

Necessary Conditions for a Fixed Point of Maps in Non-Metric Spaces

I. Raykov

Department of Mathematics and Physics, Colorado State University, Pueblo, USA Email: ivan.raykov@colostate-pueblo.edu

Received July 17, 2012; revised September 3, 2012; accepted September 11, 2012

ABSTRACT

The main purpose of the present work is to introduce necessary conditions for a map on a non-metric space, defined by using a map on a metric space, to have a fixed point.

Keywords: Topological Space; Complete Metric Compact Space; Cauchy Sequence; Lipschitz Continuous Map; Contraction Map

1. Introduction

Let *X* denote a complete (or compact) metric space and also $f: X \to Y$ a continuous map of *X* onto *Y*, where *Y* is a bounded closed topological normal space with a countable base.

What must be the conditions, in the means of the meric space *X*, such that the continuous map $g: Y \rightarrow Y$ from *Y* onto *Y* will have a fixed point?

We suppose that (see [1-3]):

the continuous map $f: X \to Y$ (not one to one) and the continuous map $g: Y \to Y$ are given and the continuous inverse map of f, $f^{-1}: Y \to X$ exists.

$$\begin{array}{cccc} & J \\ X & \rightarrow & Y \\ f^{-1} & \searrow & g \\ & & Y \end{array}$$

We remind that Banach contraction principle for multivalued maps is valid and also the next Theorem, proved by H. Covitz and S. B. Nadler Jr. (see [4]).

Theorem 1. Let (X,d) be a complete metric space and $F: X \to B(X)$ a conraction map (B(X) denotes the family of all nonempty closed bounded (compact) subsets of X). Then there exists $x \in X$ such that $x \in F(x)$.

2. Main Result

We consider now the next theorem:

Theorem 2. Let X denote a complete (or compact) *metric space* X *and also:*

 $f: X \rightarrow Y$ a continuous map of X onto Y, where Y is a bounded closed topological normal space with a

countable base.

We suppose also that the maps:

 $g: Y \rightarrow Y$ is continuous and onto.

and

 $f^{-1}: Y \to X$ exists and it is continuous. If $x_0 \in X$ is a point from X and if we suppose also

that $y_0 \in f(x_0)$. Then if the rest terms of the sequence $\{y_i\}$ are received from $y_i \in g(y_{i-1}), i = 1, 2, 3, \cdots$ and the rest of the terms of the sequence $\{x_i\}$ are determined by $x_i \in f^{-1}(y_i), i = 1, 2, 3, \cdots$ and if also $\{x_i\}$ is a Cauchy sequence and therefore convergent to a fixed point x^* in X, then the sequence $\{y_i\}$ will be also convergent to a fixed point y^* in Y.

Proof. Let $x_0 \in X$ is a point from X and let us suppose also that $y_0 \in f(x_0) \subset Y$ and let the rest terms of the sequence $\{y_i\}$ are received from $y_i \in g(y_{i-1})$, $i = 1, 2, 3, \cdots$.

Let also the rest of the terms of the sequence $\{x_i\}$ are determined by $x_i \in f^{-1}(y_i), i = 1, 2, 3, \cdots$.

If $\{x_i\}$ is a Cauchy sequence then for any $\varepsilon > 0$ there exists an integer N_{ε} , such that for all integers *i* and *k*, $i > N_{\varepsilon}$ and $k > N_{\varepsilon}$ will be satisfied the inequality

$$\|x_i - x_k\| < \varepsilon$$

and therefore the Cauchy sequence $\{x_i\}$ will be convergent with a fixed point x^* in *X*, and because *X* is complete (or compact), *i.e.*

$$\lim_{x \to \infty} x_i = x^*.$$

Since $x_i = f^{-1}(y_i)$ and $x_i = f^{-1}(y_k)$ and $f^{-1}(y)$ is a continuous map and g(y) is continuous map onto

372

the closed and bounded space *Y*, and also $y_i \in f(x_i)$ and $y_k \in f(x_k)$, therefore the sequence $\{y_i\}$ will be also convergent with a fixed point y^* in *Y*, such that $x^* = f^{-1}(y^*)$ and $y^* \in f(x^*)$, *i.e.*

$$\lim_{x\to\infty} y_i = y^*.$$

Q.E.D.

3. Acknowledgements

We express our gratitude to Professor Alexander Arhangelskii from OU-Athens for creating the problem and to Professor Jonathan Poritz and Professor Frank Zizza from CSU-Pueblo for the precious help for solving this problem, and to Professor Darren Funk-Neubauer and Professor Bruce Lundberg for correcting some grammatical and spelling errors.

REFERENCES

- A. V. Arhangel'skii and V. V. Fedorchuk, "The Basic Concepts and Constructions of General Topology," In: A. V. Arkhangel'skii and L. S. Pontrjagin, Eds., *General Topology I, Encyclopedia of the Mathematical Sciences*, Springer, Berlin, 1990.
- [2] J. Dugundji, "Topology," Allyn and Bacon, Inc., Boston, 1966.
- [3] S. W. Davis, "Topology," McGraw-Hill, Boston, 2005.
- [4] L. Gorniewicz, "Topological Fixed Point Theory of Multivalued Mappings," Springer Verlag, Berlin, 2006.