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ABSTRACT 

This paper presents some new results for the nonlinear transformations of the fractional integration process. Specifically, 
this paper reviews the weight fractional integration process with the Hurst parameter, 3 2 > > 5 6d , and investigates 

the asymptotics of asymptotically homogeneous functional transformations of weight fractional integration process. 
These new results improve upon the earlier research of Tyurin and Phillips [1]. 
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1. Introduction 

Since the breakthrough papers of Park and Phillips [2, 3], 
the research on the nonlinear cointegration has generated 
a lot of interest in recent years. In traditional research on 
cointegration, econometricians always adopt linear models. 
Using a linear cointegration model, econometricians can 
derive large sample properties easily. However, these 
settings have a serious drawback: there are many non- 
linear relationships between dependent variables and 
independent variables in the cointegration model. Thus, it 
is a subjective process to set cointegration as a linear 
form in advance. A nonlinear regression model may 
improve this problem in a cointegration system. Although 
nonlinear regressions have obvious merit for cointe- 
gration models, it is difficult to derive the asymptotics 
for their estimated parameters and test statistics. Park and 
Phillips [2, 3] were the first to use local time to obtain 
asymptotics under nonlinear transformations of the I(1) 
process. Pötscher [4] and de Jong and Wang [5] later 
extended to these results to more flexible assumptions. 
The asymptotics of nonlinear transformations for non- 
stationary time series consistently concentrated on the I(1) 
process in early nonlinear cointegration research. Tyurin 
and Phillips [1] extended their method to the nonsta- 
tionary I(d) process. Jeganathan [6] investigated the asy- 
mptotics of nonlinear transformations for generalized 
fractional stable motions. Although they presented some 
new results for the nonlinear transformations of the non- 
stationary fractionally integrated process, they only con- 
centrated on integrable functions. 

This paper uses a weight nonstationary fractionally 
integrated process instead of the standard nonstationary 

fractionally integrated process. This paper extends the 
results of Tyurin and Phillips [1] to asymptotically 
homogeneous functions. Specifically, this paper uses the 
fractional Brownian motion Tanaka formula to obtain the 
asymptotics of nonlinear transformations for the non- 
stationary fractional integration process. The results of 
this paper address the shortcomings of Tyurin and Phillips 
[1]. 

2. Assumptions and Basic Results 

Consider the following fractional integration processes:  

 1 =
d

tL x t              (1) 

where t  is an  2. . . 0,i i d   and 3 2 > > 5 6d . t  
is called a nonstationary fractionally integrated processes. 
In addition to the definition of nonstationary fractionally 
integrated processes, This paper uses the following ad- 
ditional assumptions. 

x

Assumption 1. For some  > 2 > 2 max 1 , 2q p H , 
<

q

kE    and  2 <tE   ,where H  is the Hurst 
exponent, = 1 2, and 2H d p   

Assumption 2. 
1)    2

=1
=

n H
tt

Var x n M n , where  M n  is a 
slowly varying function.  

2) The distribution of k , , is abso- 
lutely continuous with respect to the Lebesgue measure 
and has characteristic function  for which 

= 0, 1, 2,k   

  = it kt E e  
  = 0lim t t t  for some > 0 .  

Based on these assumptions, we can obtain the frac- 
tional central limit theorem for the nonstationary I(d) pro- 
cesses. 

Theorem 1. Consider the process defined by  
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 = 1 ,
d

t tx L   

where 3 2 > > 5 6d .  t  satisfies  and 
Assumption (1). Then the process  

  = 0tE 

 
     1/2 ,d

Hnrn x n B r            (2) 

where  .  is Gauss sign and  0,1r .  HB r  is a 
fractional Brownian motion with Hurst exponent defined 
by stochastic integral.  

     1 21
( ) = d ,

1 2

r H

HB r r s W s
H






       (3) 

where W(.) is a Brownian Motion on . [0,1]  n


 is a 
slowly varying function with   =n M n

kon urie 7]    
o obtain the asymptotics of the transformed frac- 

tio

. 
Proof of Theorem 1: 
See A om and Go roux [               
T
nally integrated series, it is necessary to use the local 

time  ,L t s , which is generally defined as quadratic 
variat te in the stochastic process literature. Qua- 
dratic variation is infinite when we use fractional Brow- 
nian motion instead of Brownian motion. To prevent this 
problem, this paper adopts the fractional Brownian 
motion Tanaka formula from Coutin, Nualart and Tudor 
[8]. 

ion fini

   

      
0

= 0

                  sgn d ,

               

H H

r

H H

B t s B s

B t s B t L t s

 

    

where  as  and   sgn = 1,0, 1z  > 0,= 0, < 0z
1 > >H 1 3 . H  is a Hurst exponent. 

