underlying asset price triggers the up-
per knockout price. Rubinstein and Reiner [4] provided 
the formulae for 8 types of barrier options, and Haug [5] 
gave a generation of the set of formulae provided by 
Rubinstein and Reiner. Kunitomo and Ikeda [6] provided 
valuation formulae based on a generalization of the Levy 
formula for double barrier options with two exponential 
curved boundaries. Geman and Yor [7] used the Cameron- 
Martin theorem to obtain the Laplace transformation of 
the values for double barrier options with two fixed boun- 
daries. 

The binomial and trinomial lattice models developed 
respectively by Cox, Ross and Rubinstein [8] and Boyle 
[9,10] are well-known schemes for pricing standard va-
nilla options. However, Boyle and Lau [11] demonstrated 
that the CRR binomial model may lead to persistent er-
rors in barrier option pricing. Ritchken [12] illustrated 
that when the trinomial model is naively applied to the 
pricing of barrier options, more time steps may not al-
ways lead to more accurate prices. Boyle and Lau [11] 
and Ritchken [12] suggested modified lattice algorithms 
to generate accurate pricing for the barrier option. But as 
revealed in Ritchken [12], the modified algorithms sug-
gested by Boyle and Lau [11] and Ritchken [12] are nev-
ertheless inefficient for handling the barrier-too-close 
problem. Wang, Liu and Hsiao [13] used a hybrid method, 
which is a combination of the Laplace transformation 
and the finite-difference approach, to overcome the un-
stable problem for pricing barrier options modeled by a 
branching process. Figlewski and Gao [14] used the adap- 
tive mesh model to discuss option pricing. Albert, Fink, 
Fink [15] priced barrier options using an adaptive mesh 
model under a jump-diffusion process.  

Broadie, Glasserman, and Kou [16] and Hörfelt [17] 
derived the approximation formulae for the discrete sin-
gle barrier options. Boyle and Tian [18] proposed a mo- 
dified explicit finite difference approach to the valuation 
of barrier options, but their method is not particularly 
efficient in dealing with discrete barrier option pricing. 
Ahn, Figlewski, and Gao [19] suggested the adaptive 
mesh model structure for pricing discrete barrier options. 
Kou [20] applied a sequential analysis to extend Broadie, 
Glasserman and Kou’s approximation formulae [16] to 
more general cases of discrete barrier options. Mitov, 
Rachev, Kim and Fabozzi [21] derived an analytical 
formula for the price of an up-and-out call, and showed 
that the values of barrier options priced with the branch-
ing process in a random environment model were sig-
nificantly different from those modeled with a lognormal 
process. Hu and Knessl [22] analyzed the asymptotics of 

barrier option pricing under the constant elasticity of 
variance (CEV) process. 

Heynen and Kat [1] first derived the closed-form solu-
tions for pricing partial late-start and early-end barrier 
options under Black-Scholes assumptions [23], and their 
solutions were expressed in terms of the bivariate normal 
distribution function. Heynen and Kat [24] extended their 
closed-form formula to handle a discrete window barrier 
option where the barrier level may change deterministi-
cally and the monitoring points can be of unequal dis-
tance to each other. Armstrong [25] extended Heynen 
and Kat’s closed-form formula [1] and derived formulae 
with a tripartite deterministic term-structure of interest 
rates, volatility, and dividend yields in terms of trivariate 
normal distribution functions. Carr [26] derived a risk- 
neutral expectation formula to value partial barrier op-
tions with a constant rebate.  

Most of the partial barrier models mentioned previ-
ously, with the exception of that of Heynen and Kat [24], 
assume that the underlying asset is continuously moni-
tored against the partial barrier level. Nevertheless, dis-
crete barrier options are among the most popular 
time-dependent options traded in markets. In addition, 
they are monitored discretely only at a particular time, 
normally, at daily closing (e.g. the capped index spread 
on the S&P100 and S&P500, and the knock-out barrier 
options on the All Ordinary Price Index on the Australian 
Stock Exchange). Although Chance [27], Kat and Ver-
donk [28] indicated that there exists a substantial price 
difference between barrier options and their otherwise 
identical continuous counterparts even under daily moni- 
toring, the exact pricing formula was still not extended to 
discrete window barrier options with more complex fea-
tures such as a varying rebate, barrier, and volatility with 
a discrete monitoring period. 

