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ABSTRACT 

The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an 
excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts to learn about the 
author of the text through subtle variations in the writing styles that occur between gender, age and social groups. Such 
information has a variety of applications including advertising and law enforcement. One of the most accessible sources 
of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. 
In this study we seek to identify the gender of users on Twitter using Perceptron and Naïve Bayes with selected 1 
through 5-gram features from tweet text. Stream applications of these algorithms were employed for gender prediction 
to handle the speed and volume of tweet traffic. Because informal text, such as tweets, cannot be easily evaluated using 
traditional dictionary methods, n-gram features were implemented in this study to represent streaming tweets. The large 
number of 1 through 5-grams requires that only a subset of them be used in gender classification, for this reason infor- 
mative n-gram features were chosen using multiple selection algorithms. In the best case the Naïve Bayes and Percep- 
tron algorithms produced accuracy, balanced accuracy, and F-measure above 99%. 
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1. Introduction 

Social networking is one of the fastest growing industries 
on the web today [1]. Structured to accommodate per- 
sonal communication across large networks of friends, 
social networks produce an enormous amount of user- 
generated data. The open availability of this data on public 
networks, particularly Twitter, provides a good opportu-
nity to research the unique characteristics of informal 
language. As such, Twitter has become the subject of 
many studies seeking to obtain useful information from 
user-generated tweets. Some of the topics for this re- 
search include the determination of gender, age, and 
geographical location of Twitter users. Any information 
that can be gleaned from authorship may have applica- 
tions across a variety of fields; for instance, gender and 
age identification have applications in marketing, adver- 
tising, and legal investigation [2]. Collecting such infor- 
mation from Twitter does, however, have unique chal- 
lenges. 

Unlike traditional authorship analysis problems which 
are based on samples hundreds of words in length [3], the 
analysis of Twitter is hindered by the 140 character limit 
on tweets. Other difficulties include both accidental and 
purposeful misspellings, and internet slang. However, 
certain distinctive traits, which have emerged as a result  

of the limitations of Twitter and informality of social 
networks, provide the possibility for accurate analysis. 
Of particular interest among these characteristics is the 
proliferation of informal acronyms, emoticons, and pur- 
poseful misspellings. Acronyms such as, “lol”, “rofl”, 
and “omg” and emoticons like “=P”, “<3”, and “:” (“ex- 
press a clear meaning in only a few characters [4]. Pur- 
poseful misspellings such as “heyy” and “pwned” are 
commonly used by a particular group of authors and 
therefore may be indicators of authorship. Although the 
informal language on Twitter presents multiple chal- 
lenges to traditional text mining, many of the distinctive 
traits of informal text may provide useful information for 
authorship analysis. 

Gender prediction through text in the past has prima- 
rily used either sentence structure and punctuation or 
word counts, parts of speech, and other dictionary based 
methods [5]. However, in an environment like Twitter, 
where meanings are greatly condensed and the use of 
acronyms, emoticons, and misspellings is ubiquitous, it is 
nearly impossible to prepare a dictionary of distinguish- 
ing features. For this reason our study utilizes character- 
based n-grams and the selection of the most prominent 
grams, not only to predict gender accurately, but also to 
identify the most representative features. 
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Another difficulty with Twitter is the rate at which 
tweets are generated. Stream algorithms are designed to 
handle enormous amounts of continuous data that evolves 
over time, and are required to make only one pass over 
the data. Because of their streaming nature, these algo-
rithms are able to update themselves and follow trends in 
the data. The single pass, however, can result in de-
creased performance of the algorithms, because data may 
not be stored or revisited. Our study proposes the use of 
the Perceptron and Naïve Bayes stream algorithms for 
gender prediction on Twitter, with feature selected n- 
grams to represent streaming tweets. 

2. Data and Their Representation 

2.1. Data Collection and N-Gram Feature 
Extraction 

Using the Twitter Streaming API, a set of 36,238 unla- 
beled tweets was downloaded. These tweets were then 
manually labeled as male or female instances, a time 
consuming task hindered by Twitter’s hourly restrictions 
on requests. While labeling, we kept one tweet from each 
user and removed any instances where either the gender 
was unclear or the user did not write in English. By do- 
ing this, our data set was reduced to roughly 3000 users 
with about 60% females, a ratio representative of Twitter 
users [6]. To train and test the classifiers, the data was 
split into two equal sets, training and testing. The training 
set was used to extract and select usable features from 
tweets. Representations of the testing set were generated 
using these features to measure the performance of our 
gender identification methods. 

