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ABSTRACT 

This paper provides a simple proof for the Perron-Frobenius theorem concerned with positive matrices using a homo- 
topy technique. By analyzing the behaviour of the eigenvalues of a family of positive matrices, we observe that the 
conclusions of Perron-Frobenius theorem will hold if it holds for the starting matrix of this family. Based on our 
observations, we develop a simple numerical technique for approximating the Perron’s eigenpair of a given positive 
matrix. We apply the techniques introduced in the paper to approximate the Perron’s interval eigenvalue of a given 
positive interval matrix. 
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1. Introduction 

A simple form of Perron-Frobenius theorem states (see 
[1,2]): 

If  ijA a
ija
 is a real  matrix with strictly posi- 

tive entries , then: 
n n

0
1) A has a positive eigenvalue r which is equal to the 

spectral radius of A, 
2) r is a simple, 
3) r has a unique positive eigenvector v, 
4) An estimate of r is given by the inequalities:  

maxmin ij ij
i ij j

a r a    

The general form of Perron-Frobenius theorem in- 
volves non-negative irreducible matrices. For simplicity, 
we confine ourselves in this paper with the case of posi- 
tive matrices. The proof, for the more general form of the 
theorem can be obtained by modifying the proof for 
positive matrices given here. 

Perron-Frobenius theorem has many applications in 
numerous fields, including probability, economics, and 
demography. Its wide use stems from the fact that eigen- 
value problems on these types of matrices frequently 
arise in many different fields of science and engineering 
[3]. Reference [3] discusses the applications of the 
theorem in diverse areas such as steady state behaviour 
of Markov chains, power control in wireless networks, 
commodity pricing models in economics, population 
growth models, and Web search engines. 

We became interested in the theorem for its important 

role in interval matrices. The elements of an interval 
matrix are intervals of . In [4], the theorem is used to 
establish conditions for regularity of an interval matrix. 
(An interval matrix is regular if every point in the 
interval matrix is invertible). In Section 4 we develop a 
method for approximation of the Perron’s interval eigen- 
value of a given positive interval matrix. See [5] for a 
broad exposure to interval matrices. 



Since after Perron-Frobenius theorem evolved from 
the work of Perron [1] and Frobenius [2], different proofs 
have been developed. A popular line starts with the 
Brouwer fixed point theorem, which is also how our 
proof begins. Another popular proof is that of Wielandt. 
He used the Collatz-Wielandt formula to extend and 
clarify Frobenius’s work. See [6] for some interesting 
discussion of the different proofs of the theorem. 

It is interesting how this theorem can be proved and 
applied with very different flavours. Most proofs are 
based on algebraic and analytic techniques. For example, 
[7] uses Markov’s chain and probability transition matrix. 
In addition, some interesting geometric proofs are given 
by several authors: see [8,9]. Some techniques and results, 
such as Perron projection and bounds for spectral radius, 
are developed within these proofs. More detailed history 
of the geometry based proofs of the theorem can be 
found in [8]. 

In our proof, a homotopy method is used to construct 
the eigenpairs of the positive matrix A. Starting with 
some matrix 0H  with known eigenpairs, we find the 
eigenpairs of the matrix   0 0 H t H t H D    for t 
starting at 0 and going to 1. If for each t all eigenvalues *Sponsored by NSF Grant Number: 0552350. 
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of  H t  are simple, then the eigencurves  r t  do not 
intersect as t varies from 0 to 1. 

Our proof requires that the curve formed by the greatest 
eigenvalues  and its reflection about the real axis 
(i.e., 

 r t
 r t ) will not intersect with any other eigencurve. 

Together they form a “restricting area” for all other 
eigenvalue curves. As a result, the absolute value of any 
other eigenvalue will be strictly less than  r t  for 

. By choosing an initial matrix 00 < < 1t H  that has the 
desired properties stated in the Perron-Frobenius theorem, 
we will show that the “restricting area” preserves these 
properties along the eigencurves for all  H t , and for 

 in particular.  1A H
Our proof is elementary, and therefore is easier to 

understand than other proofs. While most of the other 
proofs focus on the matrix A itself, we approach the 
problem by analysing a family of matrices. In our proof 
we study some intuitive structures of the eigenvalues of 
positive matrices and show how those structures are pre- 
served for matrices in a homotopy. Thus, our proof pro- 
vides an alternative perspective of studying the behaviour 
of eigenvalues in a homotopy. 

