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ABSTRACT 

This work presents a procedure to optimize the molecular geometry at the Hartree-Fock level, based on a global opti-
mization method—the Generalized Simulated Annealing. The main characteristic of this methodology is that, at least in 
principle, it enables the mapping of the energy hypersurface as to guarantee the achievement of the absolute minimum. 
This method does not use expansions of the energy, nor of its derivates, in terms of the conformation variables. Dis-
tinctly, it performs a direct optimization of the total Hartree-Fock energy through a stochastic strategy. The algorithm 
was tested by determining the Hartree-Fock ground state and optimum geometries of the H2, LiH, BH, Li2, CH+, OH−, 
FH, CO, CH, NH, OH and O2 systems. The convergence of our algorithm is totally independent of the initial point and 
do not require any previous specification of the orbital occupancies. 
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1. Introduction 

The global optimization problem is a subject of intense 
current interest. Stochastic optimization methods have 
been utilized to solve this kind of problem. Essentially 
these methods consist of performing a direct optimization 
of a given function, denominated cost function, E, within 
a determinated stochastic strategy. The Monte Carlo 
method (MC) is a well-known example of this kind of 
method. It has been proposed by Metropolis and Ulam [1] 
whose presented it as a general purpose tool1. In the sto-
chastic strategy applied by Metropolis and Ulam, it is 
used a function, g, to calculate the visiting probability of 
the hypersurface definited by the cost function, BE k Te 2. 
In the original concept of the MC method, the system 
configurations randomly chosen and used in the calcula-
tions of E, are supposed equiprobable. Metropolis [2] 
proposed a modification in the MC algorithm, i.e. he 
gave distinct weights to distinct configurations. This 
method is known in the literature concerned as the Me-
tropolis method. Kirkpatrick et al. [3,4] proposed a new 
procedure denominated the Simulated Annealing (SA) 

method, which is a modification of the Metropolis 
method [2]. In the SA method, g is a gaussian function 
and the T parameter is no longer considered a constant 
and changes according to    0 log 1T t T t  , where t 
enumerates the cycles of the process. In the literature this 
method is referred to as the Classical Simulated Anneal-
ing (CSA) method or Boltzmann Machine. Szu and Hart-
ley [5] proposed a modification in the CSA method where 
the g function is a Cauchy-Lorentz function and T varies 
according to    0 1T t T t  . The Szu and Hartley 
procedure became known in the literature as the Fast 
Simulated Annealing (FSA) method or Cauchy Machine. 
These SA methods have been applied in distinct situa-
tions such as restoration of degraded images [6] and mi-
croprocessor circuitry design [4]. 

The Generalized Simulated Annealing method (GSA) 
[7], has been developed and includes both procedures, 
the FSA and CSA, as special cases. The GSA approach 
uses the Tsallis statistics [8,9] to define the visiting dis-
tribution function g and has been applied successfully in 
the description of a variety of global extremization prob-
lems. In the domain of the atomic and molecular aggre-
gates, for example, the discovery of the lowest-energy 
conformations for biological macromolecules or crystal 
structures for systems with known composition is a fre-
quent goal. In particular, the GSA approach has been 
used with success in the prediction of new three-dimen-  

*Corresponding author. 
1According to a citation in the article by Metropolis [2], this method 
was also proposed independently by J. E. Mayer in the study of liquids.
2kB it is the Boltzmann constant; T is a noise control parameter, usually 
denominated temperature, which is pre-established at the beginning of 
the process. 
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sional protein structure and protein folding [10,11], fit-
ting the potential energy surface for path reaction and 
chemical reaction dynamics [12,13], gravimetric problem 
[14], mechanical properties in alloys [15-17], in elec-
tronic structure problems [18-20], among others. 