This paper proposes the boundary integral method 
(BIM) [29], which is an efficient partial differential 
equation (PDE) approach, to price both continuous and 
discrete window barrier options under the Black-Scholes 
economy. We extend the continuous models of Heynen 
and Kat [1] and Armstrong [25] to include time-depen-
dent rebates and a tripartite deterministic term structure 
of interest rates and volatility. In addition, the BIM can 
easily be further extended to the valuation of multi- 
window barrier options characterized with a ladder strike 
prices. The discrete window barrier option of Heynen 
and Kat [24] is also extended to accommodate the multi-
partite term structure of interest rates and volatility. We 
also demonstrate that the proposed integral method is 
capable of valuating the discrete window double barrier 
option. Numerical examples and comparisons with Arm-
strong [25] confirm that the BIM will yield rapid and 
highly accurate numerical solutions for both discrete and 
continuous window barrier options. In addition, the nu-
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merical examples confirm that the BIM has a conver-
gence rate of order 4 in the case of discrete window bar-
rier option pricing. 

This paper is organized as follows: in Section 2 we 
present the valuation algorithm in terms of the initial 
value problem and boundary value problem. We also 
explain how to deal with discontinuities caused by the 
window barrier feature, and demonstrate how to recur-
sively obtain the option price. Section 3 discusses the 
valuation of discrete window barrier options, and defines 
the pricing problem as a sequence of the initial value 
problem. Section 4 contains numerical results, and Sec-
tion 5 concludes with a summary and some suggestions 
for future research.  

2. Methodology 

2.1. Preliminary Assumptions 

Since a knock-in window barrier option plus a knock-out 
window barrier option will be equal to the value of an 
otherwise equivalent vanilla option, we will concentrate 
only on the knock-out window barrier option. Let 0, t1, t2, 
and T denote the option’s starting date, the time to the 
start of the barrier, the time to the end of the barrier, and 
the option’s maturity date, respectively, and  

1 2 . The valuation of the early-ending win-
dow barrier option can be calculated by letting t1 ap-
proach 0, and the valuation of the forward-start window 
barrier option can be recovered by letting t2 approach T.  

0 t t T  

Our objective is to apply the PDE (partial differential 
equation) approach to the valuation of the window barrier 
option in Black-Scholes economy assumptions. When the 
underlying is assumed to follow a lognormal random 
walk, under no arbitrage argument, the PDE governing 
the window barrier option will be as follows: 

       2 21

2 SS S tt S C r t t S C C r t C       ,  (1) 

where C is the option value, S is the underlying asset 
price,  is stock’s volatility,  t  r t  is the risk-free 
interest rate,  is the dividend yield, and t is the 
time. To allow for the case of greatest generality, the 
stock’s volatility and the risk-free interest rate may 
change deterministically across the barrier monitoring 
period. We allow for three different governing PDEs, or 
we may say, the Black-Scholes equation with different 
coefficients for time intervals [0, t1), [t1, t2], and (t2, T]. 
As in Armstrong [25], we assume a simple tripartite term 
structure that naturally accommodates the location of the 
barrier, and the risk-free interest rate, dividend yield, and 
volatility are given by the following step functions: 
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When the underlying asset price does not touch or 
breach the barrier level through the monitoring period, 
the payoff of the window barrier option at the maturity 
date is given as the following equation: 

 
 
 

0, if
,

, if

S T K
C S T

S K S T K

 
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,        (2) 

where K denotes the strike price. 
Oppositely, if the underlying asset price triggers the 

barrier level throughout the monitoring period, the option 
will be knocked out and clients will receive an immediate 
rebate Rb. The payoff is as follows: 

     1, , if ,bC S t t R S t B t t t   
2        (3) 

where B denotes the barrier price and Rb denotes the im-
mediate rebate. 

The Equation (1) is the governing equation and condi- 
tions (2) and (3) are the initial condition and boundary 
condition for the call price C(S, t) respectively. 
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Making the following variable transformations: 
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(4) 

Equation (1) can be simplified into the heat equation with 
a constant diffusion coefficient as follows:  

 2

2 xxu u
 

              (5) 

The payoff of the window barrier option at the matur-
ity date 0   will be transformed into: 

 
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, 
Since the asset price is assumed to change continu-

ously with time, if the asset price S(τ) breaches the bar-
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rier level between time interval  1 2,  , it will first 
touch the barrier level. Therefore the payoff of the option 
can be transformed, as in Equation (7). 

   

  2 10

, e ,

if ln d and ,

R
bu x R

x B T t t







   

 

    
  (7) 

where 1 T t1    and 2 2T t   . 

2.2. Boundary Integral Method 

On the time interval  20, , there is not any boundary 
condition; hence the solution of the PDE is uniquely de-
termined by the initial condition (6). The problem of 
finding the unique solution with PDE (5) and initial con-
dition (6) is termed the initial value problem. In our nota-
tion, the integral representation of the solution will be: 

      2, ,0 ,0; , d ifu x u x G x x x  



      (8) 

where the function G is called Green’s function with the 
infinite domain or the fundamental solution of the heat 
equation. It can be expressed as follows: 
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where H    is the Heaviside step function, and is 
defined by: 
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Equation (8) has some interesting interpretations with 
respect to the risk-neutral approach of Cox and Rubin-
stein [3].  and Green’s function can be inter-
preted as the option’s terminal payoff and its risk-neutral 
probability density function, respectively. Thus the inte-
gral representation of the solution can be interpreted as 
the option’s expected terminal payoff, and the value of 
the window barrier option at time 

 ,0u x 

 20,   will be 
equal to its discounted expected value as suggested by 
Equation (4). 