Furthermore, our proof is constructive. The idea is to 
start with the known eigenpair corresponding to the 
maximal eigenvalue of 0H , then use the homotopy 
method and follow the eigencurve corresponding to the 
maximal eigenvalues of positive matrices  H t , apply- 
ing techniques such as Newton’s method. Recently, 
many articles are devoted to using homotopy methods to 
find eigenvalues, for example see [10-12] and the re- 
ferences therein. In most cases, the diagonal of A is used 
as starting matrix 0H . Still, people are interested in 
finding a more efficient 0H , one which has a smaller 
difference from A. The 0H  constructed in our proof 
provides an alternative to the query. It is promising be- 
cause by proper scaling, it can behave as some “average” 
matrix. 

2. The Proof 

In the following sections,  ijA a  will denote a real 
 matrix with strictly positive entries, i.e. . If 

 is an eigenvalue for A, and v is its corresponding 
eigenvector, then  forms an eigenpair for A. A 
vector is positive if all of its components are positive. An 
eigenpair is positive if both of its eigenvalue and eigen- 
vector components are positive. 

n n > 0ija
r

 ,r v

Lemma 2.1. A  has a positive eigenpair .  ,r v
Proof. Define the function  to be:  :f V V

  Av
f v

Av
  

where 

: 1 , 0 for 1 ,and 1n
i j

j

V v v v i n v ,
 

       
 

  

and v  denotes the maximum norm of  nv
Then f is continuous (since V does not contain the zero 

vector and Av  is positive for any v in V), V is convex 
and compact (since V is closed and bounded, it is 
compact, while convexity follows trivially),  f V V  
(since the maximum norm of v in V is dominated by 

jj
v ). According to Brouwer fixed point theorem, a 

continuous function f which maps a convex compact 
subset K of a Euclidean space into itself must have a 
fixed point in K. Thus, there exists v in V such that 
 f v v . No component of v can be 0, since any 

positive matrix operating on a non-negative vector with 
at least one positive element will result in a strictly 
positive vector. So v is a positive eigenvector of A, and 
the associated eigenvalue r is also positive.  

Lemma 2.2. If r is the positive eigenvalue associated 
with the eigenvector v in the previous lemma, then r has 
no other (independent) eigenvector.  

Proof. Suppose on the contrary, there is another posi- 
tive eigenvector x for r. Assume that x and v are indepen- 
dent. 

Let 

min 0i
i

i

v
t x

x

    
  

 

Let m be an index such that m mv x t . Let y v tx  , 
then y is an eigenvector for A associated with eigenvalue 
r. It’s clear that 0my   and  for all i. Since x 
and v are linearly independent, . Therefore, 

0iy 
y 0

  0
m

Ay  . On the other hand, 
m

, a 
contradiction. Therefore v is the only eigenvector for r. 

 Ay 0mry 

Lemma 2.3. v is the only positive eigenvector for A. 
Proof. Suppose on the contrary, there is another 

positive eigenvector x (independent of v) associated with 
an eigenvalue  . It’s clear that 0  . According to 
Lemma 2.2, r  . Without loss of generality, assume 

r  . Suppose 

min i m

i i m

v v
t

x x
   

Let y v tx 
0

, then just as in the previous lemma, 

my  ,  for all i, and . It follows that 0iy  0y 
Ay rv tx   is a positive vector. 

But m mrv rtx txm 
0tx

, which contradicts  

m mrv   . 
Remark. The previous lemmas imply that there exists 

a unique positive eigenpair  for A.   ,r v
Lemma 2.4. There is no negative eigenvalue   for A 

such that r  , where  ,r v  is the positive eigenpair 
of A. 
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Proof. Suppose the statement of the lemma is false. It 
follows that there exists an eigenpair  such that   ,r x 
Ax r  x . Then  is an eigenpair for  2 ,r x 2A . On the  

other hand,  is also an eigenpair for  2 ,r v 2A . There 
are two different eigenvectors associated with . Since 2r

2A  is a positive matrix, this contradicts Lemma 2.2 and 
this completes the proof of this lemma. 

Lemma 2.5. Suppose . Then ,a b  0  , 
 such that  1 1 2 2, , ,n m n m  

1 10 n a m b                 (1) 

2 2 0n a m b                 (2) 

Proof. Inequalities (1) and (2) are equivalent to  

1 10
a

n m
b b


                (3) 

2 2 0
a

n m
b b


                (4) 

According to Dirichlet’s approximation theorem, for 
any , there is ,x N    M   such that  

1
Mx Mx Mx Mx

N
           

Let , 1x a b N b       . 

Then 1 1,n M m M a b     satisfy (3). 

Now let Mx Mx     . If 0  , then 

2 2,n M m M a b     satisfy (4). If 0  , then  

 1 1
1 1 Mx Mx 

 
                

1  

so 2 21 , 1n M m M a b             1  satisfy (4). 