It is important to point out that those typical method-
ologies used to treat optimization problems based on 
solving nonlinear necessary-condition equations do not 
guarantee the achievement of the absolute minimum. 
This is the case with some variational electronic structure 
methods, for instance, the Hartree-Fock (HF), multi- 
configuration selfconsistent field (MCSCF), molecular 
geometry determination problems and the correspondent 
methods in the scope of the Nuclear-Electronic Orbital 
theory (NEO) [21-26]. Moreover, it should be observed 
that the absolute minimum of the functional energy in a 
given class of functions is the best description of the 
ground state, as the energy is concerned, within that 
given class. These observations suggest the importance 
of developing direct optimization methods for studying 
these classes of extremal problems. 

In previous works [18,19], the GSA algorithm was 
used to study the problem of determining the absolute 
minimum of the restricted Hartree-Fock-Roothaan (RHF) 
[27] and of the unrestricted Hartree-Fock-Pople-Nesbet 
(UHF) [28] functionals. In another work the GSA algo-
rithm was applied to construct atomic bases [20]. The 
method presented in this work is also based on the GSA 
algorithm, and it is used to determine the absolute mini-
mum and optimum geometry at the Hartree-Fock (HF) 
level. This geometry optimization method (hereafter re-
ferred to as HFg, RHFg or UHFg) was tested by deter-
mining the HF ground state and optimum geometries of 
the H2, LiH, BH, Li2, CH+, OH−, FH, CO, CH, NH, OH 
and O2 molecules, using minimal, double-zeta and dou-
ble-zeta with polarization basis functions (d functions for 
Li, B, F and p functions for H). The main characteristic 
of this methodology is that it enables the mapping of the 
potential energy hypersurface in order to guarantee, at 
least in principle, that the absolute minimum of the func-
tional in focus is achieved. This methodology does not 
use expansions of the energy, or of its derivatives, in 
terms of the conformation variables [29,30]. Distinctly, a 
direct optimization is performed of the total Hartree-Fock 
energy function through a stochastic strategy, the GSA 
method. A detailed discussion about the multiple HF 
extrema, the HF absolute minimum and the GSA algo-
rithm can be found in [18,31-37]. 

2. The Real HFg Functional and the  
Constraint Equations 

Since the Roothaan and Pople-Nesbet problems are very 
well known and documented in the literature, only the 
more general UHFg functional and constraint conditions 
will be presented. Consider a molecular system with nu-

clear coordinates  X R , n electrons, m atomic basis 
functions  1 2, , , m  ξ  and n n n    occupied 
LCAO3 molecular orbitals (MOs) 
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where i
c  is a column vector with components 1 i, ,i mc c  , 

  is the matrix m n  formed by the n  columns 
vectors 1 2, , , n

  cc c  .   is the matrix ,     
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m n . The electronic energy functional (in atomic 
units), in the real UHF approximation, is given by, 
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with the constraint conditions given by, 

0 ; 1, , ; , .
m

i j ijc c i j n 
    


           (1) 

In the above equations    , h    and 

        are the usual overlap, kinetic energy plus 
nuclear attraction, and electronic repulsion integrals, re-
spectively, that depend of the nuclear coordinates 

 X R . For the HFg functional, the total energy E, is 
given by, 
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     (2) 

3. The HFg Algorithm 

As in references [18-20], the GSA algorithm used here 
includes two additional modifications relative to the 
original version described in reference [7]. The first one 
is the introduction of constraint conditions in the struc-
ture of the algorithm (steps 4) and 9)) to treat our varia-
tional problem of constrained extrema. The second modi-
fication was the introduction of a new independent pa-
rameter, T , to construct the temperature function de-
fined in the step 6). 

q

The procedure used to search for the global and local 
minima or to map the cost function hypersurface consists 
in comparing the total energy  for two con-
secutive values of the  and X obtained with the GSA  

 ,E X


3Linear Combination of Atomic Orbitals. 
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routine.  and X, for two consecutive GSA steps, are 
related to the previous ones via random perturbations on 
the LCAO-MOs coefficients and on the molecular con-
formation, respectively. In each cycle,  and X are 
simultaneous and independently generated. 