As in Black-Scholes [23], Equation (8) can be further 
simplified into a closed-form solution as: 

         3 3
1 2, e r T tC S t S N d K N d       ,  (11) 

where N (.) is the cumulative normal distribution func- 

tion. 
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However, if the transformed underlying asset price x2  

is within the range   2

0
, ln dB T t


   t  at 2 ,  

the instant after it passes the monitoring date, i.e. 2 , the 
transformed window barrier price will still change con-
tinuously across the barrier monitoring date 2 . If we 
denote 2  as the instant after 2 , the continuity as-
sumption will guarantee that 2 2 ,u x   will be equal to 
 2 2,u x   . Therefore, the initial condition for Equation 

(5) between  2 1,   will be as follows: 
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where      2 2 2 2, ,0 ,0; ,u x u x G x x x 
 


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If the underlying asset price breaches the barrier level 
during the period, the window barrier option will be 
knocked out, and clients will receive an immediate rebate 
Rb. The continuity property will guarantee that the asset 
price first touches the barrier level before it breaches the 
barrier level. Thus, the boundary condition for Equation 
(5) between  2 1,   will be specified as in Equation 
(13): 
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There exists only one solution that satisfies the PDE (5) 
and is subject to the initial condition (12) and the bound-
ary condition (13). The integral representation of a solu-
tion for the heat equation at    is as follows:  
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G is the green function with the boundary  b  . 
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t

 and  
where b1 is the transformed barrier price at ,  
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The functions G(.) and Gx(.) in Equation (14) ca
in

n be 
terpreted as the transition probability density function 

and the hitting probability density function of the trans-
formed underlying asset price, respectively. The first 
term in Equation (14) is the expected payoff when the 
barrier is never breached throughout the monitoring in-
terval [ 2 , 1 ], and the second term is the expected pay-
off whe th  underlying asset price breaches the barrier 
in the time interval [ 2

n e
 , 1 ]. Once again the solution can 
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 again is an initia oblem analogous to 
the first period valuation from 0

. T
rlem once l value p

   to 2   . There-
fore the initial condition for d
between time interval 

ifferential Equation (5) 
1 0,   has to be  1 1,u x  , and 

the integral representat the closed-f roxi-
mate solution for 

ion of orm app
 1 0,    is as follows: 

     1 1 1 1 1, , , ; , du x G x x x    u x


 ,    (16) 

where Green’s function is denoted by Equation (17), 

 

 
 

 
 

2

1
122

1 11 1

1
exp

22π

x x
H

1 1,  ; ,G x x 

 
    

 
    

   

. (17) 

Finally, the theoretical value for the window barrier 
option,  0 0,C S  , can easily be obtained by the follow-

ing inverse transformation:  

   0
0 d

0 0, e
r T t t

C S


  0 0,u x  ,       (18) 

where 

 

 0

0 0 0
ln dx S T t


   . t

y benefit of adopting the P pproach is that it 
 the pricing problem for th window barrier op-

tio

-
st

A ke DE a
reduces e 

n to two initial value problems and one boundary 
value problem, for all of which standard mathematical 
engineering numerical algorithms are well developed. 
These algorithms allow a straightforward numerical inte-
gration of highly accurate numerical values for window 
barrier options pricing. Since the Black-Scholes equation 
can be simplified into a homogenous linear equation such 
as the heat equation, the boundary integral method pro-
posed in this paper will be a highly efficient algorithm to 
calculate window barrier options’ numerical solution.  

In brief, the valuation of the standard partial barrier 
call can be divided into a three-phase process, as demon

rated in Figure 1. In the first phase, the terminal payoff 
at the maturity date,  ,0u x  is the initial condition for 
the PDE at  20,  . By applying the integral method, 
we calculate the convolution of the initial condition 
 ,0u x  and nction to acquire the integral rep-

resentation of numerical solution  2 2,u x
 Green’s fu

   at 2   . 
though the parameter discontinuity caused by the 

window barrier features will occur at 2

Next, al
 , t af- 

onitoring date 2

he instant 
ter the m  , if  

  2

2 0
, ln dx B T t t


    ,  ,u x   has to be con-  

tinuous at 2  . Thus the pa meter dra iscontinuity at 

2  can be accordingly, and the initial condition handled 
and the boundary condition imposing on the heat equa-

n can be denoted as in Equations (12) and (13). Since 
the Green function under such boundary constraints ex-
ists and is available, the boundary integral method can be 
applied to acquire the unique solution for differential 
Equation (5) at time to maturity 1

tio

 . In the third phase, 
the discontinuity problem between 1

  and 1  can be 
handled in the same manner as in p se 2. Thus 
 

ha

 