To represent the tweet text, we employed n-grams, 
collections of n consecutive characters, from a standard 
US keyboard. Only these characters were used in order to 
reduce the number of 1-grams from the complete set of 
256 ASCII characters to the 95 most used. Each count of 
a particular n-gram was used as a feature. Because higher 
orders of n-grams reveal the correlation of different cha- 
racters within a text, 1-grams through 5-grams were used 
to represent each tweet. The only downside to using 
higher orders of n-grams is that as n increases, the num- 
ber of features also increases exponentially. In other 
words, if 95 1-grams were extracted, then 952 = 9025 
2-grams would be needed, and so on. If we were to use 
every possible 1 through 5-gram for the 95 characters, 
we would have to store 7,820,126,495 features for each 
instance. 

Only the n-grams of the tweets observed in the training 
set were extracted, which further reduced the feature 
count from 7,820,126,495 to 109,228. At the same time, 
we also removed any tweets that were deemed too short. 
Because the length of tweets can vary substantially, 
tweets were divided by their minimum length creating a  

set for each minimum length of 25, 30, 40, 50, 60, and 75. 
It should also be noted that the sets of shorter tweet 
length contain the sets of longer length. 

2.2. Feature Selection 

After the tweets had been sorted by their minimum 
length, six feature selection algorithms were run on the 
training set using Weka [7], as a means to reduce feature 
space and noise in the represented data. The algorithms 
used were Chi-Square, Information Gain, Information 
Gain Ratio, Relief, Symmetrical Uncertainty, and Fil- 
tered Attribute Evaluation. All of these use the Ranker 
filter to order the features. Chi-Squared uses the chi- 
squared statistic to evaluate individual attributes pro- 
bability with respect to each class. Information Gain is 
synonymous with Kullback-Leibler divergence and uti- 
lizes a decision tree to calculate the entropy within a set 
of values. Information Gain Ratio is a slight variation of 
Information Gain, which divides Information Gain by 
intrinsic value. The Relief algorithm samples random 
instances and compares them with neighboring instances 
of each possible class. Symmetrical Uncertainty mea- 
sures the correlation between two attributes to determine 
which attributes have little inter-correlation. The diverse 
collection of algorithms used in feature selection ensured 
that the features selected from the training set would not 
be biased by any particular technique. 

Each of these algorithms was run on all six sets of 
tweets with different minimum lengths, in order to deter- 
mine the feature rankings from each algorithm for each 
set. The selections of the six algorithms were then com-
pared, requiring a feature to receive votes from at least 
four of the six algorithms to be included. To do this, top 
features were read in order; any of these features which 
were contained in at least four of the rankings were then 
added to our selected features. The process continued 
until a user-specified number of features was reached; 
this number was determined for each minimum length. If 
more than 3% of the instances of our testing set were not 
represented by any of the selected features, the number 
of features selected was increased. We call these unrep-
resented instances zero-instances, since these instances 
have only zeros in their representation. Eventually a fea-
ture set was created for each of the six minimum tweet 
lengths (Table 1), we refer to this collection as Feature 
Set A. In addition to these feature sets, a set of 15,000 
features, Feature Set B, was selected for each length in 
order to analyze the effect of tweet length on classifica-
tion accuracy. Counts of these features were recorded for 
each instance in the testing set as a vector to be used by 
our gender classification algorithms, producing a total of 
12 representations, one for each minimum tweet length in 
both feature sets. Some of the most prominent and recog- 
nizable features selected are displayed in Table 2. These  
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Table 1. Number of features for each minimum tweet length 
in feature set A. 

Min length # of features 

25 15000 

30 8500 

40 7000 

50 5000 

60 7000 

75 3500 

 
features include both emoticons and purposeful mis- 
spellings with “:)”, “ ”, and “hey”, which appeared 
several times and were used primarily by female authors. 
The majority of the features in the table are female, be- 
cause a large number of the most informative male fea- 
tures were profane. 