In summary, the whole UHFg algorithm for mapping 
and searching for the global minimum of the total energy 
surface is: 

1) Fix the qA, qV and qT parameters relative to accep-
tance and visitation probability-distribution functions and 
temperature function, respectively; 

2) Start at t = 1, the first step in the iterative process, 
with an arbitrary initial matrix guess t , an arbitrary 
molecular conformation  and a high enough value 
for the “temperature” ; 


tX

 t
Tq

3) Calculate the integrals 
T

t   , 
t

h    and 

t        at X ; t

4) Ortho-normalize the n  LCAO-MOs vectors 

1 2, , ,t t tn

 c c c 


 according to Equations 1; 

5) Calculate the total energy  using Equa-
tion 2; 

 ,t tXE

6) Calculate a new temperature as follows [7]: 
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, where 

 and , are randomly gener-
ated by using the visiting probability distribution 

Vq
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criterion. 
After convergence is achieved, the orbital energies 
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 is the 
Fock’s matrix constructed with the converged UHFg oc-
cupied matrix . Also, it is always possible to obtain 
the virtual canonical vectors, 1


, , ,  c c

, ,n m

  and 
the respective virtual orbital energies 1

     by 
diagonalization of the pseudo-eigenvalue equations 

     , ,i i i   c cF S   [28]. Note that, while for 
the standard RHF/UHF-SCF [27,28] calculations one 
needs to specify, a priory, the orbital occupancy, no ad 
hoc orbital occupation rule is needed for the RHFg and 
UHFg calculations 

The following stopping criterion was adopted for the 
HFg iterative process convergence was assumed if the 
difference between the current total energy value and the 
lowest total energy previously obtained during the proc-
ess was less than a pre-established value  E   for a 
certain number of consecutive steps (nstop). The HFg 
calculations were performed in atomic units and was 
used  and . The algo-
rithm HFg described above is illustrated in the flowchart 
of Figure 1. 
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Figure 1. HFg-GSA Flowchart. 
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4. Discussion 

To test the HFg method, we calculated the HF ground 
state energy and optimum geometry for the H2, LiH, BH, 
Li2, CH+, OH–, FH, CO, CH, NH, OH and O2 molecules. 
The calculations were carried out using minimal (STO- 
6G), double-zeta, and double-zeta with polarization func-
tions (d functions for Li, B, F and p functions for H) ba-
sis sets. Tables 1-3 show the point and spin symmetry 
classes of the ground state, the kind of calculations per-
formed, the geometry and correspondent energy obtained 
and the experimental geometry extracted from the Herz-
berg book [38]. 

 
Table 1. Converged HFg energies and geometries using 
STO-6G basis.

r (bohr) 
System Symmetry 

Restricted/ 
Unrestricted HFg

 Exp. 
Energy 

(hartree)

H2 1+
g RHF 1.343 1.382 −1.126216

LiH 1+ RHF 2.847 3.015 −7.953471

BH 1+ RHF 2.276 2.329 −25.001901

Li2 1+
g RHF 5.082 5.051 −14.808883

CH+ 1+ RHF 2.237 2.137 −37.827055

OH– 1+ RHF 2.015 1.833 −74.786010

FH 1+ RHF 1.803 1.733 −99.501719

CO 1+ RHF 2.165 2.132 −112.304213

CH 2 UHF 2.151 2.116 −38.145699

NH 3– UHF 2.038 1.958 −54.794662

OH 2 UHF 1.912 1.832 −75.078694

O2 3–
g UHF 2.301 2.282 −149.052202

 
Table 2. Converged HFg energies and geometries using DZ 
basis. 

r (bohr) 
System Symmetry 

Restricted/ 
Unrestricted HFg

 Exp. 
Energy 

(hartree)

H2 1+
g RHF 1.379 1.382 −1.1267990

LiH 1+ RHF 3.104 3.015 −7.9810243
BH 1+ RHF 2.345 2.329 −25.1134219
CH+ 1+ RHF 2.108 2.137 −37.8850797

OH– 1+ RHF 1.845 1.833 −75.3509506
FH 1+ RHF 1.738 1.733 −100.0219016
CO 1+ RHF 2.150 2.132 −112.6850704
CH 2+ UHF 2.111 2.116 −38.2589640
NH 3– UHF 1.959 1.958 −54.9549663
OH 2+ UHF 1.833 1.832 −75.3860061