Figure 1. Three-phase process on solving the pricing of the 
window barrier option. Note:   T t ; 0 = the option’s 

starting date; 0 = the option’s maturity date; 1  to 2 = 

the option’s monitoring period. 
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 1 1,u x   will be the initial c  i posing on the 
differential equation between 

ondition m
 1 0,  . Hence, the pr b-

lem of finding  0 0,u x
o

  will 

ase 1. 

be an initial value prob-
lem again, and the integral representation of the solution 
can be obtained easily, as in ph The transformation 
of  0 0,u x   by Equation (18) will ultimately obtain the 
numerical solution of the window barrier option 
 0 0,C S  . In Equations (8), (14) and (16), u(.) and G(.) 

are ooth functions. Thus, a simple integration 
scheme such as the Simpson integral will obtain excep-

ecise closed-form approximate values for both 
 1 1,u x

very 

tionally pr

sm

  and  2 2,u x  . Finally, a highly accurate es-
timation of  0 0,u x   can be obtained by recursively 
integrating backward through time.  

oundary l method proposed in this paper 
can be easily extended to a multi-window barrier option 
or window ladder option. It also accom

The b  integra

modates the pric-
in

arrier options are frequently monitored only 
 feature will cause 
be more expensive 

g of early-end and late-start barrier options. The extra 
flexibility makes the proposed method an applicable way 
to calculate options with more complex features. Figure 
1 schematically explains the concept of a recursive algo-
rithm. Since the parameter settings, the initial condition, 
and the boundary condition can be manipulated easily in 
a standard setting, the recursive algorithm can provide 
flexibility to tailor a barrier position, duration, barrier 
level, rebate, and strike price between monitoring periods, 
so as to suit investors’ unique needs. It can also accom-
modate multi-partite term structure interest rates and 
volatility.  

3. Recursive Integral Method 

In practice, b
at specific discrete dates. The discrete
a knock-out window barrier option to 
and a knock-in window barrier option to be less expen-
sive than their respective continuous monitoring coun-
terparts. In this section, we still assume the Black-Scho- 
les economy, but it is not necessary to assume a flat 
term-structure and constant volatility. As in the pricing of 
a continuous window barrier option, the term-structure 
interest rates and volatility can be multi-partite step func-
tions that accommodate the location of the discrete bar-
rier. The PDE approach also allows that the discrete bar-
rier level may change deterministically during the moni-
toring period, and monitoring need not necessarily take 
place at equal-spaced points in time. Since the multi- 
partite term structure of interest rates and volatility can 
be easily handled in the standard setting, for the purpose 
of simplifying the notations and focusing on the main 
idea of the recursive integral method, we will assume 
constant volatility and a flat term structure in this section. 

Assume the option monitoring period [t1, t2] is parti-
tioned into m − 1 discrete time intervals, and the option is 

subject to m times of discrete monitoring. If  
 1,1 1,2 1,, , , mM t t t   denotes the set of discrete moni-

toring date, and  1,1 1,2 1,, , , mM       is for the cor-
responding set of time to maturity. In additi

ns between the discrete monitoring 
dates are 1 1,1 1,2 1,3 1, 2mt t

on, we as-
sume that the relatio

t t t t   ,  

1 1,1 1,2 1,3 1, 2m

  
           . 

1,1 1,2 1,3 1,m           denotes the instant after the 
corresponding discrete monitoring dates. 

Under these assumptions, Equation (6) is still the ini-
tial condition for differential Equation (5) between 

1,0, m , and  1,,m mu x    is still the unique solution 
that satisfies the differential Equation (5) at 1,m   subject 
to the initial condition (6). Since no monitoring is re-

ring ti l 1,0, m , the mathematical 
problem of finding the solution for differen quation 
(5) at 1,m

quired du me interva
ce E

   will be simplified to become an initial value 
problem. The solution  1,,   thm mu x at satisfies the par-
tial differential Equation (5) subject to initial condition (6) 
will be as follows: 

     1, 1,, , 0 ,0; , dm m m mu x u x G x x x 
 


  .  (19) 

The discrete monitoring feature will introduce m dis-
continuities into solutions at discrete monitoring d
Following the same logic as discussed in the section 
pr

ates M*. 
on 

icing a continuous window barrier option, the instant 
after the discrete monitoring date 1,m  if  

2

1,, ln
2m mx B r
 

  
         

, the value of the win-  

dow barrier option will change continuously across the 
discrete monitoring date 1,m , thu
equal to 

s  1,,m mu x   will be 
 1,,m mu x  

lows:  

. Otherwise, it will be equal to 
1,e mr

bR   according to the pre-specified contract rebate 
specification. Thus the so on  1,u x n be de-
fined as fol

luti ,m m  ca

 

 

1,

1,,

e ,m

m m

r

u x

R x


2

1,

2

1, 1,

if ln
2

, , if ln
2

b m m

m m m m

B r

u x x B r

 

  

 
    

   
        

. (20) 

Equation (20) will be the initial condition for Equation 
(5) between , and the unique solution for 
equation (5) 


 

1, 1, 1,m m  
at 1, 1m 

  is given by Equation (21). 