Remark ula) Let  be 
lo

1 Occupation time form. ( f
cally integrable and 3 2 > > 5 6H . Then  

  n    
0

d = , d .Hf B t t f s L t s s


         (4) 

for all 
e set
t  

If w     = 1 <f x x s
ula.  

u , we can obtain frac- 
tional local time form

   
00

1
, = 1 < dlim

2

t

u
L t s x s u r

u
        (5) 

3. Asymptotically Homogeneous Functions 

of Park and Phillips [2] considered the transformation 
asymptotically homogeneous functions for I(1) process.  

       = , ,T x F x R x            (6) 

where  F x  is locally integrable function and  ...R  is 
a reminder. This paper defines the notion of an asymp- 
totically homogeneous function following de Jong and 
Wang [4]: 

Definition 1. A function  is called asymptotically 
ho

 .T
>Kmogeneous if for all 0  and some function 

 .F ,  

     1
d = 0.lim

K

K
T x F x x


  


        (7) 

If  

   (8) 

and 

     1
asT x F x     

     1
T x G x     for a locally integrable 

ion funct  .G , then  .T  is asymptotically homo- 
geneous. ition to Definition 1,  T x  must satisfy 
monotonic regular. Use the following ma to prove 
the asymptotics: 

Lemma 1. Und

In add
 Lem

er Assumption, for any   

    (9) 

where “ ” denotes weak convergence in 

 0K  ,

   11/2
n

d 1n I n    
0

=1

d ,t H
t

x x I B r x r  

  ,D K K  
 on (i.e. the space of functions that are continuous  0,1  

except for a finite number of discontinuities) and H  is 
a Hurst parameter. 

Proof of Lemma 1: 
 because slowly varying function, From Jeganathan [6],

 n , will not affect our proof, we set    = 1n . 
ise in Pointw x , the result follows from Rem f 

Tyurin and Ph lips [1], and therefore it suffices to show 
stochastic equicontinuity of  

ark 3.5 o
il

  1 2

=1 tt
x x . 

By the Skorokhod representation, we can assume that  

1 n dn I n  

 
 

   1 2
as

d 
0,1 0sup Hr rnn x B r   . 

Then for n large enough,  

 
 

   1 2sup dn x0,1 Hr rn B r  
    

almost surely, implying that for  large enough   n

      1 2 1 21

: < < =1

sup sup
n

d d   
t t

x K x x x x t

n I n x x I n x x
  

    

  
  

   

1 21

=1

1

0

2

sup

2 dsup

= 1, d 3sup sup

n
d

t
x K t

H
x K

x

x
x K s K

n I x n x x

1,

I x B r x

L s s L s




r



 



 







 

  

    











      (10) 

where the equality follows from the occupation times 
formula (see Tyurin and Phillips [1]) and because 

 1,sup s K L s  is a well-defined random variable. The 
above chain of inequalities establishes stochastic equi- 
continuity of  
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  1 21
=1

n d
tt

n I n x x   , 

      
 

    

1 1

1 1 21 2 1

=1

/ 11 2 1 1

/
=1

1 2

=

     =

    = ( )

       1 d ,

n n

n
dd

t t
t

nKd
tK

t

d
t

S S

n n T n x I n x

n n T n x

I j n x j j



 

 






 

     

    



 



   





K

(13) 

which completes the proof.                 
Theorem 2. Suppose Assumption holds. Also assume 

       

that  .T  is asymptotically homogeneous. In additio
as

n, 
sume that  .F  is continuous and  .T  is monotone 

regular. Then, for 1 3 > 0  , 3 2 5 6d   and 
1/ 2 >d 0 

  1 1
d

d    

,  

 

/ 11/2 1 1/2 1
2 /

1 2

=1

= ( ) ( )

        ( ( 1) ) ,

Kd d
n K

n
d

t
t

S n T n j n

I j n x j dj

 
 

 

 

     



    




     (14) 

    11/2

0
=1

   d

= ( ) (1, )d .

n

t H
t

n n T n x F B r

F s L s s

 





 



r
 (11) 

Proof of Theorem 2: 
To simplify our proof, we assume . Because 

   
    

1 / 11 2 1 2
3 /

1

0

=

        1 d d ,

Kd d
n K

H

S n T n j

I j B r j r j

 
 

 

 

    



   




  (15)    = 1n

  1 2
1 = 1p d

t pt nn x O 
  su , it now suf at 

fo
fices to show th

r any 0K  ,  

           

 

1 11 2 1 2
4

1 2 1 1 2

= 1

      = ( ) ( ) 1, d ,

Kd d
n K

Kd d

K

S n T n j L j

n T n s L s

 
 

 

 



    



    







     

   

11/2 1

=1

1

0
  d

= 1, d .

n
d

t

d

H H

K

K

n n T

F B r I B r K r

F s L s s

   



 







(12) 

Now, by Lemma 1,  

, dj

s

 
(16) 

1 2  d
t tn x I n x K   

   

     
5 5

1

0

= = 1, d

    = d .