 
Table 3. Converged HFg energies and geometries using DZ 
polarized basis. 

r (bohr) 
System Symmetry 

Restricted/ 
Unrestricted HFg

 Exp. 
Energy  

(hartree) 

H2 1+
g RHF 1.386 1.382 −1.1313278

LiH 1+ RHF 3.084 3.015 −7.9827074

BH 1+ RHF 2.321 2.329 −25.1237849

FH 1+ RHF 1.706 1.733 −100.0478253

We performed several RHFg and UHFg calculations 
combining different initial values  with distinct 
sets of the parameters qA, qV, qT and T0. We found that 
the narrow ranges of values of the parameters qV and qT, 
leading to a better convergence (smallest number of HFg 
cycles), namely, 

 , X 

 2.6,2.9  Vq nd a  1.6,2.0 ,Tq e 
similar to those obtained in previous works [18,19]. In 
particular, for the minimal basis set, the best convergence 
is achieved for 2.9Vq

  ar

  and q 1.9T  , which are quite 
close to the best values obtained for the RHF-GSA and 
UHF-GSA problems [18,19]. In addition, we performed 
several calculations using different values of qA, includ-
ing acc 0A  , wh  the convergence, therefore, 
been adopted in step 10) of the HFg algorithm, an accep-
tance probability, acc

ich led to

A , equal zero for all calculations. 
The genera

 to 
onvergence bel g algo-

rit
 c havior of the HF

hm is similar to that of the RHF-GSA and UHF-GSA 
methods [18,19]. For all systems and bases sets em-
ployed, it was always possible to obtain the global mini-
mum, with several distinct combinations of these pa-
rameters, each set of parameters requiring a different 
number of HFg cycles. Also in all calculations, the HFg 
energies initially show a strong oscillatory behavior but 
soon afterwards the energy starts to smoothly converge 
towards the absolute minimum. Figures 2 and 3 present 
the RHFg and UHFg convergence profiles for the CH+ 
and OH molecules, indicating the values of the parame-
ters accA , qV, qT, T0, the atomic basis sets, the type of 
guess r the initial values of    initial  and X  fo
 initialX , and the number of the cy le ich con-

 was achieved 
c s for wh

vergence  cycleN . Similar convergence 
profiles were obtained for thers molecules. 

In order to verify the accuracy of the calculation
all the o

s, the 
RH

 

Fg and UHFg results were compared with those ob-
tained by the standard gradient RHF/UHF geometry cal-
culation method, for all molecules considered, using the 

 

 

Figure 2. CH+ double-zeta basis HFg convergence process. 
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Figure 3. OH double-zeta basis HFg convergence process. 

program GAMESS [39]. Three choices for the initial ma-
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trix   were considered when performing the RHF/ 
UHF AMESS calculations: the eigenvectors of core 
hamiltonian (Hcore)4, the eigenvectors of an extended 
Huckel calculations (Huckel)5, and the eigenvectors of a 
previous RHFg or UHFg calculation. Furthermore, when-
ever necessary, the Direct Inversion in the Iterative Sub-
space (DIIS) convergence acceleration technique [40,41] 
was also used for the RHF/UHF-GAMESS calculations. 

In all cases we examined, the RHFg and UHFg calcula
ns converge to the global minimum with any randomly 

generated initial   and X values, what is not observed 
for the RHF/UH GAMESS calculations. Besides, the 
HFg method do not need any previous specification of 
the orbital occupancies. 

The stochastic proced vious 
orks [18-20] and in this paper can be extended to other 

variational approaches, for instance, the Multi-Configu-
ration Self-Consistent method [42] and in the Nuclear- 
Electronic Orbital theory [21-26]. Works in this direction 
are in progress. 
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