 
   

1 1

, ; , d

m

m

u x

u G x x x



 




 
  

  (21) 
, 1

1, 1, 1 1, 1

,

,

m

m m m m m mx 





By applying the same argument, the integral re
tations of solutions for differential Equation (5) at 

presen-

1,m i  , 
 1,,m i m iu x   , 2,3, , 1i m  , are given by the recur-
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si

 ,

   (22) 

for 

ve integral method as follows: 

 
 
,

,

iu x

u x 






    


1,

1 1, 1

1 1, 1 1, 1, ; , d

m m i

m i m i

m i m i m i m i m iG x x x



 






       

 

2 1i m   . 

 

 

1,

1,

2

1,

2

1, 1,

,

e , if ln
2

, , if ln
2

m i

m i m i

r
b m i

m i m i m i m i

u x

R x B r

u x x B r





 

 



 




   

  
      

  
        

,

m i




    

(23) 

for 
Finally, 

2 1i m   . 
 1 1,1,u x   will be equal to  1 1,1,u x  

case in Secti
 as in 

the continu w barrier option oous windo
 0 0

n 2, 
and ,u x   can be obtained by using 1 1,u x ,1  as 
the initial condition, and the unique solution for Equation 
(5) subject to initial condition  1 1,1,u x   will be: 

     0 0 1 1,1 1 1,1 0 0, , , ; , du x u x G x x x   



  ,  (24) 

and  0 0,C S   can be obtain viding ed by di  0 0,u x   
with 0er  as speci

The valuation
fied in Equation (4). 

 of the discrete window barr
e defined s
rop d is quite analo-

go

ier option 
can b  as a sequence of initial value problem . 
The p osed recursive integral metho

us to the lattice models and finite difference algorithm. 
All approaches involve the initial value and work back-
ward to find a solution one step back in time, but there 
are no intermediate time steps between two discrete 
monitoring dates for the integral approach. The key ad-
vantage of the PDE approach is that most of the standard 
techniques for solving the PDE in engineering mathe-
matics can be applied to calculate the option pricing, and 
it can provide practitioners with a more flexible and ap-
plicable way to accommodate the complexities of OTC 
exotic options. Furthermore, when the composite Simp-
son’s rule is applied to estimate the numerical solution of 
 0 0,u x  , Wang and Hsiao [30] prove that the recursive 

integral method will have a convergence rate of order 4. 
Hence, the proposed recursive integral method will easily 

rapid and highly accurate solution for the dis-
crete window barrier option. 

4. Numerical Examples 

This section provides some

obtain a 

 numerical examples, and 
 BIM algorithm for differ-

validity 

 a conver-
ge

term structure scenarios. Its parameter settings are 
id

used are identical to 
th

r option by using the 
w

studies the performance of the
ent choices of parameter settings. To assess the 
of our approach, we compare our continuous window 
barrier option results with numerical results presented in 

Armstrong [25], and the parameter settings of the dis-
crete window barrier option is identical to numerical 
examples discussed in Heynen and Kat [24].  

Table 1 investigates the convergence rate of the BIM 
under different assumptions of stock prices. All examples 
demonstrate that the BIM has approximately

nce rate of order 2. When the region of integration in 
the equation is partitioned into only 128 subintervals, the 
precision of our valuation algorithm has reached at least 
a 5 significant digit level in all cases. Table 2 examines 
the impact of the “barrier-too-close” upon the validity of 
our proposed algorithm. All numerical examples still 
demonstrate that the BIM has approximately a conver-
gence rate of order 2, and highly precise numerical val-
ues can be easily obtained with the region of integration 
partitioned into only 128 subintervals. Since we do not 
partition the underlying asset and time into node spaces 
as in lattice models, there is no discretization error or 
approximation error. Numerical examples in Table 2 
confirm that the BIM will not encounter the “barrier- 
to-close” problem in the pricing of window barrier op-
tions. 

Table 3 compares our numerical results with Arm-
strong’s [25] valuation formula under constant and tri-
partite 

entical to those found in Table 1 from Armstrong [25]. 
The BIM reveals an excellent rate of convergence in all 
six examples. If we round the numerical solutions to the 
nearest integer as in Armstrong’s examples, the numeri-
cal values in 5 out of 6 examples will rapidly converge 
identically to Armstrong’s results for only 32 subinter-
vals in the region of integration1.  