3. Methods 

In this study we employ both the Perceptron and Naïve 
Bayes stream classification algorithms. Perceptron is a 
simple neural network that uses a hard limit function to 
make predictions about an instance, while Naïve Bayes 
uses a probabilistic model for classification. Although 
these algorithms are generally considered classical classi- 
fication algorithms, they are inherently stream oriented, 
as they only make one pass over the data and store their 
models as compact representations. 

3.1. Perceptron 

Perceptron is an artificial neural network that is designed 
for classification [8]. Due to its simple structure, Percep- 
tron is able to quickly classify any real-valued instance x 
with true class t. At the core of this algorithm is the func-
tion: 

hardlimc w x  b

x

e

          (1) 

where w is the weight matrix, b is the bias and  
is the hard limit function. 

hardlim

The  function forces c to be either 1 or 0 
which serves as the predicted class of the instance x. 
Once the prediction is made, the algorithm calculates the 
error value ; a value of zero means a correct 
prediction was made while a non-zero means the oppo- 
site. The weight matrix is then updated using the for- 
mula: 

hardlim

e t c 

new oldw w e               (2) 

And the bias is updated using the equation: 

new oldb b                 (3) 

Because Perceptron uses a linear function to differen- 
tiate the two classes, it has trouble dealing with non- 

linearly separable data. In this study, we used the imple- 
mentation of Perceptron within the MOA framework [9]. 

3.2. Naïve Bayes 

The Naïve Bayes classifier uses a probabilistic model 
according to Bayes’ theorem [10], which requires the 
multiplication of the probabilities of each feature, based 
on the assumption that all features are independent of one 
another. The Naïve Bayes algorithm calculates a proba- 
bility from the occurrence of each feature, with regards 
to the true class of the instance. For each new instance, 
the probability of this instance belonging to each class is 
calculated using the formula: 

     
 

|
|

P x c P c
P c x

P x
              (4) 

where c is the predicted class and x is the instance. The 
class with the highest probability is considered to be the 
predicted class of the instance. Like Perceptron, we used 
the MOA implementation of the Naïve Bayes classifier 
[9]. 

4. Results 

In this section, we report the gender classification ability 
of each stream algorithm. The performance of these sys- 
tems is measured by a variety of metrics including accu- 
racy, balanced accuracy, and F-Measure. Accuracy is the 
percentage of instances predicted correctly, while balan- 
ced accuracy is the average of the accuracies for each 
class. F-Measure is used in several previous studies in 
gender identification as an overall assessment of per- 
formance because takes into account both precision and 
recall. When measured by these metrics, each algorithm 
demonstrates its own gender prediction capability. Once 
the important features were selected from the training 
data set, both the Perceptron and the Naïve Bayes algo-
rithms were run on the testing set, represented by the 
selected features, to gauge their gender discriminatory 
power (Figures 1-4). 

4.1. Gender Identification Using Feature Set A 

Using Feature Set A, both the Perceptron and Naïve 
Bayes classifiers were run to measure the effectiveness 
of these selected features. All metrics demonstrating the 
gender identifying power of both algorithms are above 
75%, so we only display the range 75% - 100% in Figures 
1-4. Perceptron (Figure 1) demonstrated a high precision 
between 90% and 95% but a low recall (75% - 85% for 
most minimum lengths). On the other hand, Naïve Bayes 
(Figure 2) had a slightly lower precision, but was able to 
have higher F-Measure and recall rates (above 90%). 
Because the number of features varied significantly as 
the minimum length of tweets changed, the performances 
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Table 2. Prominent gender specific features*. 

Feature number Feature Common words containing feature Count Gender 

F49219 _get_ get 87 female 

F49428 _when when 86 female 

F49481 _love love 85 female 

F50271 _ever ever, every, everyone, everything 85 male 

F551 :) :) 83 female 

F49284 here _ here, where, there 81 female 

F49419 _I’m_ I’m 81 male 

F49124 ally_ really, totally, actually, finally 79 female 

F5784 hey hey, they, heyy 71 female 

F49256 _one_ one 55 male 

F49662 eople people 54 female 

F49375 would would 53 male 

F49551 right right 47 male 

F49680 night night, tonight 47 female 

F49987  3  47 female 

*Many of the most informative male features were profane and were not displayed in the table, and the _ character is used to denote a space character. 
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Figure 1. Gender identification performance metrics of Perceptron using feature set A. 
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Figure 2. Gender identification performance metrics of Naïve Bayes using feature set A. 
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Figure 3. Gender identification performance metrics of Perceptron using feature set B. 
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Figure 4. Gender identification performance metrics of Naïve Bayes using feature set B. 
 
fluctuated and may not be compared. Of particular interest 
is the performance of Perceptron using the minimum 
tweet length of 75. Here, all five of the performance met-
rics are within 5% of one another, and are above 90%. 
The Naïve Bayes algorithm demonstrates a similar trend 
when run on the minimum tweet length of 25. 