Lemma 2.6. There does not exist complex eigenvalue 
 of A such that z z r . 
Proof. Suppose, on the contrary, that there exists an 

eigenpair  such that  ,z x Ax zx , where \z   
and z r



. Let . It’s impossible that  i ,z re   2π

  0jx   for all j, for this would make     0
j

Ax 
for all j. However, it’s clear that  when 

. 
  0lzx 

  0lx 
Therefore, there exists some xj such that   0j x . 

(if not, then consider x ). Suppose  

   min 0i
i

i

v
t x

x

    
  

  

and t is obtained at . Let , then 
 for all i. Either 

i m y v tx 
0  0iy   y   or there exists 

some n such that n . Since if  for all 
i, then let m be the index of the element with non-zero 
imaginary part. For any 

 y 0

k

  0iy 

 ,  

       iek k k k k
m mm m m

A y A v A tx r v tx     

If   0y 
,s k

, then according to lemma 2.5, there 
exists   such that  

 0 2 π arg ms k x    

It follows that  ie k
m mv tx 0   , a contradiction.  

The case for   0y   is similar. 
If  my 0  , then there exists some p such that 
  0py  . Let t t  , . Require ty v t   x t   to 

be sufficiently small so that Ay
1k 

 is still a positive 
vector. It follows that for any ,  

   iek k k
m m m

r v tx A y 0   . But according to lemma  

2.5, for any > 0 , there exists ,s k  such that  
2 πk s   0. Then ie k

mv t  mx  . This again results 
in a contradiction, and hence the eigenpair  ,z x  does 
not exist.  

Remark. The previous lemmas imply that if  ,r v  is 
the unique positive eigenpair of A , then  is equal to 
the spectral radius of A (since if 

r
 , s w  is any eigenpair 

corresponding to an eigenvalue of the maximum absolute 
value, then it can be shown that  ,s w  npair 
with positive eigenvector, and the above lemmas will 
then imply that r s

is an eige

 .)  
Lemma 2.7. The matrix 

1 1

,

1 1

D

 
   
 
 


  


 

has a simple eigenvalue n and eigenvalue 0 with alge- 
braic multiplicity 1n  . In addition, the eigenvector 
associated with n is positive.  

Proof. Since , n is an 
eigenvalue of D. Likewise, 

  1,1, ,1 1,1, ,1
T T

D n

  1,0, 1, ,0 , , 1,0,0, ,
T T



T 1, 1,0, ,0 , 1     
1n

 are 
  independent eigenvectors of D associated with the 

eigenvalue 0. So 0 is an eigenvalue for D with multip- 
licity 1n  . Since an n n  matrix have only n eigen- 
values, these are all the eigenvalues of D. Therefore, the 
eigenvalue of the greatest absolute value of D is positive 
and simple, and its corresponding eivenvector has posi- 
tive entries. 

Theorem 2.1. Let A be any positive matrix. Then A 
has a positive simple maximal eigenvalue r such that any 
other eigenvalue λ satisfies r   and a unique positive 
eigenvector v corresponding to r. In addition, this unique 
positive eigenpair,  ,r v , can be found by following the 
maximal eigenpair curve     ,r t v t  of the family of 
matrices  

    ,0 1,H t D t A D t      

where D is the n n  matrix with defined in lemma 2.7.  
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Proof. The first part of the statement of the theorem 
follows from the previous lemmas. We will denote the 
eigenpair of the matrix D by  1 0r  n  and  

.    1 0 1,1, ,1
T

v  
 H t 0 t , , are all positive matrices. We will  1

now examine the eigencurves , where        ,i i iC t r t v t

 ir t  is a particular eigenvalue for  H t , and  iv t  is 
an eigenvector associated with it. The eigencurve  tiC  
starting at  is not going to intersect any 
other eigencurve at any time and  remains to be 
the largest eigenvalue. Therefore, the unique positive 
eigenpair,  of the matrix A, can be found by 
following the maximal eigenpair curve . 

   1 10 , 0r v

 ,r v

 1r t

1C  t
Theorem 2.2. An estimate of r is given by: 

maxmin ij ij
i ij j

a r a    

Proof. Suppose  

min

max
m i

M i

v v

v v




 

then  

 

 

min

max

m m mi mm
ii j

ij

M M Mi MM
ii j

rv Av v a v a

rv Av v a v a

  

  

 

  ij

 

Therefore  

maxmin ij ij
i ij j

a r a    

Remark. This completes the proof of Perron-Fro- 
benius theorem for positive matrices. The proof can be 
modified to prove the more general case for irreducible 
non-negative matrices. For example, this can be done by 
letting 0 max ijH a D , where D is the matrix defined in 
Lemma 2.7. As we noted in the introduction, we will next 
demonstrate how to use homotopy method to find the 
largest eigenvalue of a positive matrix A numerically.  