Table 4 reports prices of a discrete window down-and- 
out call using the recursive integral method presented in 
this paper. The option parameters 

ose in Heynen and Kat [24]2. Table 4 shows that the 
recursive integral method has approximately a conver-
gence rate of order 4 as proven in Wang and Shen [29], 
and the numerical solution will have a precision of up to 
10−4 with only 64 subintervals.  

To assess the impact of the discrete feature upon the 
pricing of window barrier option, Table 5 reports the 
pricing of a discrete window barrie

indow barrier option parameter settings as in Table 3, 
scenario A. Table 5 reveals that the value of discrete        

 

1In Armstrong [25], the value of late-start partial barrier option is equal 
to 56 instead of 65 under scenario B. Since Armstrong did not clearly 
specify parameter settings for the late-start partial barrier option, we 
have tried different combinations of parameter settings, and found that 
the parameter settings we used are consistent with other examples, and 
should be the most likely settings. We suspect that Typing error may 
exist in Armstrong’s examples. 
2Since Heynen and Kat [24] only present a figure for discrete 
down-and-out call, we can not directly compare our numerical results. 
However, the option premiums inferred from the figure is highly simi-
lar to our results. 
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price su

 
Table 1. Convergence rate for the integral tho  at various numbers of subintervals. 

Present stock Th

d

e number of  
bintervals n 

Window barrier 
option price 2048nC C  2048nC C

C


 

2048

Numerical order 

 32 1 0.0009131877 50 0.0000890425 91 0.2565428465802 1 7 * 

 64 10.255 5 0.0003686101583 0.0000359422259 1.31 

1.  

9  

0.00196 884 0.00012 708 1.  

2.  

1  

0.00556 699 0.00024 239 2.  

2.  

1  

0.01410 556 0.00035 515 2.  

2.  

1  

0.01181 151 0.00027 256 1.  

1.  

1  

0.00834 545 0.00018 985 1.  

1.  

1  

998269023

 128 10.2557311344725 0.0001014756073 0.0000098946248 86

0 256 10.2556554153597 0.0000257564945 0.0000025114494 1.98 

 512 10.2556358428873 0.0000061840221 0.0000006029880 2.06 

 1024 10.2556308992229 0.0000012403577 0.0000001209441 2.32 

 2048 10.2556296588652 * * * 

 32 16.0115497786398 0.0076846826827 0.0004801766721 * 

 64 16.0058288049455 37089 27021 97

 128 16.0043557610254 0.0004906650683 0.0000306591605 00

00 256 16.0039861955523 0.0001210995952 0.0000075668968 2.02 

 512 16.0038938987682 0.0000288028111 0.0000017997409 2.07 

 1024 16.0038708528538 0.0000057568967 0.0000003597191 2.32 

 2048 16.0038650959571 * * * 

 32 22.4381995365882 0.0229714462264 0.0010248142974 * 

 64 22.4207934087317 53183 82829 05

 128 22.4165949781255 0.0013668877637 0.0000609803192 03

10 256 22.4155633772693 0.0003352869075 0.0000149579967 2.03 

 512 22.4153076428463 0.0000795524845 0.0000035490375 2.08 

 1024 22.4152439745916 0.0000158842298 0.0000007086357 2.32 

 2048 22.4152280903618 * * * 

 32 39.4826291726867 0.0563978755227 0.0014304658007 * 

 64 39.4403373542196 60570 77835 00

 128 39.4297501516601 0.0035188544961 0.0000892516069 00

40 256 39.4271010344098 0.0008697372458 0.0000220598626 2.02 

 512 39.4264384239189 0.0002071267549 0.0000052535266 2.07 

 1024 39.4262727270840 0.0000414299200 0.0000010508212 2.32 

 2048 39.4262312971640 * * * 

 32 42.9912462670603 0.0463535068089 0.0010793718142 * 

 64 42.9567044706665 17104 50434 97

 128 42.9478672498006 0.0029744895492 0.0000692629404 99

50 256 42.9456314245397 0.0007386642883 0.0000172002825 2.01 

 512 42.9450690808937 0.0001763206423 0.0000041057418 2.07 

 1024 42.9449280673474 0.0000353070960 0.0000008221489 2.32 

 2048 42.9448927602514 * * * 

 32 45.3491505467224 0.0321755564581 0.0007100111264 * 

 64 45.3253180492188 30589 41044 95

 128 45.3190954374028 0.0021204471385 0.0000467914537 98

60 256 45.3175040444698 0.0005290542055 0.0000116745261 2.00 

 512 45.3171015715465 0.0001265812822 0.0000027932421 2.06 

 1024 45.3170003657435 0.0000253754792 0.0000005599553 2.32 

 2048 45.3169749902643 * * * 

Paramet : The parameter standard pa as follo , 10K  , 0 1.0   and ers s of a rtial barrier option are ws: 0.1r  , 0.  0 , 150B  , R f 3
b 50 , 0. 1 7

2 0.3   .
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Table 2. Convergence rate for the integral me at us in . thod  vario numbers of sub tervals

Present stock 
price 

The number of  
subintervals n 

Window barrier 
option price 2048nC C  2048nC C

C


 

2048

Numerical 
order 

 16 4  0.1844099385 04 0.0043240241 32 2.832 0116900388 7 1 * 

 32 42.6954178937846 0.0476588284749 0.0011174990086 1.  