4.2. Gender Identification Using Feature Set B 

In order to find an overall comparison between the two 
algorithms, we then ran the classifiers on the testing data 
sets represented by 15,000 features (Feature Set B). With 
Feature Set A, Perceptron improved its classification, but 
still did not do as well as Naïve Bayes. Perceptron was 
unable to achieve a high recall value (Figure 3). This 
algorithm had its highest accuracy and balanced accuracy 
when it was run on the testing data set with a minimum 
length of 60 characters. In contrast, Naïve Bayes (Figure 
4) using Feature Set B was able to improve on every 
metric. In particular, the precision metric of Naïve Bayes 
increased from 80% - 90% using Feature Set A to 95% - 
100% using Feature Set B, which caused its F-Measure 
to increase substantially. This algorithm performed best 
with a minimum tweet length of 75 characters. The 

results of Naïve Bayes using Feature Set B are displayed 
in Table 3. 

The Naïve Bayes classifier performs much better than 
Perceptron in most metrics, which suggests that pro- 
babilistic modeling is well suited to the task of gender 
identification on Twitter (Figures 1-4). It is also interest- 
ing that the algorithms classify better using Feature Set B 
rather than Feature Set A. This implies that by using a 
larger number of features, each tweet is able to have a 
better representation. Although processing the increased 
number of features in Feature Set B requires more me- 
mory and time, the use of 15,000 features does not pose a 
significant problem because of the speed of our algo-
rithms, and the two algorithms using these features show 
significant improvement in all metrics. Both the Percep-
tron and Naïve Bayes algorithms using Feature Set B, 
perform well for author gender identification, warranting 
further study with more complex stream algorithms. 

5. Conclusions 

The rapid growth of social networks, particularly Twitter, 
has produced an unprecedented amount of user generated 
t ext which may be used for authorship analysis, including 
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Table 3. Tabulated gender identification results of Naïve Bayes using feature set B. 

Min length Accuracy Balanced accuracy Precision Recall F-measure 

25 0.976 0.968 0.9974 0.9374 0.9665 

30 0.9781 0.9704 1 0.9409 0.9695 

40 0.985 0.9804 0.9966 0.9629 0.9794 

50 0.9812 0.9782 0.9812 0.9672 0.9742 

60 0.9859 0.9804 1 0.9609 0.98 

75 0.993 0.9909 1 0.9818 0.9908 

 
gender prediction. Because of the anonymity on the In- 
ternet, many times the text is the only data source for 
gender identification. Data collected from social net- 
working sites like Twitter is often restricted by text 
length causing further difficulties for gender classifica- 
tion. Also, information generated at high speeds cannot 
be processed well by traditional batch mining techniques 
and thus stream mining algorithms must be used instead. 

In this study, we attempt to identify user genders on 
Twitter by representing each tweet as a vector based on 1 
through 5-gram features. To better represent acronyms, 
emoticons, and misspellings frequently used on Twitter; 
n-grams are employed instead of traditional dictionaries. 
Although higher orders of n-grams provide more insight 
into the text of the tweets, they also require exponentially 
more features to be used. To extract the informative fea- 
tures and improve the classification and runtime of our 
gender prediction algorithms, six feature selection algo- 
rithms were employed. To evaluate the effectiveness of 
these selected features for gender identification on Twit- 
ter, we used two simple stream mining algorithms: Per- 
ceptron and Naïve Bayes. Perceptron preformed rela- 
tively well with very high precision (97%), and a bal- 
anced accuracy of 94%, which was outperformed by Na- 
ïve Bayes scoring between 90% and 100% for all metrics. 
The performance of the Perceptron and the Naïve Bayes 
stream algorithms on gender identification of Twitter 
users demonstrate the value of the n-gram feature repre- 
sentations as well as the feature selection techniques. 
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