3. Numerical Example 

In this section we use the homotopy method to appro- 
ximate the positive eigenpair of the matrix: 

0.56201 1.0361 1.3522 0.50958 1.5610

0.88017 1.8872 0.57813 0.44808 1.3507

,1.0543 1.2754 1.3436 1.3357 0.013431

0.91485 1.9154 1.3903 1.6888 1.2043

1.7507 0.48141 0.13599 0.68892 0.77354

A 

 
 
 
 
 
 
 
 

 

starting with the 5 × 5 matrix D of all entries ones. In [12] 
it is shown that the homotopy curves that connect the 
eigenpairs of the starting matrix D and those of A can be 

followed using Newton’s method. We use these tech- 
niques to follow the eigencurve associated with the largest 
eigenvalue of D. While [12] finds all the eigenvalues of 
tridiagonal symmetric matrices, the method works well 
in approximating the largest eigenvalue when it is 
applied to any positive matrix due to the separation of its 
eigencurves (see [12] for details). 

The eigenpath of  D t A D  , shown in Figure 1, is 
constructed using the numerical results presented in the 
following table: 

 
t  0 1/6 2/6 3/6 4/6 5/6 1 

Largest 
Eigenvalue

5.0000 5.0369 5.0718 5.1038 5.1321 5.1556 5.1730

Corresponding
Eigenvector

0.4472 0.4431 0.4372 0.4295 0.4202 0.4094 0.3972

 0.4472 0.4450 0.4408 0.4343 0.4253 0.4136 0.3988

 0.4472 0.4449 0.4442 0.4450 0.4475 0.4515 0.4573

 0.4472 0.4753 0.5034 0.5314 0.5592 0.5868 0.6138

 0.4472 0.4262 0.4048 0.3827 0.3600 0.3364 0.3119

 
4. An Application to Positive Interval 

Matrices 

To differentiate ordinary matrices in the previous sec- 
tions from interval matrices, we will call them point ma- 
trices in this section. As stated in Section 1.2, an interval  

matrix is of the form ,A A A   , where A  and A   

are point matrices. 
Definition 4.1. We call A a positive interval matrix if 

A  and A  are positive. The set E is Perron’s interval 
eigenvalue of A if E consists of all positive real maximal 
eienvalues of all the positive point matrices B with 
A B A  .  

We are interested in determing Perron’s interval eigen- 
value E of A. We’ll show that if s = the Perron’s 
eigenvalue of A , t = the Perron’s eigenvalue of A , 
then  ,E s t . Therefore, we can approximate E using 
the Homotopy method introduced in this paper. 

Lemma 4.1. Let B be an  positive point matrix 
with Perron’s eigenpair 

n n
 ,v , and C be an n n  

positive point matrix with Perron’s eigenpair  , x . 
Suppose  for all 1 ,ij ijb c i j n  , then   .  

Proof. Let  max i i iM x v , and suppose the maxi- 
mum is obtained when i k . Then  

  
 

     

1 1

1 1 1

n n

kj j kj j j j
j j

k k k k

n n n

kj j kj j kj j
j j j

k k k

c x c v x v

x v x v

c v M c v b v

v M v v





 

  

 

  

 

  

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Figure 1. The maximal eigenvalue path for A. 
 

Theorem 4.1. Let ,A A A    be a positive interval  

matrix, and E is its Perron’s interval eigenvalue. 
Suppose =s the Perron’s eigenvalue of A , t  the 
Perron’s eigenvalue of A , then  ,E s t

1 ,i j
.  

Proof. For any  and , we have B A n
ij ijija b a  . Suppose   is the Perron’s eigenvalue of 

B, then s t   from the previous lemma. Therefore 
 ,E  s t

 
. 

Let  1 , 0A  1u H u A  u . Define the func-  
tion    : 0,1 ,f s t  to be:  

   Perron's eigenvalue off u  H u  

Then  0f s  and  1f t . Since f is continuous, 
then from the Intermediate Value Theorem, for all 

 ,s t   there’s some  0,1u  such that  f u  . 
Therefore  ,s t E . 

It follows that  ,s tE   
Remark. Theorem 4.1 shows that in order to find the 

Perron’s interval eigenvalue E of A, we only need to find 
the Perron’s eigenvalues of A  and A , which can be 
approximated using the technique introduced in the 
previous section.  
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