1  

0.18161 617 0.00424 990 

1.

149.5 

0.1799153153781 0.0041951601481 

1.  

149.8 

0.1793479683141 0.0041790754927 

1.  

149.9 128 

95

 64 42.6598811921054 0.0121221267957 0.0002842383061 1.98 

49 128 42.6508088394628 0.0030497741531 0.0000715107715 1.99 

 256 42.6485160644163 0.0007569991066 0.0000177500324 2.01 

 512 42.6479397199321 0.0001806546224 0.0000042359699 2.07 

 1024 42.6477952361798 0.0000361708701 0.0000008481306 2.32 

 2048 42.6477590653097 * * * 

 16 42.9793976743453 02879 34503 * 

 32 42.8447990006204 0.0470116142368 0.0010984589884 95 

 64 42.8097558565109 0.0119684701273 0.0002796516095 1.97 

128 42.8007999277803 0.0030125413967 0.0000703901202 1.99 

 256 42.7985353219861 0.0007479356025 0.0000174760344 2.01 

 512 42.7979658990689 0.0001785126853 0.0000041710728 2.07 

 1024 42.7978231304055 0.0000357440219 0.0000008351839 2.32 

 2048 42.7977873863836 * * * 

 16 43.0663151251887 * 

 32 42.9330178089688 0.0466179991582 0.0010870112522 95

 64 42.8982745823847 0.0118747725741 0.0002768890051 1.97 

128 42.8893896149137 0.0029898051031 0.0000697145276 1.99 

 256 42.8871422067077 0.0007423968971 0.0000173107769 2.01 

 512 42.8865770130815 0.0001772032709 0.0000041319223 2.07 

 1024 42.8864352928465 0.0000354830359 0.0000008273727 2.32 

 2048 42.8863998098106 * * * 

 16 43.0950523212732 * 

 32 42.9621903093433 0.0464859563842 0.0010831922040 95

 64 42.9275476529300 0.0118432999709 0.0002759665756 1.97 

42.9186865158027 0.0029821628436 0.0000694888477 1.99 

 256 42.9164448874881 0.0007405345290 0.0000172555604 2.01 

 512 42.9158811158664 0.0001767629073 0.0000041188397 2.07 

 1024 42.9157397482165 0.0000353952574 0.0000008247624 2.32 

 2048 42.9157043529591 * * * 

Parameters: e parameters of a s  partial barrie s: 100K   0 1.0   and 0.1fr  , 0.3  , , 150B  , 50R  , Th tandard r option are as follow b , 1 0.7 

2 0.3  . 
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Table 3. A comparison with Armstrong’s approach. 

 The number of subint Scenario B Numerical orderervals (n) Scenario A Numerical order

 32 10  808.6382903858 * .5102109740 * 

 64 108.8865154214 2. 9 2.  

Window  

t1 = 90, 2 = 180, and T = 270 ing period is betw  and t . 
Scenario A: 

32 195.885351927 * 153. 84519316 * 

2. 2 3.7181 

Earl End  

1024 

t1 = 90 and T = 270 days. The eriod is between 0 and 
Scenario A: 



32 51.6363405142 * 63.2520269542 * 

1. 8 1.6251 

Late- tart  128 

A g 

t1 = 180 and T = 270 days. Th  period is between t  an
Scenario A: 

Scenario B: 

088 80.9159417360 04

 128 108.9444188014 2.0534 81.0144594736 2.03 

256 108.9583361399 2.0429 81.0386228755 2.03 

Barrier 512 108.9617435465 2.0834 81.0445994016 2.08 

Option 1024 108.9625862880 2.3282 81.0460851263 2.33 

 2048 108.9627958275 * 81.0464554842 * 

 Armstrong 109  81  

 t days. The monitor een t1 2

1 2 3 0.1275      1 2 3 0.06r r r   , 1 2 3 0.04     , 

Scenario B: 1 2 30.07,  0.06,  0.05r r r   , 1 2 30.03,  0.04,  0.05     , 1 2 30.15,  0.1275,  0.1     

 4 59

 64 195.8854703116 265 153.5968995833 

y- 128 195.8854515945 3.6105 153.5967802317 3.9411 

Partial 256 195.8854500358 3.9178 153.5967724446 3.9861 

Barrier 512 195.8854499324 3.9768 153.5967719529 3.9992 

Option 195.8854499259 3.9400 153.5967719220 4.1096 

 2048 195.8854499254 * 153.5967719201 * 

 Armstrong 196  154  

monitoring p t1. 