K

n K

H H

S S F s L s s

F B r I B r K r

 






       (17) 

We will show that  
  

  

1 21
=1

1

0

    

d

n d
tt

n I

H

n x x

I B r x r

  

 
. 

By the Skorokhod representation theorem, we can 
assume without loss of generality that  

0 1, = 0limsuplim jn j nn S S      

almost surely for . By the monotone regular 
condition, we can act as if  is monotone without 
loss of generality. For 

= 1, , 4j 
 .T

1 2nS S   we then have (See the 
Equation [18] below) and as 0  , the last term 
disappears because of continuity of  .F , the second 
inequality follows from monotonicity of  .T , and the 
third by our definition of an asymptotically homogeneous 
function. To show that 0limslim

     11 21
=1 0

  d
n d

t Ht
n I n x x I B r x r     

= 0.
as

nc 

 

Now for all 
2 3 = 0n nS S upn  

almost surely, note that (See the Equation [19] below) 


> 0 , let  

          

           

1 / 1 1 21 2 1 1 2
1 2msup msupn t

n n

S S
 

 
/

=1

1 / 1 1 21 2 1 1/2 1 2

/
=1

1 dli li

                         1 1 dlimsup

   

nK dd d
tK

t

nK dd d d
tK

n t

n n T n x T n j I j n x j j

n n T n j T n j I j n x j j

  
 

  


   

    

        



         



    

     





             

        

1 1/ 1 1 2 1/2 1 2 1 2

/

/ 1

/

                     1 1 dlimsup

                             1 d = d ,

K d d d d

K
n

K K

K K

n T n j n T n j F j F j j

F j F j j F x F x x

    


 



     

  

         



 

 

     

    



 

 

(18) 

             

   

         

1 / 1 11 21 2 1 2 1

/ 0
=1

1 / 11 2 1 2

/

11 1 2 1 2 1

1 1

2

2 2 d = 1

nK dd d
t HK

t

Kd d
n K

K Kd d
n nK K

n T n j n I j n x j I j B r j

c n T n j dj

c n T n x F x dx c F x x o

 


 


 

    

 

  

       



    



     

 

        
 



  

 



 

d dr j

(19) 
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almost surely under our assumptions and by the definition 
of . For nc 3 4n nS S   we have  

   
       

   
    

3 4

1 /1 2 1 2

/

11

0

/

11

0
| |

  

  1 d 1, d

  d 1, .sup

n n

Kd d

K

H

K

H
x K

S S

n T n j

I

1 /1 2 1 2 d
Kd d

j B r j r L j j

I x B r x r L x

 

 




  

   



 

   















    

     







(20) 

By the earlier argument, 

n T n j j
  

    

   11 2 1 2

1 >0

d < ,supsup
Kd d

K
n

n T n j
 


  
   


j   

and therefore it suffices to show that as

(21) 

 0  , 

    11

0
d 1,sup H

x K

I x B r x r L x 


     0.  (22) 

ormula, the above expressi
satisfies  

By the occupation times f on 

 

    

 
   

1

1

(1, )d 1,sup

= 1, 1, dsup

x

x
x K

L s s L x

L s L x s




















continuity of  on 

,

1, 1, 0 as 0sup sup
x K s x x

L s L x



  

   

by uniform 

x
x K

x 




(23) 

 1,.L  ,K K . Finally, for 

4 5nS S  , we have  

        

       

11 2 1 2

11 2 1 2

   1, dlim

1, dsup lim

= 0

K d d

Kn

K d d

Kns K

n T n s H s L s

L s n T n s F s s

 

 





   



   











s



by the defi ptotically homogeneous func- 
tion, which completes the proof. 

Theorem (2) expands the transformations asymptoti- 
cally homogeneous functions to scaled nonstationary I(d) 
processes. This new result can be used to obtain the asy- 
mptotics of the nonlinear fractional cointegration. 
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