1 2 0.06r r  , 1 2 0.04   , 1 2 0.1275    

Scenario B: 1 20.06,  0.05r r  , 1 20.04,  0.05   , 1 0.1275,  2 0.1  

 

 64 51.9047019817 504 64.4765623102 

S 52.0160107156 2.0727 64.8425313180 1.4075 

Partial 256 52.0421502763 2.0179 64.9751081616 1.3174 

Barrier 512 52.0486933692 2.0796 65.0289538966 1.3438 

Option 1024 52.0503182894 2.3321 65.0528046515 1.6498 

 2048 52.0507209626 * 65.0639610416 * 

 rmstron 52  56  

e monitoring 1

1 2 0.1275    
d T. 

1 2 0.06r r  , 1 2 0.04   , 

1 20.06,  0.05r r  , 1 20.04,  0.05   , 1 20.1275,  0.1    

Parameters: S = K = 5000, B = 5600, One year is 365 days. 
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Table 4. Valuation of discrete window barrier down-and-out call. 

ncy T mber of subintervals (n) Discrete window barrier call value Numerical Order2048 nC C  Monitoring freque he nu

 64 5.5351927198 0.0008362066 * 

 128 5.5359853829 0.0000435435 4.26 

10 days 064 4.06 

0.0000001606 

1  4.  

5 days 

0.0000 8137 4.  

1  4.  

256 5.5360263200 0.0000026

 512 5.5360287658 4.02 

 024 5.5360289170 0.0000000094 09

 2048 5.5360289264 * * 

 64 5.3094258080 0.0036313548 * 

 128 5.3128374555 0.0002197073 4.05 

256 5.3130439672 0.0000131956 4.06 

 512 5.3130563491 00 02

 024 5.3130571151 0.0000000477 09

 2048 5.3130571628 * * 

Paramete rameter settings are as n and Kat (1996). S = K = 1 5 year. One year is 3 ,  0,  0  

 
Table 5. Valuation of discrete ier up-and-out c

Monitor  frequency The num ubintervals (n) Discre er call value Numerical order 

rs: The pa Heyne 00, H = 95, T = 0. 60 days. 0.05r  .2 . 

 window barr all. 

ing ber of s te window barri 2048 nC C  

 64 134.5624857024 0.0004269270 * 

 128 134.5620855804 0.0000268050 3.99 

monthly 016767 4.00 

0.0000001044 

1  4.  

semim nthly 256 

0.0000 0583 4.  

1  4.  

256 134.5620604521 0.0000

 512 134.5620588798 4.01 

 024 134.5620587815 0.0000000061 10

 2048 134.5620587754 * * 

 64 128.4714441840 0.0002086524 * 

 128 128.4712500740 0.0000145424 3.84 

o 128.4712364622 0.0000009306 3.97 

 512 128.4712355899 00 00

 024 128.4712355350 0.0000000034 10

 2048 128.4712355316 * * 

Parame arameter settings are a Table 3 scenario A. S = K he time to m  days. One y 65 days. 
; The monthly m toring dates are t1 = 90, t2 =  180 days. The ha ing dates a  = 90, t2 = 

6 = 165, t7 = 1 ys. 

 
window barrier option is significantly more than its con-
tinuous counterpart, and the diffe  is negatively re-

ch 

  

n rapidly obtain d-form 
lutions for bo  types of windo  barrier 

window barrier options. The proposed algorithm can 
, duration, 

uencies, 
 needs.  

ters: The main p s per = 5000, B = 5600, T aturity is T = 270 ear is 3
0.06,  0.04,  0.1275r    

105, t3 = 120, t4  135, t5 = 150, t

oni

80 da

 120, t3 = 150, t4 = lf-monthly monitor re t1

 =

rence
lated to the frequency of discrete monitoring. 

5. Conclusion and Further Resear

options, and the term structure can have a significant 
impact on the pricing of both discrete and continuous 

the BIM ca
approximate so

highly accurate close
th w

We have proposed a PDE approach, the boundary inte-
gral method, to the valuation of discrete and continuous 
window barrier options. Numerical examples reveal that

provide flexibility to tailor the barrier position
cured barrier, varying rebates, monitoring freq
and varying strike prices to suit investors’ unique
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The extra flexibility offered by the BIM makes it an ap-
plicable way to calculate options with more complex 
features. The BIM is able to easily handle the valuation 
of a multi-window barrier option by repeating the recur-
sive integral procedures. In addition, it can cope with a 
discrete window double barrier option by changing the 
definition of the initial condition accordingly. The pro-
posed PDE approach can also be extended to the Bound-
ary Element Method to accommodate a continuous win-
dow double barrier option with cured boundaries. 
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